
Original Paper

Combining Experience Sampling and Mobile Sensing for Digital
Phenotyping With m-Path Sense: Performance Study

Koen Niemeijer, MSc; Merijn Mestdagh, PhD; Stijn Verdonck, PhD; Kristof Meers; Peter Kuppens, PhD
Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium

Corresponding Author:
Koen Niemeijer, MSc
Faculty of Psychology and Educational Sciences
Katholieke Universiteit Leuven
Tiensestraat 102
Post box 3717
Leuven, 3000
Belgium
Phone: 32 16 37 2580
Email: koen.niemeijer@kuleuven.be

Abstract

Background: The experience sampling methodology (ESM) has long been considered as the gold standard for gathering data
in everyday life. In contrast, current smartphone technology enables us to acquire data that are much richer, more continuous,
and unobtrusive than is possible via ESM. Although data obtained from smartphones, known as mobile sensing, can provide
useful information, its stand-alone usefulness is limited when not combined with other sources of information such as data from
ESM studies. Currently, there are few mobile apps available that allow researchers to combine the simultaneous collection of
ESM and mobile sensing data. Furthermore, such apps focus mostly on passive data collection with only limited functionality
for ESM data collection.

Objective: In this paper, we presented and evaluated the performance of m-Path Sense, a novel, full-fledged, and secure ESM
platform with background mobile sensing capabilities.

Methods: To create an app with both ESM and mobile sensing capabilities, we combined m-Path, a versatile and user-friendly
platform for ESM, with the Copenhagen Research Platform Mobile Sensing framework, a reactive cross-platform framework for
digital phenotyping. We also developed an R package, named mpathsenser, which extracts raw data to an SQLite database and
allows the user to link and inspect data from both sources. We conducted a 3-week pilot study in which we delivered ESM
questionnaires while collecting mobile sensing data to evaluate the app’s sampling reliability and perceived user experience. As
m-Path is already widely used, the ease of use of the ESM system was not investigated.

Results: Data from m-Path Sense were submitted by 104 participants, totaling 69.51 GB (430.43 GB after decompression) or
approximately 37.50 files or 31.10 MB per participant per day. After binning accelerometer and gyroscope data to 1 value per
second using summary statistics, the entire SQLite database contained 84,299,462 observations and was 18.30 GB in size. The
reliability of sampling frequency in the pilot study was satisfactory for most sensors, based on the absolute number of collected
observations. However, the relative coverage rate—the ratio between the actual and expected number of measurements—was
below its target value. This could mostly be ascribed to gaps in the data caused by the operating system pushing away apps running
in the background, which is a well-known issue in mobile sensing. Finally, some participants reported mild battery drain, which
was not considered problematic for the assessed participants’ perceived user experience.

Conclusions: To better study behavior in everyday life, we developed m-Path Sense, a fusion of both m-Path for ESM and
Copenhagen Research Platform Mobile Sensing. Although reliable passive data collection with mobile phones remains challenging,
it is a promising approach toward digital phenotyping when combined with ESM.
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Introduction

Background
One of the greatest challenges in social and behavioral sciences
is to obtain reliable information about what people do, think,
and feel during the course of their day-to-day lives. It is critical
to learn more about this because it can aid in the prevention,
diagnosis, and treatment of mental and behavioral issues. Until
recently, the gold standard for collecting data in everyday life
has been the experience sampling methodology (ESM)—also
known as ecological momentary assessment (EMA)—in which
≥1 daily questionnaires are administered (nowadays via
smartphones) to participants to report on their everyday
behavior, thoughts, feelings, and context. However, the
information that can be obtained through this method is limited
owing to the nature of subjective self-report and participant
burden. Nevertheless, recent advances in smartphones and other
portable digital technologies allow us to collect much rich and
more comprehensive information that goes well beyond what
is available via ESM.

