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Abstract

Background: Remote photoplethysmography (rPPG) can record vital signs (VSs) by detecting subtle changes in the light
reflected from the skin. Lifelight (Xim Ltd) is a novel software being developed as a medical device for the contactless measurement
of VSs using rPPG via integral cameras on smart devices. Research to date has focused on extracting the pulsatile VS from the
raw signal, which can be influenced by factors such as ambient light, skin thickness, facial movements, and skin tone.

Objective: This preliminary proof-of-concept study outlines a dynamic approach to rPPG signal processing wherein green
channel signals from the most relevant areas of the face (the midface, comprising the cheeks, nose, and top of the lip) are optimized
for each subject using tiling and aggregation (T&A) algorithms.

Methods: High-resolution 60-second videos were recorded during the VISION-MD study. The midface was divided into 62
tiles of 20×20 pixels, and the signals from multiple tiles were evaluated using bespoke algorithms through weighting according
to signal-to-noise ratio in the frequency domain (SNR-F) score or segmentation. Midface signals before and after T&A were
categorized by a trained observer blinded to the data processing as 0 (high quality, suitable for algorithm training), 1 (suitable
for algorithm testing), or 2 (inadequate quality). On secondary analysis, observer categories were compared for signals predicted
to improve categories following T&A based on the SNR-F score. Observer ratings and SNR-F scores were also compared before
and after T&A for Fitzpatrick skin tones 5 and 6, wherein rPPG is hampered by light absorption by melanin.

Results: The analysis used 4310 videos recorded from 1315 participants. Category 2 and 1 signals had lower mean SNR-F
scores than category 0 signals. T&A improved the mean SNR-F score using all algorithms. Depending on the algorithm, 18%
(763/4212) to 31% (1306/4212) of signals improved by at least one category, with up to 10% (438/4212) improving into category
0, and 67% (2834/4212) to 79% (3337/4212) remaining in the same category. Importantly, 9% (396/4212) to 21% (875/4212)
improved from category 2 (not usable) into category 1. All algorithms showed improvements. No more than 3% (137/4212) of
signals were assigned to a lower-quality category following T&A. On secondary analysis, 62% of signals (32/52) were recategorized,
as predicted from the SNR-F score. T&A improved SNR-F scores in darker skin tones; 41% of signals (151/369) improved from
category 2 to 1 and 12% (44/369) from category 1 to 0.

Conclusions: The T&A approach to dynamic region of interest selection improved signal quality, including in dark skin tones.
The method was verified by comparison with a trained observer’s rating. T&A could overcome factors that compromise whole-face
rPPG. This method’s performance in estimating VS is currently being assessed.

Trial Registration: ClinicalTrials.gov NCT04763746; https://clinicaltrials.gov/ct2/show/NCT04763746

(JMIR Form Res 2023;7:e44575) doi: 10.2196/44575
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Introduction

Measurement of vital signs (VSs) is an integral component of
clinical monitoring and, importantly, enables early detection of
clinical deterioration [1]. The COVID-19 pandemic has
prompted interest in the use of remote technology to monitor
patients with nonserious symptoms, reducing the burden on
health care facilities and the risk of infection during visits to
health care facilities [2]. Contactless technology is also
potentially useful where current care cannot be readily used,
such as in mental health settings [3].

Photoplethysmography has been used to measure pulse rate
(PR) [4,5], arterial oxygen saturation [6], and respiratory rate

(RR) [4,7], to estimate blood pressure (BP) [8,9], and to detect
atrial fibrillation [10]. Remote photoplethysmography (rPPG)
has the potential to measure VS by detecting changes in the
light reflected from the skin surface (Figure 1, part 1).

Lifelight (Xim Ltd) is novel software being developed as a
medical device for the contactless measurement of VS by rPPG
based on live video capture of the face using the integral camera
on smart devices (eg, laptops and smartphones; Figure 1, part
1). The software captures the average color of regions of interest
(ROIs) 30 times every second for 60 seconds (Figure 1, part 2).
The resultant pulse waveform is processed to determine VS
(Figure 1, parts 3-5).

Figure 1. Use of remote photoplethysmography in the Lifelight software [11]. BP: blood pressure; RGB: red, green, blue; VS: vital sign. Figure adapted
from the cited source which is published under Creative Commons Attribution 4.0 International License [12]).

