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Abstract

Background: To provide quality care, modern health care systems must match and link data about the same patient from multiple
sources, a function often served by master patient index (MPI) software. Record linkage in the MPI is typically performed manually
by health care providers, guided by automated matching algorithms. These matching algorithms must be configured in advance,
such as by setting the weights of patient attributes, usually by someone with knowledge of both the matching algorithm and the
patient population being served.

Objective: We aimed to develop and evaluate a machine learning–based software tool, which automatically configures a patient
matching algorithm by learning from pairs of patient records previously linked by humans already present in the database.

Methods: We built a free and open-source software tool to optimize record linkage algorithm parameters based on historical
record linkages. The tool uses Bayesian optimization to identify the set of configuration parameters that lead to optimal matching
performance in a given patient population, by learning from prior record linkages by humans. The tool is written assuming only
the existence of a minimal HTTP application programming interface (API), and so is agnostic to the choice of MPI software,
record linkage algorithm, and patient population. As a proof of concept, we integrated our tool with SantéMPI, an open-source
MPI. We validated the tool using several synthetic patient populations in SantéMPI by comparing the performance of the optimized
configuration in held-out data to SantéMPI’s default matching configuration using sensitivity and specificity.

Results: The machine learning–optimized configurations correctly detect over 90% of true record linkages as definite matches
in all data sets, with 100% specificity and positive predictive value in all data sets, whereas the baseline detects none. In the
largest data set examined, the baseline matching configuration detects possible record linkages with a sensitivity of 90.2% (95%
CI 88.4%-92.0%) and specificity of 100%. By comparison, the machine learning–optimized matching configuration attains a
sensitivity of 100%, with a decreased specificity of 95.9% (95% CI 95.9%-96.0%). We report significant gains in sensitivity in
all data sets examined, at the cost of only marginally decreased specificity. The configuration optimization tool, data, and data
set generator have been made freely available.

Conclusions: Our machine learning software tool can be used to significantly improve the performance of existing record
linkage algorithms, without knowledge of the algorithm being used or specific details of the patient population being served.
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Introduction

The World Health Organization [1] has identified electronic
patient record management as an essential part of modern health
care. Delivering quality care and maintaining patient safety
requires that the patient record available at the point of care is
reflective of the full patient history. In high-income countries,
patient record fragmentation can result in medical errors, and
linkage has a high cost [2,3]. The problem is particularly
challenging in low- and middle-income countries, where patients
do not necessarily have a unique identifier, such as Myanmar
[4-6]. This challenge necessitates probabilistic record linkage,
where a health care provider is given the opportunity to link
multiple records from the same patient in a master index [7].

In these settings, computer-assisted patient record linkage has
been shown to be effective for reconciling patient records from
multiple sources [8]. Record linkage approaches can be divided
into 2 categories: deterministic, where a fixed, unique identifier
is used to join new pairs of records, or probabilistic, where a
combination of patient attributes, such as name, location, and
date of birth are used to score possible links, and linkage
decisions are made based on these scores [8,9].

SantéMPI (SanteSuite Inc) is an open-source master patient
index that has been deployed at scale in several low- and
middle-income countries. SantéMPI integrates with several
existing electronic health record solutions and supports all
requirements defined by the Open Health Information Exchange,
such as on the web or off the web capability, HL7 standards
support, and mobile registration. SantéMPI implements a
modern, validated hybrid record linkage approach in 2 stages
[8]. In the first stage, the blocking stage, the set of all possible
pairs in the database is filtered to a more tractable subset of
possible pairs. For example, this might include ensuring that
both records in the candidate pair have a patient’s date of birth
in the same year. In the second stage, the scoring stage, each of
the filtered candidate pairs is scored according to any number
of attributes, such as name or address similarity, or whether the
2 records record the same gender. This scoring depends on a
number of numeric parameters, such as how strongly to weight
a given patient attribute [8,10].

The choice of how strongly to weigh a given patient attribute
in the match-scoring stage depends on both the technical details
of the matching algorithm used and the patient population under
consideration. For example, in locales where the surname
distribution is heavily skewed to a handful of surnames, it is
less useful to match on surnames; likewise for matching on
home addresses in regions where addresses do not have a
standard form. It can be difficult to know in advance what
attributes will be useful for matching patient records to one
another for a given jurisdiction. While the record linkage

approach attempts to provide a matching configuration with a
reasonable set of default configuration options, human
intervention is often required to curate patient record links.

