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Abstract

Background: Early triage of patients with mushroom poisoning is essential for administering precise treatment and reducing
mortality. To our knowledge, there has been no established method to triage patients with mushroom poisoning based on clinical
data.

Objective: The purpose of this work was to construct a triage system to identify patients with mushroom poisoning based on
clinical indicators using several machine learning approaches and to assess the prediction accuracy of these strategies.

Methods: In all, 567 patients were collected from 5 primary care hospitals and facilities in Enshi, Hubei Province, China, and
divided into 2 groups; 322 patients from 2 hospitals were used as the training cohort, and 245 patients from 3 hospitals were used
as the test cohort. Four machine learning algorithms were used to construct the triage model for patients with mushroom poisoning.
Performance was assessed using the area under the receiver operating characteristic curve (AUC), decision curve, sensitivity,
specificity, and other representative statistics. Feature contributions were evaluated using Shapley additive explanations.

Results: Among several machine learning algorithms, extreme gradient boosting (XGBoost) showed the best discriminative
ability in 5-fold cross-validation (AUC=0.83, 95% CI 0.77-0.90) and the test set (AUC=0.90, 95% CI 0.83-0.96). In the test set,
the XGBoost model had a sensitivity of 0.93 (95% CI 0.81-0.99) and a specificity of 0.79 (95% CI 0.73-0.85), whereas the
physicians’ assessment had a sensitivity of 0.86 (95% CI 0.72-0.95) and a specificity of 0.66 (95% CI 0.59-0.73).

Conclusions: The 14-factor XGBoost model for the early triage of mushroom poisoning can rapidly and accurately identify
critically ill patients and will possibly serve as an important basis for the selection of treatment options and referral of patients,
potentially reducing patient mortality and improving clinical outcomes.

(JMIR Form Res 2023;7:e44666) doi: 10.2196/44666
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Introduction

Approximately 5-10 per 100,000 people die annually from
accidental wild mushroom poisoning worldwide, mainly in
European countries, the United States, Japan, China, and Iran
[1,2]. The American Association of Poison Control Centers
reported 86,462 (10,808 cases/year) cases of mushroom
exposure from 2012 to 2019. In Japan, there were 1920 cases
of mushroom poisoning from 2001-2010, with a morbidity and
mortality rate of 0.52% [3]. China’s foodborne disease outbreak
surveillance system recorded 10,036 outbreaks of mushroom
poisoning between 2010 and 2020, resulting in 38,676 illnesses,
21,967 hospitalizations, and 779 deaths [4]. According to the
National Health and Family Planning Commission and the
Chinese Center for Disease Control and Prevention, mushroom
poisoning is the leading cause of death from food poisoning in
China [5,6]. Rapid and effective triage is essential for the early
treatment of patients with mushroom poisoning and the effective
allocation of hospital resources.

The HOPE6 and TALK scores [7] are recommended by the
Emergency Physicians Branch of the Chinese Physicians
Association, the Chinese Emergency Medical Specialists
Consortium, the Emergency Resuscitation and Disaster Medicine
Specialty Committee of the Chinese Physicians Association,
and the Beijing Emergency Medicine Society, and they serve
as an important basis for patient treatment plan determination
and are the most widely used condition assessment models in
clinical work in China. However, there are some limitations of
the abovementioned condition assessment methods: (1) Medical
technology is limited in areas with a high incidence of
mushroom poisoning, and toxin detection tools and some

treatment tools are not available in primary hospitals. (2) Some
of the assessment items are poorly clinically operable in practice;
for example, patients basically cannot provide the exact
information of the poisonous mushroom consumed to determine
the type of mushroom. (3) The model may be overly simplistic
for complex clinical events such as the development of a critical
illness because it assumes risk is a linear mix of numerous
factors. (4) The scoring model is proposed based on the literature
rather than clinical data, the existing mushroom poisoning
literature is mostly summarized based on severe cases, and the
patient’s condition may be greatly overestimated [8].