Prompting participants to complete multiple questionnaires per
day, especially over long periods, can quickly become
burdensome, resulting in deteriorating data quality or even
participant dropout [1-3]. This problem may be partially
mitigated in a research context because participants are generally
motivated by monetary or other incentives, but it is more of a
problem in clinical practice because the substantial participant
burden makes it difficult to persuade individuals to use ESM
on their own. Furthermore, although ESM has proven to be a
substantial improvement over traditional questionnaires that
only retrospectively inquire about past experiences (whereas
ESM generally focuses on the present), the method’s reliance
on self-report and inherent subjectivity can influence data quality
through participants’ biases in terms of self-representation,
introspective capabilities, and memory [1,3,4].

However, smartphones can not only administer questionnaires
but can also collect all types of other information about the
behavior, activity, and context of its user. These data are known
as mobile or smartphone sensing data and include data about
location, movement, activity, phone use, and app use, among
others [5-7]. Mobile sensing data can contribute to research on
what happens in people’s daily lives because it is able to track
people’s behavior and environment unobtrusively, objectively,
and without effort, thus revealing patterns that could not be
discovered until now. Mobile sensing and other passive sensing
methods have become increasingly important in the era of digital
phenotyping [8], which is defined as “moment-by-moment
quantification of the individual-level human phenotype in situ
using data from personal digital devices” [9]. The use of digital
phenotyping and mobile sensing has seen a huge increase, yet
it has not been able to fulfill its promise to provide directly
meaningful insight into people’s thoughts and feelings [10].
Given that ESM and mobile sensing each have advantages and
disadvantages, a possible path forward is to complement ESM
with mobile sensing to maximize the opportunities of both
methods (and minimize their weaknesses).

To do this, a mobile app that is capable of collecting both ESM
and mobile sensing data in the background must be used.
Although there are some mobile apps that are already available
(eg, AWARE [11]; mind Learn, Assess, Manage, and Prevent
[12]; Beiwe [13]; Remote Assessment of Disease and
Relapse–Base (RADAR-Base) [14]; Sensus [15]; and Effortless
Assessment of Risk States [16]), most other apps are no longer
maintained or poorly documented, posing a major barrier for
researchers who want to incorporate mobile sensing into their
research. In addition, most of the existing mobile sensing apps
are focused on passive data collection and pay relatively little
attention to complementing the obtained data with ESM, which
could be a strong addition for examining many of the
phenomena under study. For example, although location via
GPS is able explain some of the variation in depressive
symptoms, such symptoms have been linked more strongly to
the emotions that people report to experience from moment to
moment (using ESM) [17,18]. The limited predictive power of
mobile sensing data is exacerbated in attempts to predict
variables that change even more quickly such as momentary
mood. In conclusion, although mobile sensing data can provide
some information on participants’everyday behavior, thoughts,
feelings, and context, its stand-alone usefulness is limited when
not combined with other sources of information such as ESM.

In particular, there are several ways in which ESM and sensing
data can complement each other [19]. First, mobile sensing can
add information to ESM measures such as biological, behavioral,
or contextual variables of interest that cannot be reasonably
measured by using only ESM. For instance, weather information
based on participants’ current location can add to the
understanding of stress [20] and well-being [21-23]. Second,
mobile sensing could substitute or corroborate ESM measures
by replacing items that can be measured directly with mobile
sensing. For example, instead of asking participants where they
are, the item could be replaced by mobile sensing that
unobtrusively tracks their continuous location via GPS.
Although this can also be measured with ESM, it is more
subjective as opposed to real-world measurements from the
phone itself, while also operating at a much higher sampling
frequency. Third, it could improve the precision of ESM
measures by allowing for event-contingent sampling or
context-aware triggering [19]. An example of this is geofencing,
a type of location service that can trigger a survey if the
smartphone enters or exits a predetermined perimeter (eg, 50-m
radius around their home). Finally, mobile sensing can also play
an important role in ecological momentary interventions [24]
and just-in-time adaptive interventions [25], where real-time
data collection can trigger interventions or investigation of the
participant’s condition. For example, evaluation of their position
via GPS can monitor movements (eg, going out of the house)
or certain high-risk locations (eg, liquor stores) and launch a
prompt with specific questions or instructions.