The accuracy of Lifelight in estimating PR, RR, and BP has
been demonstrated in the VISION-D and VISION-V studies,
the former based on 17,233 measurements from 8585
participants [13]. Data from these studies supported the
certification of Lifelight as a Class 1 Conformité Européenne
medical device [14].

To date, the development of rPPG has focused on signal
extraction and computational methods. ROI is an important
determinant of the rPPG signal [15], influencing signal quality
and morphology and the computational load [16], but it is
relatively unexplored in the literature. An evaluation of 7 rPPG
methods found that 2 were based solely on face recognition,
using as much of the face as possible, and 4 extracted only
specific skin colors [15]. However, only a small proportion of
the raw video signal generated by rPPG is the pulsatile signal
required for the measurement of VS; the majority of the signal
reports skin tone. Extensive signal extraction and analysis are
therefore required to extract the relevant signal to derive VS,
which can be computationally expensive.

Conventional methods based on the whole face assume that
different parts contribute equally to the signal, whereas this is
not the case because irrelevant information is included, such as
the background and facial areas covered by hair or glasses, for
example. Skin thickness is an important determinant of rPPG

signal quality, as this influences the depth of the blood vessels
and therefore the absorption and scattering of light by skin tissue
(see Figure 1, part 1). A cadaver study reported that the average
thickness of the epidermis across 38 facial regions ranged from
about 30 to 60 µm and the dermis from 760 to 1970 µm [17].
Thus, diffuse reflection cannot be expected to be uniform across
facial regions. The correlation between skin thickness and the
number of pixels extracted is better where the skin is thinnest
and in the regions with the largest area (the forehead and
cheeks); smaller regions are also more susceptible to noise from
light distortion and movement [15]. Variation in vasculature
and perfusion across the face is particularly important in the
measurement of VS by rPPG. The cheeks and forehead are
computationally efficient for rPPG because of their large area
and good-quality signal [16]. The infraorbital artery, which
perfuses the cheek, is potentially a good candidate for rPPG
because it has strong pulsatile blood flow [18] and is less
sensitive than the forehead and mouth to acute physiological
stimuli (eg, temperature, taste, and emotions). However, the
infraorbital artery shows wide interindividual variation
anatomically, with 5 distinct phenotypes based on the number
of branches [19]. Blood flow in the lower forehead and bridge
of the nose are supplied by the internal carotid artery, which is
influenced by autoregulation of cerebral blood flow and thus
may not accurately reflect systemic BP, whereas blood flow to
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the upper forehead, the tip of the nose, cheeks, lips, and chin
originates from the external carotid artery, which is not
influenced by cerebral autoregulation and is, therefore, more
closely aligned with systemic blood flow [20]. However, signal
quality from the nose, mouth, and chin shows large interperson
variability [16]. Factors such as changes in facial expression
[21] and movements such as blinking and talking also affect
the rPPG signal [22]. Lighting is particularly important: light
distribution and intensity vary with the position of the subject
relative to the light source, resulting in different visible pulse
waveforms in different facial regions [23]. Variations in ambient
light from light sources can severely disturb the subtle color
changes due to pulsatile flow [22].

Thus, many factors influence signal quality in the measurement
of VS using rPPG. In order to further develop Lifelight as a
medical device suitable for routine clinical use, the software
algorithms must be able to identify the optimal ROI in each
subject: areas of the face where fluctuations in blood flow are
most readily detected and measured, in order to provide a robust
and reliable signal for the determination of BP. This is important
for real-world applications where operational factors, such as
the orientation of the face relative to the camera, are harder to
control than in the laboratory. Following the VISION-V and
VISION-D studies (which used the whole face), we refined the
data processing to focus on the midface region, comprising the
cheeks, nose, and top lip (Figure 2).

Figure 2. Computer-generated image showing the midface from which data were extracted (image generated using StyleGAN artificial intelligence
[24]).