In recent years, with the emergence of biomedical big data,
machine learning has attracted great attention for developing
clinical informatics tools for disease diagnosis, staging, and
prognosis [9-11] and has been used in personalized medicine
[12-15]; therapeutics [16,17]; surgery [18,19]; radiology [20-25];
and hematology, oncology, and pathology [14,26-29]. It has
been demonstrated that machine learning may predict clinical
outcomes more accurately than traditional statistical models,
particularly when applied to huge data sets [30]. Machine
learning algorithms, in contrast to regression-based methods,
are capable of capturing higher-order nonlinear interactions
among predictors [31]. In this paper, we present the first
machine learning–based early condition assessment model for
mushroom poisoning assessment, which aims to improve the
efficiency and accuracy of condition assessment.

Methods

Our study was divided into 4 steps, and the flowchart of the
whole work is shown in Figure 1.
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Figure 1. Study flowchart. The phases of data processing, model selection, model comparison, and analysis are illustrated. DCA: decision curve
analysis; LR: logistic regression; ML: machine learning; RF: random forest; ROC: receiver operating characteristic; SHAP: Shapley additive explanations;
SVM: support vector machine; XGBoost: extreme gradient boosting.

Patient Population
We collected data on patients with wild mushroom poisoning
admitted to 5 county hospitals in Enshi, Hubei Province, China,
between January 2010 and May 2022. Critical illness was
defined as the occurrence of an admission to an intensive care
unit, hemodialysis therapy, referral to a higher-level hospital,
or death. We collected 24-hour data from 567 patients from 5
hospitals. We used data from 322 patients from 2 of the hospitals
as the training set, of which 56 were critically ill and 245 were
noncritically ill. Data from 245 patients from 3 other hospitals
were used as the test set to assess the performance of our model,
of which 43 were critically ill and 202 were noncritically ill.

We used the following inclusion criteria to develop the condition
assessment model: (1) patients older than 14 years of age and
(2) definite consumption of wild mushrooms before the onset
of the disease. Data used in the diagnostic model were excluded
when the following conditions were met: (1) age younger than
14 years; (2) possible concurrent consumption of other foods
causing acute poisoning; and (3) previous cardiac, hepatic, and
renal disorders, as well as mental disorders.

Data Preprocessing
To ensure the reliability of the results and that model use
characteristics were readily available, we excluded variables

that omitted more than 30% of the observations. The missing
values of continuous attributes were filled with the mean value
of each attribute, and the missing values of discrete attributes
were filled with the mode of each attribute. The values of each
feature were normalized for the support vector machine and
logistic regression.

Development of Machine Learning Model
Four popular machine learning classification algorithms,
including extreme gradient boosting (XGBoost) [32], random
forest, support vector machine, and logistic regression, were
applied in this study to build the classification models. We
implemented machine learning algorithms using Python (version
3.9; Python Software Foundation) and several Python modules
(panda, numpy, scipy, sklearn, xgboost, shap, and matplotlib).
Hyperparameter tuning was performed by a grid search based
on 5-fold cross-validation to select the best area under the
receiver operating characteristic curve (AUC) value for the
classification models.

A proper model interpretation must be supplied for the machine
learning model. Model predictions were interpreted using
Shapley additive explanations (SHAP) [33,34]. SHAP is a
model-independent interpretation technique that helps to
interpret the results of prediction models. The interpretation is
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based on the SHAP value for each feature, which indicates the
feature’s contribution to the risk of being predicted as critically
ill. Having a positive SHAP value indicates that the
corresponding feature contributes to a higher risk of the patient
being critically ill and is a risk factor. On the other hand, having
a negative SHAP value indicates that the corresponding feature
contributes to a lower risk of the patient being critically ill and
is a protective factor.

Statistical Analysis
To validate the performance of the model, we compared the
best machine learning model with the HOPE6 and TALK
scoring models [7]. In addition, we included the results of each
patient’s primary care physician’s assessment of the patient’s
condition to explore the diagnostic performance of our model
compared with that of the physician’s judgment.