In machine learning, numerous methods have been developed
for optimizing the parameters of algorithms in ways that are
agnostic to the implementation details of those algorithms. These
techniques are known as black-box optimization and are widely
applied to industrial optimization problems, hyperparameter
tuning in deep learning, and drug delivery [11-13]. Bayesian
optimization (BO), the black-box optimization algorithm used
in this study, has been applied to privacy-preserving record
linkage problems previously. In particular, Yu et al [14] showed
that BO can successfully optimize the hyperparameters of a
privacy-preserving record linkage algorithm by means of
heuristics that are available even when ground-truth record
linkages and nonlinkages are not.

In this paper, we present a novel application of black-box
optimization to the problem of patient record linkage when
ground-truth linkages and nonlinkages are available. Unlike
previous work, we do not propose a new record linkage
algorithm. Instead, we seek to build on an existing record
linkage algorithm and propose to use BO to optimize the
parameters of that algorithm using ground-truth linkages and
nonlinkages. In this way, our approach is agnostic to the choice
of the underlying record linkage algorithm and is easily adapted
to other settings. Our approach is validated by integrating with
SantéMPI, using the BO procedure to select the optimal patient
attribute weights for record linkage.

Methods

Data Acquisition and Synthesis
We evaluated our approach using the 4 synthetic data sets
distributed with the Freely Extensible Biomedical Record
Linkage (FEBRL) system, along with an additional custom data
set generated using FEBRL’s data set generation tool [15]. The
4 synthetic data sets contain varying numbers of patients,
matches, and nonmatches, and were designed specifically for
assessing new record linkage approaches. We also sought to
evaluate the SantéMPI matcher and our configuration
optimization approach on data with characteristics not typical
of Western patient databases. In Hawaii, a majority of the
population identifies as Asian, Native American, Pacific
Islander, or 2 or more races [16]. The phonetics and spelling of
Native Hawaiian names are also distinct. For example, due to
the Native Hawaiian alphabet containing only 13 characters,
vowel repetition is common [17]. In addition, the ’okina
character (often represented in the Latin alphabet with an
apostrophe), which is common in Native Hawaiian names, is
not supported for many types of government records [18].
Publicly available data sources reflective of the population of

JMIR Form Res 2023 | vol. 7 | e44331 | p. 2https://formative.jmir.org/2023/1/e44331
(page number not for citation purposes)

Nelson et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/44331
http://www.w3.org/Style/XSL
http://www.renderx.com/


Hawaii were obtained, and these sources were used as input to
FEBRL’s data set generation tool. We briefly summarize the
FEBRL data set generation process. First, the data sources (eg,
names and addresses) are randomly sampled to generate
“original” records. Second, the original records are mutated at
random (possibly more than once) to create 1 or more

“duplicate” records. The goal is to imitate common errors (such
as data entry errors) that master patient indices such as the
SantéMPI aim to resolve.

Characteristics of the data sets are provided in Table 1. The
synthetic data distributed with FEBRL are accessible in the
freely available Record Linkage Toolkit Python package [19].

Table 1. Description of the data used for evaluating the configuration optimization approach.

Duplicates, nOriginal records, nDescriptionData set

500 (1 per original)500Distributed with the FEBRL package.FEBRL1a

1000 (maximum 5 per original)4000Distributed with the FEBRL package.FEBRL2

3000 (maximum 5 per original)2000Distributed with the FEBRL package.FEBRL3

5000 (1 per original)5000Distributed with the FEBRL package.FEBRL4

1000 (maximum 5 per original)1000Constructed with the FEBRL data set generator using a number of Hawaii-
specific data sources.

Hawaii

aFEBRL: Freely Extensible Biomedical Record Linkage.

Machine Learning Approach
We use an existing implementation of the BO algorithm, a
black-box optimization technique, to identify the optimal
parameters of the probabilistic scoring stage of the patient
matching algorithm [20]. BO is an iterative procedure that
optimizes a function, often used when the function is expensive
to evaluate. In our framework, we use BO to identify the set of
inputs (patient attribute weights in the matching configuration)
that maximizes our objective (area under the receiver operator
characteristic of the matching algorithm with the given
configuration, as evaluated in historical linkages and
nonlinkages). BO first randomly selects a set of configuration
options, performs the matching with this configuration, and
evaluates the matching performance according to the selected
target metric, area under the receiver operating characteristic
curve (AUROC). BO then modifies the configuration, performs
matching once again, and evaluates the configuration using
AUROC, updating its information about the optimal
configuration. It selects the next configuration to maximize the
acquisition function, which we choose to be expected
improvement [21]. The modeling approach underlying BO is a
Gaussian process, which is a nonparametric Bayesian regression
technique, requiring the specification of a kernel. We use the
default kernel in the BayesianOptimization library, the Matern
kernel with smoothness parameter ν=2.5, which specifies that
the function mapping configuration parameters to AUROC will
be approximated by a twice-differentiable function. The length
scale parameter of the kernel is learned during the optimization
process [22].