Objectives
To facilitate the complementary use of ESM and mobile sensing
data for researchers, we created a new platform (by integrating
2 existing platforms) to enable the combined collection and
application of ESM and sensing data. In this paper, we present
a novel, full-fledged ESM platform with background mobile
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sensing. This new platform was evaluated based on 2 key
criteria: the sampling reliability of mobile sensing and the
perceived user experience of the technical implementation
(battery drain, bugs, etc). First, we describe how this platform
was created, its sensing capabilities, privacy and security
considerations, general workflow for end users, and data
processing and visualization for researchers. The second part
of this paper contains the findings of a pilot study that used the
new platform to evaluate the sampling frequency and user
experience criteria.

Methods

Implementation
To develop an app with both ESM and mobile sensing
capabilities, we used m-Path [26] as the starting point, as it is
well established in both research and clinical settings. m-Path
is a versatile and user-friendly platform for ESM and ecologic
momentary interventions that has already proven itself as an
asset to >15,000 users. Since 2019, >500,000 questionnaires
have been completed on the platform. Some of its advantages
include its ease of use through the user-friendly web-based
dashboard, its wide array of question types, the ability to create
applets, and the highly tailorable control flow within
questionnaires in which one can even use piped text and
real-time computations within and between interactions. As we
wanted to incorporate mobile sensing into m-Path, we named
the new app m-Path Sense. m-Path is aimed at both clinical
practitioners and researchers, whereas m-Path Sense is only
primarily directed at researchers who want to conduct ESM
studies using mobile sensing.

To enhance m-Path with mobile sensing functionality, we added
the Copenhagen Research Platform Mobile Sensing (CAMS)
framework, a reactive cross-platform framework for digital
phenotyping [27]. CAMS is specifically designed to be
integrated into other apps, acting as a loosely coupled
component of the overall app. As both m-Path and CAMS are
programmed in Flutter (Google LLC) [28]—a cross-platform
programming framework that compiles to both Android and
iPhone Operating System (iOS) apps—there is a unique

opportunity to combine the 2 frameworks. Therefore, m-Path
Sense has been made available in the Apple App Store [29] and
the Google Play Store [30].

The integration of m-Path and CAMS was accomplished by
adding the various CAMS components to m-Path as a plug-in
and using them as needed. A first trigger point for CAMS is
when the app is launched and when a beep (ie, a notification
for a questionnaire) is pressed if the app was previously closed
inadvertently. The CAMS pipeline is then activated as a result
of this interaction. CAMS’s underlying code (written in Dart)
creates a unifying interface for both Android and iOS, but this
interface is then converted to a platform-specific code (ie, Swift,
Java, or Kotlin).

Another crucial step in the integration of m-Path and CAMS
was the configuration and validation of the various sampling
schemes and study protocols. A sampling schema in CAMS
defines a specific configuration of a sensor, such as the
frequency at which the measure should collect data. The study
protocol specifies which sensors should be used and how
frequently they should be activated. Some sensors provide a
stream of data; thus, they only need to be triggered once (for
example, if it is triggered by an event), whereas others provide
data only once; therefore, the period over which this should
occur must be specified. Although CAMS provides some
standard values, testing different values is a time-consuming
yet crucial process because it can have a considerable impact
on both the quality and quantity of data and on the participants’
smartphones. Moreover, it also provided an initial idea of how
well CAMS qualitatively performed under different sampling
conditions.

The final step in the integration was to deal with the permissions
(eg, location access) needed for CAMS (and parts of m-Path)
to work properly. When participants first launch m-Path Sense,
they must grant all permissions via a special screen that informs
them about this requirement (Figure 1). These permissions are
displayed individually to the participants. Currently, it is
necessary to grant all permissions for the app to function
properly, but we intend to customize this process based on which
sensors are included in a particular study in a future version.