We evaluated model performance in the test set by calculating
(1) the AUC; (2) decision curve analysis (DCA); and (3)
sensitivity, specificity, positive predictive value, negative
predictive value, positive likelihood ratio, and negative
likelihood ratio. The AUC is often used to assess the
performance of various prediction models and is robust to
category imbalance [35]. Based on the receiver operating
characteristic curve, we chose the best predictive value (i.e., the
value that is closest to the perfect model) for cases to fix the
category imbalance for whether the condition is critical or not
[36]. By calculating the AUC of different models, the
discriminatory ability of different models can be compared.
However, the AUC only focuses on the overall accuracy of the
models and does not focus on the relationship between benefit
and risk associated with different cutoff values in different
models. DCA, on the other hand, permits the assessment of the
range of threshold probabilities for a model to have value, the
magnitude of the benefit, and the best model among numerous

candidates. DCA figures out the “clinical net benefit” of one or
more predictive models over a range of threshold probabilities.
A threshold probability is a minimum chance that a disease
needs further intervention, and the “clinical net benefit” takes
into account the relative harms of false positives and false
negatives [37].

Ethics Approval
This study was approved by the Ethical Committee of Renmin
Hospital of Xianfeng, and informed consent was waived because
this study was retrospective and used deidentified data
(XFRY2021-12). The privacy and confidentiality of all
individuals included in this study were strictly protected, and
their data were used only for the purposes of this research.

Results

Patient Characteristics
The patient cohort participating in this study included data from
567 cases of mushroom poisoning of patients admitted to 5
county hospitals in the Enshi area. The case data included the
following types of mushroom poisoning: gastroenteritis,
neuropsychiatric symptoms, acute liver damage, acute renal
failure, myocardial injury, and combined types [7]. For all data,
the length of stay was 4.45 (95% CI, 3.45-5.44) and 3.52 (95%
CI 3.21-3.82) days for critically ill and noncritically ill patients,
respectively, and the cost of hospitalization was ¥11,113.09
(95% CI ¥8059.92-¥14,166.27; ¥1=US $0.14) and ¥2392.08
(95% CI ¥2188.34-¥2595.82), respectively.

Table 1 shows the baseline data of patients. The majority of the
indicators did not differ significantly between the training set
and the test set, and the remaining indicators (P<.01) were
excluded from the machine learning model.

JMIR Form Res 2023 | vol. 7 | e44666 | p. 4https://formative.jmir.org/2023/1/e44666
(page number not for citation purposes)

Liu et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Patient baseline characteristics.

P valueTest set (n=245)Training set (n=322)Variables

<.00155.62 (15.9)50.89 (17.37)Age (years), mean (SD)

.21Sex, n (%)

131 (53.5)155 (48.1)Male

114 (46.5)167 (51.9)Female

.96Critical illness, n (%)

43 (17.6)56 (17.4)Yes

202 (82.4)266 (82.6)No

Vital signs, mean (SD)

.39122.43 (21.45)120.9 (20.1)Systolic pressure

.1077.82 (13.09)76.07 (11.83)Diastolic pressure

<.00119.74 (1.86)18.89 (2.4)Respiratory rate

<.00136.4 (0.43)36.5 (0.4)Temperature

.1379.58 (14.29)81.39 (13.87)Heart rate

Blood routine test, mean (SD)

.319.39 (4.18)11.98 (39.69)WBCa

.894.62 (4.18)4.63 (0.79)RBCb

.94137.74 (24.52)137.57 (26.6)Hemoglobin

<.00137.87 (13.71)42.88 (8.74)Hematocrit

.1379.58 (14.29)81.39 (13.87)Heart rate

Liver function, mean (SD)

.4917.7 (15.98)16.89 (11.65)TBiLc

.946.09 (8.27)6.05 (5.73)DBiLd

.0212.23 (12.14)10.4 (5.64)IBiLe

.43142.23 (689.61)106.23 (380.7)ALTf

.83166.09 (824.13)152.04 (713.41)ASTg

Kidney function, mean (SD)

.087.69 (4.5)7.03 (3.17)Urea

.16100.15 (94.5)91.27 (54.42)Creatinine

Coagulation function, mean (SD)