The BO procedure optimizes the correlation between the
matching scores and ground-truth matching labels, but it does
not provide a way to select the matching score threshold for
defining a match or nonmatch. Therefore, after the BO procedure

completes, the configuration optimization routine sets the
decision threshold for definite matches such that a minimum
specificity of 100% is maintained in the training set (to minimize
the risk that low-confidence record pairs are matched without
human intervention). The threshold for possible matches is set
to maximize sensitivity while keeping the fraction of record
pairs necessitating human review under a user-specified
threshold. For all evaluations, we set the human review threshold
using the fraction of record pairs requiring review using the
baseline configuration in the training set.

The BO and threshold optimization routines are implemented
in Python 3 [23], using the BayesianOptimization [24], NumPy
[25], and scikit-learn [26] libraries.

Application Programming Interface Design and
SantéMPI Integration
The BO tool communicates with the patient index via an HTTP
API. Table 2 briefly describes the functionality of each HTTP
end point. The general nature of the API ensures that the
configuration optimization tool can be applied to any patient
data storage application, simply by writing an integration layer.

As a proof of concept for the purpose evaluation, we integrated
our configuration optimization tool with SantéMPI. SantéMPI
does not implement this API natively, so a custom integration
layer was written, which translates each API call to a
SantéMPI-specific API call. This integration layer has been
open-sourced as part of the SanteSuite project. The integration
layer communicates ground-truth linkages using a Fast
Healthcare Interoperability Resources API [27] and is therefore
compatible with any Fast Healthcare Interoperability
Resources–compatible clinical data repository software out of
the box, provided the software exposes the additional endpoints
for reading and updating the matching configuration.
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Table 2. HTTP APIa end points that are required for the configuration optimization tool. All payloads and responses are formatted in JSON.

ResponsePayloadFunctionalityEnd point

A dictionary with root key “attributes,”
which is a dictionary mapping each config-
uration parameter to a dictionary with a
key “bounds” with its valid lower and up-
per bounds on its range.

—bProvide the specifica-
tion of the configura-
tion

GET /matchConfig/:configId/spec

A dictionary with root key “attributes,”
which is a dictionary mapping each config-
uration parameter to its float value.

—Get the current configu-
ration

GET /matchConfig/:configId

—A dictionary with root key “attributes,”
which is a dictionary mapping each config-
uration parameter to its new value.

Set a new configurationPUT /matchConfig/:configId

A dictionary with 2 keys, “0” and “1.” “0”
maps to a list of matching scores for
record pairs that were deemed nonmatches
by a human, and “1” maps to a list of
matching scores for record pairs that were
deemed matches by a human.

—Get the matching scores
for a configuration

GET /matchConfig/:con-
figId/$groundTruthScores

aAPI: application programming interface.
bNo payload or response.

Evaluation
We split each data set at random into a training set (80% of
patients, original records, and their duplicates) and evaluation
set (the remaining 20% of patients). In the training set, all known
matches were used as confirmed links. We randomly sampled
a subset of known nonmatches to be used as confirmed nonlinks,
in order to mimic how the tool would be used in practice. Using
the default matching configuration as the initialization point for
the BO procedure, we run the BO and threshold optimization
procedures in a database containing the 80% training data.

SantéMPI reports linkages with 2 decision thresholds.
High-confidence (“definite”) matches can be matched
automatically without further human intervention.
Lower-confidence (“possible”) matches must be reviewed
manually prior to matching. To evaluate the performance of a
given configuration, the sensitivity, specificity, and positive
predictive value (PPV) of the matching algorithm were assessed
using ground-truth labels in the evaluation set for both possible
and definite matches. These metrics were also computed for the
default matching algorithm configuration distributed with
SantéMPI as a baseline, which implements the probabilistic

matching algorithm described in reference [8]. We construct
CIs for these metrics via bootstrapping and report these CIs
[28].

Ethical Considerations
We confirm that this research involved no human subjects, and
all data used were artificially synthesized using the FEBRL
software or distributed with the FEBRL software package.