From early clinical studies, it became clear that signal quality
was often compromised by movement and an inappropriate
orientation of the face towards the camera. Here we describe a
method for dynamic ROI selection in which the midface region
is divided into small “tiles” and bespoke algorithms are used to
identify and aggregate the optimal tiles in terms of signal quality
for each subject. This tiling and aggregation (T&A) approach
is verified by the evaluation of rPPG signal morphology by a
trained observer. This is a widely accepted method for the
validation of machine learning [25] and is analogous to the
visual screening of other VS data, such as the assessment of
electrocardiographs by trained electrophysiologists. As
high-quality rPPG signals are more difficult to obtain from
individuals with darker skin tones (eg, Fitzpatrick skin types 5
and 6) because of light absorption by melanin [26], we have
also explored the performance of the T&A method across the
Fitzpatrick skin tone range.

Methods

Video Recordings
Video recordings for this study were made during a
cross-sectional observational study (VISION-MD;
NCT04763746), which is evaluating Lifelight for the
measurement of VS compared with current standard of care
methods [27]. The study involves adults (aged ≥16 years) who
are inpatients (including critically ill patients), outpatients,
friends or relatives of patients, and members of hospital staff.

There were no exclusion criteria in order to gather data from
people with a wide range of health statuses.

VS (PR, RR, oxygen saturation, and BP) were measured by
trained nursing staff and clinical trial assistants using standard
of care equipment. A 60-second video of each participant’s face
was recorded simultaneously using Lifelight data collection
software (Data Collect, Xim Ltd) via the front camera on an
Apple iPad (model generation 6, 7, or 8). Videos were recorded
at 1280×720 pixels and 30 frames per second using an H-264
minimal compression algorithm. Trial staff were asked to
position participants with even lighting on their faces, and
participants were asked to stay as still as possible. Background
luminosity was measured using a handheld lux meter.

Videos were saved to the internal storage of the iPad in
encrypted form. Anonymized rPPG data (the average color of
areas of the face) were saved immediately to a cloud server
compliant with National Health Service Digital Technology
Assessment Criteria [28] and Cyber Essentials certification [29].
Subsequent analysis was performed using the encrypted files,
which were downloaded to a processing site, decrypted, and
processed automatically (ie, without any person viewing the
videos). This resulted in anonymized aggregated data sets.

Ethics Approval
The study was conducted in accordance with Good Clinical
Practice and was approved by the UK Health Research Authority
(IRAS 289242). Participants either gave written informed
consent or a consultee declaration form was completed for
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patients who lacked capacity. Data were handled and stored in
accordance with current General Data Protection Regulations.
As described above, all analyses were performed on anonymized
data.

Observer Assessment of Signal Quality
To ensure that the improvement in SNR-F score represented a
genuine improvement in signal quality, signals from the same
videos were processed using the 2 different methods and
assessed by an observer (CP) who was blinded to the prior signal
processing. The observer method is more reliable than SNR-F
for detecting signal features that are difficult to characterize
using algorithms. The observer was trained to identify the key
characteristics of the pulse waveform morphology that are
important for the retrieval of physiological information. A
custom signal visualizer tool developed by Xim Ltd was used,
which runs in a web browser connected to a dedicated server
over the internet. The observer analyzed the green light channel

signal from the midface for the full 60-second recording and
assigned each signal to one of 3 quality categories (0, 1, and 2,
defined in Table 1). Example signals are shown in Figure 3.
Raw signals, in which the troughs and crests of every pulse
wave were evident with consistent amplitude and wavelength,
were designated as “good” signals (category 0). These signals
often had a high signal-to-noise ratio (SNR) and were used for
model training. For signals that did not have a regular pulse
wave formation, the observer determined whether the pulse
decoding plot had picked up a constant frequency throughout;
such signals were classified as category 1. Signals that did not
have clear pulse waves were designated category 2. These videos
were reviewed to determine the most likely reasons for poor
quality, which were reported back to the clinical team to improve
data collection (eg, to improve ambient lighting or minimize
participant movement). The observer was blinded to the prior
signal processing (ie, standard midface analysis or T&A).

Table 1. Categories used by the observer in the signal quality assessment (examples are shown in Figure 3).

Potential useDescriptionQualityCategory

Suitable for algorithm training and developmentClear and consistent waveform throughoutHigh0

Suitable for algorithm testingPulse visible for most of the signal but irregularMedium1

Not suitable for development or testing without further
processing

Irregular raw signal and no detectable pulse, or pulse ob-
scured by nonphysiological noise, or baseline level shifts

Poor2

Figure 3. Examples of signals in each observer assessment category. All graphs are green intensity in analog to digital converter units versus time (s);
descriptions are provided in Table 1.