.4812.88 (4.86)13.14 (3.52)PTh

.1715.21 (16.76)13.82 (2.57)TTi

.0333.88 (15.91)31.65 (6.24)PPTj

<.0013.01 (0.83)2.77 (0.76)Fibrinogen

.391.06 (0.3)1.08 (0.34)INRk

Serum electrolytes, mean (SD)

.994.97 (14.5)4.94 (17.39)Serum potassium

.09136.21 (16.4)138.24 (11.62)Serum sodium

Other blood biochemistry and enzymatic parameters, mean (SD)

.1523.59 (13.71)22.6 (9.81)CO2CPl
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P valueTest set (n=245)Training set (n=322)Variables

.1649.29 (527.65)394 (1981.36)CKm

.8435.89 (118.64)38.22 (138.74)CK-MBn

.52342.67 (997.28)298.95 (570.85)LDHo

aWBC: white blood cell.
bRBC: red blood cell.
cTBiL: total bilirubin.
dDBiL: direct bilirubin.
eIBiL: indirect bilirubin.
fALT: alanine transaminase.
gAST: aspartate aminotransferase.
hPT: prothrombin time.
iTT: thrombin time.
jPPT: partial thromboplastin time.
kINR: international normalized ratio.
lCO2CP: carbon dioxide combining power.
mCK: creatine kinase.
nCK-MB: creatine kinase-MB.
oLDH: lactate dehydrogenase.

Comparison Among the Machine Learning Algorithms
Among the algorithms, XGBoost achieved the highest AUC
value, with AUCs of 0.83 (95% CI 0.77-0.90) and 0.90 (95%
CI 0.83-0.96) in the internal and external validation sets (Figures
2 and 3). In the DCA (Figure 4), the XGBoost model had a
greater net benefit compared to other methods over a wide range
of threshold probabilities. As a result, we selected XGBoost as
a suitable algorithm for developing the prediction model and
conducted additional analyses to determine its predictive
validity.

The feature ranking interpretation of the XGBoost model based
on the SHAP algorithm (Figure 5) shows that lactate

dehydrogenase (LDH), aspartate aminotransferase (AST),
international normalized ratio (INR), serum sodium, alanine
transaminase (ALT), hemoglobin, white blood cell, urea, total
bilirubin (TBiL), creatine kinase-MB (CK-MB), creatinine,
heart rate, indirect bilirubin (IBiL), and prothrombin time (PT)
were important features of the XGBoost model. LDH and AST
were the most influential factors, and their contribution was
considerably greater than that of other indicators (Figure 5).
Overall, the characteristics of LDH, AST, INR, serum sodium,
ALT, hemoglobin, white blood cell, urea, CK-MB, creatinine,
heart rate, and PT were positively correlated with the results
and were risk factors; meanwhile, TBiL and IBiL were
negatively correlated with the results and were protective factors
(Figure 6).
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Figure 2. ROC curves for each machine learning algorithm in the 5-fold stratified cross-validation. Diagonal dotted lines represent the random classifier.
AUC: area under the receiver operating characteristic curve; ROC: receiver operating characteristic; SVM: support vector machine; XGBoost: extreme
gradient boosting.

Figure 3. ROC curves for machine learning algorithms, HOPE6, TALK, and physicians’ assessment in the test set. AUC: area under the receiver
operating characteristic curve; ROC: receiver operating characteristic; SVM: support vector machine; XGBoost: extreme gradient boosting.
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Figure 4. Decision curve analysis on the test set. The x-axis represents the threshold probability of the hospitalization outcome. The y-axis represents
the net benefit. The curves (decision curves) represent the threshold probabilities of net benefit outcomes for the 6 models (4 machine learning models,
HOPE6 model, and TALK model), physician classification, and the 2 clinical alternatives (classifying no patients as critical vs classifying all patients
as critical) within the specified range. SVM: support vector machine; XGBoost: extreme gradient boosting.