Results

For all data sets, the baseline configuration fails to detect any
definite matches, corresponding to a sensitivity of 0%, a
specificity of 100%, and an undefined PPV. The optimized
configurations substantially improve the sensitivity in all data
sets (Table 3), with no decrease in specificity and a PPV of
100%.

In addition, we report the sensitivity and specificity for matches
predicted as possible or definite (Table 4). In all cases, the
machine learning procedure results in a configuration with a
significant improvement in sensitivity, at the expense of a
modest decrease in specificity.

Table 3. Performance comparison of the baseline and machine learning–optimized matching configurations in SantéMPI in the held-out evaluation
sets, for the detection of definite linkages not needing manual review.

Correctly predicted linkages (ground-truth linkages)Patients, nSensitivity (%; 95% CI)Data set

98 (100)10098.0 (95.0-100.0)FEBRL1a

196 (203)80096.6 (93.9-98.6)FEBRL2

558 (588)40094.9 (93.0-96.5)FEBRL3

983 (1000)100098.3 (97.5-99.1)FEBRL4

168 (174)20096.6 (93.7-98.9)Hawaii

aFEBRL: Freely Extensible Biomedical Record Linkage.
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Table 4. Performance comparison of the baseline and machine learning–optimized matching configurations in SantéMPI in the held-out evaluation
sets, for detection of possible record linkages needing manual review.

Positive predictive value (%)Specificity (%)Sensitivity (%)Data set

Optimized (change; 95% CI)Baseline (95% CI)Optimized (change; 95% CI)Baseline
(95% CI)

Optimized (change;
95% CI)

Baseline
(95% CI)

62.9 (−37.1%; −44.4 to −29.8)100.0 (100.0 to
100.0)

99.4 (−0.6%; −0.4 to −0.7)100.0 (100.0
to 100.0)

100.0 (+5.0%; 1.1 to
9.6)

95.0 (90.1 to
98.9)

FEBRL1a

15.7 (−84.3%; −86.3 to −82.3)100.0 (100.0 to
100.0)

99.3 (−0.7%; −0.6 to −0.7)100.0 (100.0
to 100.0)

100.0 (+11.3%; 7.0
to 16.0)

88.7 (84.3 to
92.8)

FEBRL2

26.6 (−72.3%; −74.3 to −70.3)98.9 (97.9 to 99.6)99.3 (−0.7%; −0.7 to −0.7)100.0 (100.0
to 100.0)

100.0 (+12.2%; 9.9
to 15.0)

87.8 (85.1 to
90.3)

FEBRL3

2.4 (−97.6%; −97.7 to −97.5)100 (100.0 to 100.0)95.9 (−4.1%; −4.1 to −4.0)100.0 (100.0
to 100.0)

100.0 (+9.8%; 8.0 to
11.6)

90.2 (88.4 to
92.0)

FEBRL4

31.9 (−67.5%; 71.6 to −63.6)99.4 (97.9 to 100.0)98.9 (−1.1%; −1.2 to −0.9)100.0 (100.0
to 100.0)

100.0 (+6.9%; 3.4 to
11.1)

93.1 (88.9 to
96.6)

Hawaii

aFEBRL: Freely Extensible Biomedical Record Linkage.

Discussion

Principal Findings
Our results show that BO is a viable technique for improving
the performance of probabilistic record linkage in a clinical
context. In data sets designed for the validation of new record
linkage approaches, our configuration optimization tool
successfully identifies patient attribute weights that offer
significantly improved performance according to sensitivity
and AUROC (Tables 3 and 4, and Table S1 in Multimedia
Appendix 1), with only a modest decrease in specificity. In
addition, by validating in a synthetic Hawaiian population with
linguistic characteristics that differ from commonly used
Western data sets, we have shown that the approach may be
promising in jurisdictions that do not use the standard English
alphabet.

Our procedure has 2 stages: in the first, BO optimizes the
matching algorithm parameters to maximize the correlation
between known ground-truth linkages and nonlinkages and
predicted match scores. In the second stage, we must select
match score decision thresholds to report (in the case of
SantéMPI) possible and definite matches and nonmatches to
the user. The statistically significant improvement in AUROC
(Table S1 in Multimedia Appendix 1) for the 4 largest data sets
confirms that the BO procedure improves the concordance of
match scores with ground-truth labels and that it is at least in
part the BO procedure, which confers the statistically significant
gains in sensitivity reported across all 5 data sets (Tables 3 and
4) and not the decision threshold selection.