JMIR Form Res 2023 | vol. 7 | e43296 | p. 3https://formative.jmir.org/2023/1/e43296
(page number not for citation purposes)

Niemeijer et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. The newly developed app m-Path Sense was created by merging m-Path and Copenhagen Research Platform (CARP) Mobile Sensing. (A)
The m-Path Sense introduction screen, which informs participants about what is being collected while also prompting the necessary permissions. (B)
A detailed overview screen (adopted from CARP Mobile Sensing [27]) that shows what types of data are being collected (and how frequently). KU:
Katholieke Universiteit.

Mobile Sensing Functionality
m-Path Sense is capable of collecting a wide array of mobile
sensing data, depending on whether this type of data is available
on the device’s operating system (OS; ie, Android or iOS).
Table 1 lists all the available sensors responsible for capturing

their corresponding data. It should be noted that the functionality
for collecting call and text logs is not listed in Table 1 but is
supported (for Android only). However, as collecting these
types of data is against Google’s policy, they are not included
in the Google Play Store version.
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Table 1. Overview of available sensors in m-Path Sense and their corresponding default sampling frequency.

RemarksDefault sampling frequencyiOSaAndroidDescriptionSensor

Depends on the operating
system but generally varies
from 5-50 times per sec-
ond

Multiple times per secondYesYesAcceleration force along the x, y, and z
axes (including gravity), measured in

m/s2

Accelerometer

N/AbWhen activity changesYesYesDiscrete activity label from Google’s or
Apple’s activity recognition algorithm

Activity recognition

N/AEvery hourYesYesLive air quality index from the nearest
station

Air quality

Code for iOS is present but
not yet operational

Every 5 minutesNoYesVolume (in decibels) of ambient noise;
no audio is saved

Ambient noise

APIc is not available on
iOS

Every 30 minutesNoYesList of used app names and duration of
use since the last measurement

App use

API is not available on iOSEvery dayNoYesList of installed apps on the participant’s
device

Apps

On iOS only; triggers
when charging state
changes

When battery level changesYesYesCurrent battery levelBattery

N/AEvery 5 minutesYesYesScan of Bluetooth device in the vicinityBluetooth

N/AEvery dayYesYesInformation about the individual’s calen-
dar appointments (eg, location and time)

Calendar

N/AWhen connectivity changesYesYesCurrent connectivity status (ie, mobile
data or Wi-Fi)

Connectivity

N/AWhen app restartsYesYesGeneral device information (model,
manufacturer, etc)

Device

Depends on the operating
system but generally varies
from 5-50 times per sec-
ond

Multiple times per secondYesYesRate of rotation along the x, y, and z ax-
es, measured in radians per second

Gyroscope

API is not available on iOSEvery minuteNoYesLight intensity, measured in luxLight

N/AEvery minute or when loca-
tion changes

YesYesFused location estimate (GPS coordi-
nates) stored using Curve25519 public
key encryption

Location

API is not available on iOSEvery minuteNoYesFree physical and virtual memory of the
device

Memory

When user changes their
position by a certain dis-
tance

On the basis of researcher-
specified parameters

YesYesCalculated mobility features, such as
entropy, location variance, and the num-
ber of meaningful places

Mobility

N/AWhen step count changesYesYesNumber of steps according to the
phone’s built-in pedometer

Pedometer

API is not available on iOSWhen screen changesNoYesTime stamp of screen on, off, and unlock
events

Screen

N/AEvery hourYesYesLive weather information (humidity,
precipitation, etc) from the nearest
weather station

Weather

N/AEvery 10 secondsYesYesSSIDd and BSSIDe of connected Wi-Fi
network (if any)