Figure 5. Ranking of feature importance indicated by SHAP. ALT: alanine transaminase; AST: aspartate aminotransferase; CK-MB: creatine kinase-MB;
IBiL: indirect bilirubin; INR: international normalized ratio; LDH: lactate dehydrogenase; PT: prothrombin time; SHAP: Shapley additive explanations;
TBiL: total bilirubin; WBC: white blood cell.
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Figure 6. Attributes of the model's features. Each line is a feature, and the horizontal coordinate is the SHAP value, which shows how much that feature
affected the outcome. Every point on the graph is a sample. The value of a feature goes up as the color gets redder, and it goes down as the color gets
bluer. ALT: alanine transaminase; AST: aspartate aminotransferase; CK-MB: creatine kinase-MB; IBiL: indirect bilirubin; INR: international normalized
ratio; LDH: lactate dehydrogenase; PT: prothrombin time; SHAP: Shapley additive explanations; TBiL: total bilirubin; WBC: white blood cell.

Comparison of the Performances of the XGBoost,
HOPE6, TALK, and Physicians’ Assessment
In terms of the AUC, all the machine learning models performed
significantly better than HOPE6, TALK, and physicians’
assessment (Figure 3). Moreover, across a wide range of
threshold probabilities (or clinical preferences), all machine
learning models performed better than HOPE6, TALK, and
physicians’ assessment (Figure 4). In terms of AUC and DCA,
XGBoost was the top model (Figures 3 and 4).

The sensitivity, specificity, positive predictive value, negative
predictive value, positive likelihood ratio, and negative

likelihood ratio of each model are shown in Table 2. Almost all
patients were classified as critically ill in the HOPE6 and TALK
scores (specificity: 0.00, 95% CI 0.00-0.02 for HOPE6 and
0.07, 95% CI 0.04-0.11 for TALK). In the test set, the XGBoost
model had a sensitivity of 0.93 (95% CI 0.81-0.99) and a
specificity of 0.79 (95% CI 0.73-0.85), whereas the physicians’
assessment had a sensitivity of 0.86 (95% CI 0.72-0.95) and a
specificity of 0.66 (95% CI 0.59-0.73). The results indicate that
the current diagnostic model can more precisely evaluate a
patient’s condition, assist physicians in formulating more precise
treatment plans, lessen the harm caused by incorrect treatment,
and reduce patients’ treatment expenses.
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Table 2. Comparison of the prediction ability of the extreme gradient boost (XGBoost model), HOPE6, TALK, and physicians’ assessment on the test
set.

NLRd (95% CI)PLRc (95% CI)NPVb (95% CI)PPVa (95% CI)Specificity (95% CI)Sensitivity (95% CI)

0.09 (0.03-0.26)4.47 (3.38-5.93)0.98 (0.95-1.00)0.49 (0.38-0.60)0.79 (0.73-0.85)0.93 (0.81-0.99)XGBoost

—1.00 (1.00-1.00)—e0.18 (0.13-0.23)0.00 (0.00-0.02)1.00 (0.92-1.00)HOPE6

—1.07 (1.03-1.12)1.00 (0.77-1.00)0.19 (0.14-0.24)0.07 (0.04-0.11)1.00 (0.92-1.00)TALK

0.21 (0.10-0.44)2.56 (2.04-3.21)0.96 (0.91-0.98)0.35 (0.26-0.45)0.66 (0.59-0.73)0.86 (0.72-0.95)Physicians’ assessment

aPPV: positive predictive value.
bNPV: negative predictive value.
cPLR: positive likelihood ratio.
dNLR: negative likelihood ratio.
eNot available.

Discussion

Principal Findings
Mushroom poisoning is a global food safety event. Early triage
of patients with mushroom poisoning is essential for the
formulation of treatment options and reduction of mortality.
The objective of this study was to develop a machine
learning–based triage model that could assess whether a patient
with mushroom poisoning was critically ill within 24 hours of
admission to support clinical decision-making. To our
knowledge, this is the first time a machine learning algorithm
has been used for the early triage of mushroom poisoning. The
research demonstrates that the model developed using the
XGBoost algorithm is superior to previous methods for triaging
critically ill patients with mushroom poisoning. In addition, we
discovered that liver dysfunction had the greatest impact on the
model (more than 50%), with LDH and AST being the 2 most
influential factors.