In record linkage, as in all classification problems, one must
trade-off between the cost of false positives and false negatives
when selecting the decision threshold. In the evaluation
presented in this study, 2 decision thresholds determine whether
a record pair is linked by the system without further human
intervention (definite matches), presented for human review
(possible matches), or never presented for human review. This
differs from record linkage in a research context, where most
commonly a record pair will only ever be linked or not linked
[29,30]. Due to this additional complexity, we establish the

value of the machine learning optimization procedure in 2
stages, evaluating both definite and possible match predictions.

When identifying definite matches, a false positive prediction
has a high cost, because the records of 2 distinct patients will
be incorrectly linked, leading to potential privacy issues,
increasing the risk of medical errors, and reducing the credibility
of patient records [31]. A false negative prediction has a
comparatively lower cost because that record pair may still be
reviewed by a human. We show that the baseline matching
configuration fails to identify any definite linkages in all data
sets examined, due to the fact that the definite match decision
threshold is set too conservatively by default. In contrast, the
machine learning–optimized configuration selects a decision
threshold that correctly identifies the vast majority of true
linkages, with no decrease in specificity. This represents a
substantial reduction in the human review effort required to
identify the vast majority of record linkages (Table 3) because
these linkages will be made without any additional human
review. By maintaining a specificity of 100% across all data
sets considered when identifying definite matches, we have
shown that this decrease in human review burden does not come
at the expense of false positives, which have the aforementioned
high cost.

When identifying possible matches, a false positive prediction
confers additional human review burden, while a false negative
prediction corresponds to a patient record that will remain
fragmented. Like incorrect linkages, a fragmented patient record
has a high cost. We show that the baseline matching
configuration has less-than-perfect sensitivity for identifying
possible matches, leaving up to 9.8% of patient records
fragmented, never presenting them for human review. In
contrast, the machine learning–optimized configuration
identifies all ground-truth linkages as possible matches in all
data sets, though in this case at the cost of decreased specificity,
representing an increase in the amount of human review to
identify these more difficult linkages (Table 4).

It is important to interpret the results of Tables 3 and 4 jointly.
For example, with the baseline configuration applied to
FEBRL1, 95 record pairs would need to be manually reviewed
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to recover the first 95 matches, and the remaining 5 record pairs
would never be presented for human review (missed linkages).
In contrast, after optimization, 98 record pairs would be matched
automatically, while fewer than 5 records would need to be
manually reviewed to flag the remaining 2 matches (resulting
in no missed linkages with minimal additional human review,
despite the apparently large drop in PPV, and no false linkages).
This is due to the choice of maximizing the sensitivity in the
detection of possible linkages. We emphasize that this choice
of maximizing sensitivity at the expense of human review
burden is unrealistic in some scenarios, best exemplified in our
tests by the FEBRL4 data set. The use of data-driven decision
threshold selection in this evaluation does not preclude manual
intervention in deployment, for example, by selecting the
trade-off between the human review required for possible match
predictions and correctly identifying all linkages. Indeed,
because human review is not without error, and the cost of a
false linkage is high, in many settings it may be useful to
sacrifice perfect sensitivity in detecting possible linkages for
better specificity by manually tuning the decision threshold.
The proposed software tool provides performance metrics to
the user, detailing these trade-offs and allowing them to make
informed decisions. In an effort to make our findings
reproducible, we do not present results that are the result of
manual tuning of decision thresholds.

Limitations
The primary limitation of our study is the use of synthetic data,
which may not accurately reflect the way our tool would be
used in practice. We mitigated this by consulting experts in
global digital health to ensure that the synthetic data were as
realistic as possible, and by making our tool freely available
and open-source, we have reduced the overhead of future
evaluation in real-world patient populations and settings.
Additionally, because the worst-case performance of our
approach automatically falls back to the default implementation,
the risk of deployment based on the results in synthetic
populations is minimal. In particular, in our implementation,
the BO routine directly optimizes the AUROC, and so will never
return an optimized configuration with worse performance than
the initial configuration according to AUROC. Finally, the tool
reports detailed evaluation metrics to the user and allows them
to set custom decision thresholds, but doing so requires domain
knowledge.

Conclusions
Effective patient record linkage is critical in the deployment of
patient record management software. A given patient-matching
algorithm should be adapted to the population being served.
BO, as implemented in our freely available, open-source tool,
provides a means to automatically adapt a patient-matching
algorithm to a new population.
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