T&A Approach

Overview
In each video frame, the midface area was divided into 62 tiles,
each measuring 20×20 pixels, with no gaps or overlap. Average

green light values were determined for all the tiles in each frame,
and the signal quality was calculated for each tile (see section
Determination of Signal Quality). The output signal was then
derived based on the “best” tile signals (ie, the highest signal
quality) using different aggregation algorithms. This method is
illustrated in Figure 4.
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Figure 4. Video processing method. SNR-F: signal-to-noise ratio in the frequency domain; rPPG: remote photoplethysmography.

Determination of Signal Quality
For tiling to be successful, all included tiles must be good
candidates for the recovery of high-quality pulse data. The signal
quality of each tile was determined from the SNR in the
frequency domain (SNR-F) of the green channel, which gives
the highest SNR due to absorbance from hemoglobin and
oxyhemoglobin (compared with the blue and red channels) [30].
The signal power at the pulse frequency (PR in Hz ±0.15 Hz)

was compared with the signal power in the remaining 0.5-5–Hz
band.

Tile Aggregation
Several different methods for aggregating the signals from
multiple tiles were tested, using bespoke algorithms based on
weighting according to SNR-F score or segmentation (Table
2). Algorithms based on the “best 30 tiles” were used, as these
incorporated about half of the midface area without being
excessively computationally expensive.

Table 2. Methods used for tile aggregation.

DescriptionAlgorithm

Takes all tile signals (weighted by each tile’s SNR-F score) and determines a weighted averageAll tiles weighted

Only the “best” N tiles (tiles with the highest SNR-F score) are averaged into 1 signal (eg, always taking the top 30 scoring
tiles)

Best N tiles

The best N tiles, weighted by the tile’s SNR-F score, are averaged into 1 signalBest N tiles weighted

Videos are cut into time-discrete segments; the tiles for each time segment are scored, and the best N tiles for that segment
are combined; and multiple time segments may be combined or overlapped to smooth the signal and avoid sharp disconti-
nuities at the boundaries of segments

Best N tiles segmenteda

A combination of the best N tiles weighted and best N tiles segmented algorithmsBest N tiles segmented
and weighted

aIn segmentation algorithms, a 60-second video is split into, for example, 6 segments of 10 seconds, and the “best N” tiles (in terms of SNR-F score)
are identified and aggregated for each segment. Thus, different tiles may be selected for each 10-second segment. The aggregated signals retrieved for
the segments are then recombined into a full 60-second output signal.

Performance Assessment
To assess the performance of T&A, boundaries for the observer
categories defined in Table 1 (0-2) were determined based on

SNR-F scores. Thus, the SNR-F scores for all signals in 1
category were calculated, and the mean (µ) and standard
deviation (σ) were determined. The boundaries between
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categories 2 and 1 (b2,1) and between categories 1 and 0 (b1,0)
were estimated as follows:

where µi and σI are the mean and standard deviation of the
SNR-F scores for the signals in category i. A signal with an
SNR-F score <b2,1 would be predicted as category 2; SNR-F≤b2,1

and <b1,0 would be predicted as category 1, and SNR-F≥b1,0 in
category 0.

SNR-F scores for the midface analysis and following T&A were
compared using quiver plots to determine whether the signal
quality had improved sufficiently to justify promotion to a higher
category (ie, from 1 to 0 or from 2 to 1 or 0). The quality
categories assigned based on SNR-F scores were compared with
the categories assigned by the observer, as described in the
section Observer Assessment of Signal Quality.

In a secondary analysis, a set of signals that would be predicted
to be promoted into a higher observer category following T&A
based on SNR-F scores were identified and compared with the
actual observer-assigned categories. Only signals with SNR-F
scores that were at least 2 dB from the category boundaries
(whether based on the midface or following T&A) were selected.

This criterion minimized uncertainty about the estimated
category, as 2 dB was approximately 20% of the distance
between category boundaries.

Effect of Skin Tone
Observer ratings and SNR-F scores were compared before and
after T&A for Fitzpatrick skin types 5 and 6.

Results

A total of 4310 high-resolution videos recorded from 1315
participants as part of the VISION-MD study were used in this
analysis.