Comparison With Prior Work
In this paper, we compared 4 machine learning models, 2 scoring
models (HOPE6 and TALK), and clinical experts’ assessment
results and found that machine learning models outperformed
conventional methods. First, machine learning algorithms are
entirely data driven, whereas scoring models and physicians’
evaluations are based on expert knowledge. Second, machine
learning algorithms can learn and infer nonlinear higher-order
connections between clinical factors and patient outcomes.
Scoring models have the advantage of being simple to calculate
and interpret; however, for complex clinical episodes (e.g.,
progression to critical illness), they may be overly simplistic in
assuming that the severity of a patient’s condition is a linear
combination of multiple factors.

XGBoost, a cutting-edge tree-based gradient boosting method,
allowed us to create more accurate predictive models than other
machine learning models; consequently, it was selected as our
final model. The XGBoost model had greater sensitivity (0.93,
95% CI 0.81-0.99) and specificity (0.79, 95% CI 0.73-0.85)
than physicians’assessment (sensitivity: 0.86, 95% CI 0.72-0.95;
and specificity: 0.66, 95% CI 0.59-0.73). As expert consensus,
the HOPE6 and TALK models have not been validated by
clinical data, and because the identification and treatment of

critically ill patients have important clinical implications, scoring
models based on expert experience will overestimate the
condition of every patient. In this study, the HOPE6 and TALK
models have extremely high sensitivity (1.00, 95% CI 0.92-1.00)
and extremely low specificity (HOPE6: 0.00, 95% CI 0.00-0.02;
and TALK: 0.07, 95% CI 0.04-0.11). Consequently, they are
able to identify all critical cases and play an important role in
clinical practice, allowing critical patients to be treated and the
mortality rate to be as low as possible. However, an excessive
number of noncritically ill patients will be misidentified as
critically ill patients, which may result in the waste of medical
resources and physical harm to patients as a result of
overtreatment. Therefore, our model has greater advantages for
the identification of critically ill patients and may aid physicians
in making assessments. Moreover, the model’s ability to adjust
cutoff values provides greater flexibility and more nuanced
insights into the patient’s condition, making it a useful tool for
physicians. The application software created by our current
model is available on GitHub [38].

The study identified 14 clinical variables, of which AST, ALT,
LDH, INR, PT, TBiL, IBiL, urea, creatinine, and CK-MB were
consistent with current clinical evidence. These factors were
classified as hepatic (AST, ALT [39-41], LDH [42], TBiL [39],
and IBiL [43]), coagulation (INR [39,41] and PT [43]), renal
(urea [43] and creatinine[40,44]), and cardiac impairment
(CK-MB [42]). Using the SHAP method, we found that the
indicators characterizing liver function impairment contributed
57.5% to the prediction results of the model and had the greatest
impact. Interestingly, the study also identified several clinical
indicators that lack relevant clinical evidence, such as serum
sodium, hemoglobin, and heart rate, highlighting the potential
for machine learning to identify novel relationships between
clinical factors and patient outcomes.

Limitations
Despite the promising results, the study has several limitations.
The machine learning method is data driven, and the model’s
performance is dependent on the quality and completeness of
the data. Additionally, the study cohort was from a single
location in China, limiting the model’s applicability to other
regions. Future studies should collect data from more locations
to enhance the model’s robustness and generalizability.
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Conclusions
Using routinely accessible data at the time of triage, we found
that machine learning has good predictive performance in the
triage of patients with mushroom poisoning. Compared with
other machine learning algorithms, clinical guidelines, and

clinician assessment, the XGBoost model has better diagnostic
performance and can be used to select core indicators for a triage
model. Machine learning may be a powerful prognostic indicator
for early warning in critically ill patients, which has a significant
impact on the triage of patients, formulation of treatment
options, and the allocation of medical resources.
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