Wi-Fi

aiOS: iPhone Operating System.
bN/A: not applicable.
cAPI: application programming interface.
dSSID: service set identifier.
eBSSID: basic service set identifier.
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Security and Privacy
First, m-Path Sense is a completely separate app from m-Path
to prevent users from inadvertently using m-Path Sense (both
ESM and mobile sensing) instead of m-Path (ESM only) without
being informed. On registration, they must also provide a code
from a practitioner who has indicated in m-Path’s web-based
dashboard that they allow mobile sensing functionality to use
m-Path Sense. After providing informed consent and the sensing
has started, participants can always stop sensing by closing or
removing the app. There is purposefully no pause button, as
participants may accidentally press it and consequently stop
sensing inadvertently. At the same time, sensing data can only
be gathered as long as the app is running; therefore, participants
can always choose to terminate it or even remove the app
entirely if they feel that their privacy is at risk. As long as the
sensing component is active, a permanent notification (Android)
or a blue dot (iOS) is displayed to remind participants that they
are being tracked. By going to the menu and pressing the mobile
sensing tab, participants can also see their personal participant
ID, specific sensors that are being run, and amount of data that
has been collected.

Given the highly sensitive nature of collected data, data security
and privacy are of utmost importance. These elements were
maximally considered in the app development process and
handling of data. All data collected with the m-Path Sense app
(both ESM and sensor data) are initially stored locally in a
protected folder on the participant’s smartphone, which can
only be accessed through the app. This folder cannot be accessed
by other apps. Furthermore, we have implemented a privacy
scheme [27] that can render certain extrasensitive data
unreadable by using a 1-way cryptographic hash or encrypting
it with an asymmetric Curve25519 public key [31]. Managing
the storage of the private key is the responsibility of the
researcher, such that the m-Path Sense team will never have
access to the encrypted data in transit.

For the transfer of data from smartphone to server, asymmetric
HTTP Secure encryption is in place. The server used in this
study was owned by the university, but we are currently
migrating to pCloud [32], a secure Europe-based cloud storage
service [33,34]. Researchers then grant the app access to their
own pCloud folder, and the app can directly upload data to their
folder via HTTP Secure, from which the encrypted data can be
downloaded. To enhance data security and to prevent data
leakage, highly secured application-layer encryption is applied
at all times. Specifically, all answers given to questionnaires
are stored on the phone using Advanced Encryption Standard
(AES) 256-bit encryption with Public-Key Cryptography
Standard (PKCS) 7 padding. The collected mobile sensing data
are written to a JSON file until this file has reached a size of 5
MB and subsequently zipped to reduce its size to approximately

1 MB. Both questionnaire and sensor data are transferred to
secure servers only if the participant has access to a Wi-Fi
network. In the rare event when participants do not have access
to a Wi-Fi network for longer than 24 hours, data are uploaded
via their mobile data connection or they can always upload the
data manually at any other time. The data stored in this local
folder are automatically deleted once it is sent to the server.
Moreover, all local data are deleted once the app is removed
from the phone.

Processing and Visualization
In the current implementation, the data from the participants’
smartphones are stored as JSON files of up to 5 MB. On
completion of each beep, all data (if connected to Wi-Fi) are
sent to a secure server. This means that (1) data arrive in batches
(and not in real time) and (2) the data are not immediately
structured and integrated with all other data. In other words, the
data will first have to be extracted from JSON files (where
sensor data are also not written in sequence) and then imported
into a central database.

To aid in the process of data processing, we have developed
and made available an R package on the comprehensive R
archive network (CRAN), named mpathsenser [35]. The central
function in this package is called import, which reads the JSON
data, extracts it, and writes it to an SQLite database. Although
other database systems are more powerful and possibly fast, we
opted for SQLite because it is widely available, can be easily
shared offline (because it is only a single file), and can be
automatically installed in R with the RSQLite package [36].