Signal Quality
Figure 5 shows the distribution of SNR-F scores for the 3
observer categories based on analysis of the midface region (ie,
without T&A). Note that there is some overlap in SNR-F scores
between categories because the assignments are based on the
characteristics of the pulse, whereas SNR-F scores are a single
value. Overall, signals with lower SNR-F scores fell largely
within the poor-quality category (category 2), while those with
higher SNR-F scores fell into category 0 (highest quality).
Estimated boundaries between the categories based on SNR-F
scores are also shown in the figure; it is evident that signals
with SNR-F scores >2.596 dB were the most likely to fall into
category 0.

Figure 5. Distribution of observer ratings (4310 samples). The red dashed lines indicate observer category boundaries based on the signal-to-noise
ratio in the frequency domain (SNR-F) scores.
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Effect of Tiling on Signal Quality
The SNR-F scores from the midface analysis were compared
with those following T&A for each video using quiver plots,
as illustrated in Figure 6. T&A improved the mean SNR-F
(Table 3). Depending on the algorithm, 18% (763/4212) to 31%
(1306/4212) of signals improved by at least one category, with
up to 10% (438/4212) improving into category 0, and 67%
(2834/4212) to 79% (3337/4212) remaining in the same
category. Importantly, 9% (396/4212) to 21% (875/4212)
improved from category 2 (not usable) into category 1 (Figure

7). Improvements were seen with all the algorithms tested (Table
2). No more than 3% of signals (85-137/4212) were assigned
to a lower-quality category following T&A.

In the secondary analysis, 52 signals were identified that were
predicted to change observer category based on a comparison
of the SNR-F scores before and after T&A. Most of these signals
(32/52; 62%) showed the predicted recategorization following
T&A (Table 4). The segmented weighted algorithm appeared
least reliable in predicting observer recategorization (33%),
whereas the other algorithms performed similarly (64%-100%).

Figure 6. Quiver plot comparing signal-to-noise ratio in the frequency domain (SNR-F) signals before and after tiling and aggregation (T&A) using
the “best 30 tiles segmented and weighted” algorithm. For each video, an arrow is plotted from the SNR-F score before T&A to the SNR-F score
following T&A. The tests have been ranked so that increases and decreases in the score are seen as deviations from the central descending curve.

Table 3. Performance of the tiling and aggregation algorithms compared with the standard no tiling analysis (n=4212 samples) based on the signal-to-noise
ratio in the frequency domain score (dB).

HighestLowestMean (SD)Algorithm

15.93−27.85−4.88 (6.99)No tiling

16.28−27.11−3.21 (7.44)All tiles weighted

16.49−25.21−2.99 (6.87)Best 30 tiles

16.67−22.36−2.37 (6.92)Best 30 tiles weighted

16.02−23.89−2.60 (6.42)Best 30 tiles in segments

16.12−21.25−1.86 (6.28)Best 30 tiles in segments weighted
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Figure 7. Changes in the signal quality category following tiling and aggregation. Values are the numbers of signals that changed category (0 [highest
quality], 1, 2 [lowest quality]) following tiling and aggregation (= indicates that a signal remained in the same category). B: best; S: segmented; W:
weighted.

Table 4. Category reassignment in the secondary analysis.

Number remaining in same category, n (%)Number recategorized as predicted, n (%)Number of testsaAlgorithm

0 (0)3 (100)3All tiles weighted

4 (36)7 (64)11Best 30 tiles

5 (28)13 (72)18Best 30 tiles weighted

3 (37)5 (63)8Best 30 tiles segmented

8 (67)4 (33)12Best 30 tiles segmented and weighted

20 (38)32 (62)52Total

aThe number of tests differs between algorithms because some were less effective so fewer recordings met the 2 dB threshold rule (eg, all weighted).

Effect of Skin Tone
SNR-F scores based on the midface region without tiling were
lower for skin tones 5 and 6 than for paler tones (Table 5),
approximately twice as many signals were in the observer
category 2 (not suitable for analysis) and none were in category
0. The mean SNR-F scores improved with T&A. For skin tone
5, scores varied from −4.10 to −5.59 following T&A, depending
on the algorithm used, compared with −7.03 with no tiling. For

skin tone 6, values following T&A varied between −5.44 and
−6.68, compared with −8.24 with no tiling. In addition, using
the “best 30 tiles weighted” algorithm (which had the highest
SNR-F score combined with appropriate waveform morphology
in the analyses described above), 41% of signals (151/369) for
skin tones 5 and 6 improved from observer category 2 to 1, and
12% (44/369) from category 1 to 0 (compared with 42%
(1525/3632) and 22%, (436/3632) respectively, for skin tones
1-4).
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Table 5. Signal quality by Fitzpatrick skin tone. Values are mean (SD) signal to noise ratio in the frequency domain scores (dB).