One of the specific challenges in analyzing mobile sensing data
alongside ESM data is that the 2 must be aligned, despite being
collected at very different timescales and frequencies [37]. The
function link in the mpathsenser package does exactly this. It
allows the user to link 2 tables together within a certain time
window, for example, 30 minutes before or after each beep.
Another issue that the R package assists in overcoming is the
fact that mobile sensing data are often large in size, making
efficient analysis difficult. Thus, many functions in the R
package are written in such a way that they are executed in the
SQLite database (and the computations in SQL), and only the
result of the computation is returned to R.

Furthermore, a dashboard built in R using Shiny [38] has been
made available, allowing the researcher to import new data with
a few clicks and visualize it in various ways to assess data
quality. For example, a coverage chart (Figure 2) can be
generated for a user that displays the measurement frequency
per sensor, which can be used to inspect the eventual data
collection frequency on particular smartphones, check whether
the app has stopped working at some point, or identify any
underperforming sensors.
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Figure 2. A screenshot of the R Shiny dashboard for keeping track of the data. In this coverage chart, the numbers indicate the ratio of the actual number
of measurements to the expected number of measurements.

Workflow
After installing m-Path Sense, the workflow is as follows. When
participants start m-Path Sense for the first time, they are
prompted with a screen that informs them about every type of
data that is being collected (Figure 1A). If they want to continue,
they can press “I agree” and are subsequently prompted with a
series of in-app permission modals where they have to grant
access for m-Path Sense to be able to collect sensor data. After
that, they have to agree with m-Path’s terms and conditions to
continue and enter the researcher’s ID code (which is usually
provided during the briefing session) to identify the person who
has access to the collected data. This code also helps to prevent
unintentional sign-ups by people who download the app while
not participating in any study. The app will start data collection
only after these steps are completed. After the study has started,
participants can always view which data are being collected
(Figure 1B) and withdraw from a study at any time by removing
the app.

Pilot Study
To evaluate the app, we conducted a 3-week pilot study in which
we administered ESM questionnaires while mobile sensing data
were being collected in the background. In addition to answering
substantive questions about the value of digital phenotyping for
psychological variables, this pilot study served to evaluate the
app based on several criteria. First, we aimed to evaluate the
reliability of the sampling and its related ability to stay alive on

the participant’s phone as this is a crucial challenge with mobile
sensing apps. A well-known problem for mobile sensing apps
is that OSs have become increasingly strict in pushing apps
further to the background and eventually stopping them; thus,
a crucial challenge for such apps is to enable sufficient data
coverage [39-41]. Second, we wanted to evaluate the perceived
general user experience of the app, that is, whether participants
had any trouble with battery drain, app crashes, or other
nontechnical aspects. The ease of use of the ESM system was
not evaluated, as m-Path has already been widely used,
evaluated, and tailored [26].

Between June 2021 and December 2021, an initial pool of 462
participants was recruited through various Facebook groups
and an experiment recruitment system associated with
Katholieke Universiteit Leuven. On the basis of a prescreening
process, we excluded participants who were (1) not native Dutch
speakers, (2) aged <18 years, or (3) having a phone that was
very old (older than Android 7.0 or iOS 13.0) to meet the
technical requirements of the app. Participants were then
selected based on their availability in the study period and their
level of neuroticism (according to the relevant Big Five
Inventory-2 [42,43] items regarding neuroticism) to achieve
variability in emotional functioning. After applying these
inclusion and exclusion criteria, 22.5% (104/462) of the
participants were retained (men: 12/104, 11.5%; women: 91/104,
87.5%; other: 1/104, 0.9%; mean age 20.70, SD 4.08; range
18-52 years). An overview of the specific sampling schema
used in this pilot study is presented in Table 2.
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Table 2. Sensors and their sampling frequencies used in the pilot study.

iOSaAndroidSampling frequencySensor name

YesYesEvery 5 seconds; 1 second of measurementsAccelerometer

YesYesEvent basedActivity

YesYesEvery 1 hourAir quality

NoYesEvery 30 minutesApp use

YesYesEvent basedBattery

YesYesEvery 5 minutesBluetooth

YesYesEvery dayCalendar

YesYesEvent basedConnectivity

YesYesEvery dayDevice

YesYesEvery 5 seconds; 1 second of measurementsGyroscope

NoYesOnce per dayInstalled apps

YesYesEvery 1 minute; 10 seconds of measurementsLight

YesYesEvery 1 minute; also event basedLocation

NoYesEvery 1 minuteMemory

YesYesEvent basedMobility

NoYesEvery 1 minuteNoise

YesYesEvent basedPedometer

NoYesEvent basedScreen

YesYesEvery 1 hourWeather

YesYesEvery 10 minutesWi-Fi

aiOS: iPhone Operating System.