AWeBSWdBScBWbBaNo tilingSample size, nSkin tone

−0.71 (8.19)0.35 (6.86)−0.34 (7.08)−0.06 (7.55)−0.69 (7.55)−2.63 (7.79)9721

−3.48 (7.16)−1.99 (6.03)−2.74 (6.1)−2.53 (6.67)−3.17 (6.56)−4.97 (6.69)16712

−3.89 (6.88)−2.39 (5.87)−3.11 (6.03)−2.84 (6.53)−3.4 (6.47)−5.64 (6.51)5233

−3.78 (7.47)−2.58 (6.2)−3.39 (6.29)−3.28 (6.77)−3.96 (6.78)−5.60 (7.05)4664

−5.59 (6.03)−4.10 (5.09)−4.90 (5.26)−4.74 (5.64)−5.25 (5.71)−7.03 (5.67)2435

−6.68 (5.66)−5.44 (4.27)−6.25 (4.43)−5.92 (4.91)−6.45 (5.02)−8.24 (4.75)1266

aB: best 30 tiles.
bBW: best 30 tiles weighted.
cBS: best 30 tiles segmented.
dBSW: best 30 tiles segmented and weighted.
eAW: all tiles weighted.

Discussion

Principal Findings
Including the whole face in the ROI introduces many variables
and inconsistencies in the rPPG signal —the face is not a flat
surface, and light reflection will differ because of the slightly
different angles of incidence. Signal processing methods have
been used to correct for, for example, fluctuations in illumination
[22,31,32] and facial variation [21]. Lam and Kuno [32] and
Song and colleagues [22] reported methods for ameliorating
the effects of uneven light distribution through the selection of
several small ROIs; however, the ROI cannot be too small
because of potential interference from quantization noise [22].
We have taken a different approach in which we optimized ROI
selection in order to obtain smaller amounts of the most relevant,
high-quality data from each individual to reduce interference
from external factors.

We based our method on the midface (Figure 2), where blood
flow is most easily measured and large areas of irrelevant data
are disregarded. However, this area is still subject to the
influence of uneven lighting, facial expression, and the position
of the subject—no matter how well a subject is positioned, it is
difficult to ensure that the same ROI is captured every time.
Our method of dynamic ROI selection using T&A overcomes
many of the issues of a “static” fixed ROI, by identifying the
highest quality signals for each subject. The T&A approach
ignores areas of the face that are obscured (such as by glasses
or facial hair, as in Figure 2). The midface was divided into 62
tiles of 20×20 pixels. Initial exploratory studies indicated that
the size of the tile was not critical, although the largest and
smallest tiles produced poor-quality signals. We used algorithms
based on the “best 30 tiles,” as this incorporated about half of
the midface area without being excessively computationally
expensive. This proof-of-concept study demonstrates that T&A
improves the signal quality in most cases compared with the
entire midface, as evidenced by the improvements in the
observer-rated category and increased SNR-F scores.
Importantly, this approach also improved the signal quality for
individuals with darker skin tones. T&A improved signal quality
in Fitzpatrick skin tones 5 and 6 in terms of SNR-F score and
observer-defined quality categories. Although the Fitzpatrick

Skin Type Scale is the accepted method for defining skin tone
[33], its use has been criticized because of racial bias, a weak
correlation with skin color, and broad within-group variations
in skin tone [33]. Spectro-colorimetry, which uses multiple
variables to categorize skin tone objectively, has been proposed
as an alternative [33], which may be incorporated into future
studies.

To ensure that the improvement in SNR-F score represented a
genuine improvement in signal quality, signals from the same
videos were processed using the 2 different methods and
assessed by an observer blinded to the prior signal processing
(midface analysis vs T&A). Human observation is an accepted
method for the task-based evaluation of medical images [25]
and has been used to validate the machine-based assessment of,
for example, atrial fibrillation [10], prostate cancer histology
[34], and breast cancer diagnosis [35]. Independent annotator
assessment has also been used to validate the signal quality of
photoplethysmography signals recorded by mobile phones [36].
In our study, there was a good match between the signal quality
category determined by the observer and SNR-F scores.
Importantly, as further verification, signals that we predicted
would be improved by T&A based on the SNR-F score were
indeed assigned to a higher quality category by the observer,
although a few signals had lower quality. This may arise for
various reasons; for example, some tiles may contain
high-quality signals for only part of the recording period (which
is compensated for by the segmented approach to aggregation),
or external noise may be interpreted as a pulse waveform if it
has the right frequency (~1 Hz).

In this study, SNR-F was used as the metric for signal quality
and performed well when compared with the
observer-determined quality category. The SNR-F was able to
capture both a reduction in noise and a strengthening of the
pulsatile signal content. It may be possible to develop bespoke
signal quality metrics optimized for specific VS, allowing
emphasis on the quality of the most relevant aspects of the
pulsatile signal for a given VS.

We tested 5 different algorithms, all of which improved the
signal quality compared with using the whole midface. The “all
tiles aggregated” method performed worst, demonstrating the
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value of focusing on fewer tiles with the best signal. While the
“segmented” approach appears to perform better in terms of
SNR-F score, our secondary analysis found that signals were
not promoted into the expected higher observer category when
using this method. Some of these signals showed marked
baseline drift and switching the tiles of interest with time
appeared to act destructively on the signal. Thus, while using
the SNR-F score as the quality metric suggests that segmenting
is a useful approach, the accepted method of observer rating
based on the signal morphology indicated otherwise, underlining
the importance of observer rating in the assessment. The current
study aimed to demonstrate the concept of T&A rather than
specifically comparing different algorithms. Future studies will
continue to explore the optimal aggregation approach for each
VS.

This preliminary study was based on a large amount of data
collected in a clinical setting rather than under tightly controlled
laboratory conditions, thus allowing for issues typically
encountered in the clinical measurement of VS using rPPG. The
study has high external validity because it collected data in
real-world settings in which the Lifelight software will be used.
In addition, different ways to aggregate tile signals were
explored systematically, and their effects were compared against
the accepted method of human observation. We did not vary
the size of the midface region, but this is unlikely to improve
the method because the “best signal” tiles were rarely near the
periphery of this area. Assessment by 1 observer ensures a
consistent approach but introduces subjectivity and may risk
distribution skewness, particularly in category 1. The observer
was specifically trained to identify the most important features
of the waveform, to maximize consistency. However,
intraobserver reliability was not specifically measured in this
proof-of-concept study. Future studies will involve independent
assessment by more than one observer, followed by a discussion

to reach a consensus and measurement of intraobserver
variability. In addition, features or models that increase
dimensionality (such as kernel methods–based machine learning
or support vector machines) could be used to improve the
separation between the categories.

Dynamic ROI detection represents a paradigm shift in rPPG by
focusing on the collection of small amounts of high-quality data
that most faithfully represent the pulse wave morphology in
each individual rather than capturing a large amount of
low-quality data. Rather than predefining a specific area of the
face, our method ensures that the best signal is used for each
subject. This approach also improves the quality of the rPPG
signals from individuals with darker skin tones. It can also
reasonably be expected to overcome issues such as uneven light
distribution, given that the face is not a flat surface and that
there is variation in the position and orientation of the face
relative to the camera. Further studies will address these
expectations. In addition, the T&A method may overcome issues
caused by movement. Casalino and colleagues [37] have
described a method for measurement of oxygen saturation using
rPPG in which 3 ROIs are used for measurement and a fourth
to track head movements. We are exploring the impact of
movement on rPPG, whether this differs between healthy
volunteers and sick patients, and how T&A may address issues
caused by movement during the video recording.

Conclusions
This proof-of-concept study demonstrates that dynamic ROI
selection using T&A improves the quality of rPPG green channel
signals, including in dark skin tones. The method was verified
by comparison with a trained observer’s rating. T&A can
reasonably be expected to overcome factors that compromise
whole-face rPPG. Future studies will identify the optimal
method for T&A for each VS.
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