All volunteers provided their informed consent after receiving
information regarding the study protocol, remuneration, and
obligations and advantages of participation. Participants were
advised that their participation was entirely voluntary and that
they could exit the study at any time. To preserve the privacy
and confidentiality of participants, the data used in this study
were pseudonymized. Personal information is kept separate
from study data and will not be shared with third parties.
Furthermore, as mentioned in the Security and Privacy section,
several procedures were implemented to assure data security.
Participants were reimbursed for their time through university
course credits or monetary compensation of up to €70 (US $79).
The remuneration was dependent on the rate of compliance with
the questionnaire responses. Participants received full
remuneration of €70 (US $79) or 10 credits if they met a
compliance rate of at least 75% of the responses on the ESM
questionnaires. Each 10% reduction in compliance resulted in
a reduction of €10 (US $11.29) or 1 credit of compensation.

Ethics Approval
This study was approved by Katholieke Universiteit Leuven
Social and Societal Ethics Committee (G-2020-2200-R3[AMD])
and was conducted in compliance with human subject research
ethical principles.

Results

Overview
On the basis of the results of the pilot study, this section
describes the processing of the data output (ie, the raw data);
the data quality in terms of sampling reliability; and finally, the
participants’ perceived user experience regarding the
functionality of the app but not its design. By doing this, we
evaluated 2 key criteria, namely, whether the sampling
frequency was satisfactory and sufficiently reliable and the
perceived user experience. Regarding platform differences, the
pilot study sample included 50% (52/104) iOS devices and 50%
(52/104) Android devices. The most common brands of phone
were Apple (52/104, 50%), Samsung (28/104, 26.9%) and
OnePlus (10/104, 9.6%). Other brands included Nokia (2/104,
1.9%), Motorola (1/104, 0.9%), OPPO (1/104, 0.9%), Realme
(1/104, 0.9%), and Xiaomi (1/104, 0.9%).

Data Output
A first step toward evaluating the data from m-Path Sense is to
examine the raw data output in the form of either JSON or ZIP
files. It should be noted that the ZIP files contain JSON files
also, but that JSON files may appear in the data output when
they were not properly closed because, for example, the app
was killed. To avoid JSON syntax errors, when the app is
restarted, it will begin writing to a new JSON file rather than
continuing to write to the previous one. When this occurs, the
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old JSON file usually has incorrect file endings, indicating that
it is not in the valid JSON format. One of the functions of the
R package, mpathsenser, is to automatically fix this. After
unzipping the data, 5.55% (4654/83,875) of the files had to be
repaired, including some (approximately 50/4654, 1.01%) that
were partially corrupted and had to be repaired manually by
simply deleting the corrupted parts in the file. It is unknown
what causes file corruption, but it is most likely a problem with
the participants’phones (because most corrupted files that could
not be fixed automatically belonged to a single user, 16/20,
80%) or a bug in Flutter’s internal file writing software.

In total, there were 5.51% (4622/83,875) JSON files and 94.49%
(79,253/83,875) ZIP files across 104 participants, measuring
69.51 GB in size or 37.50 files and 31.10 MB per day per
participant. Interestingly, iOS devices provided many more
JSON files (140.12 MB) and ZIP files (921.42 MB) per person
than Android (60.13 MB and 212.23 MB, respectively). This
is also reflected in the time it took to fill an entire file (maximum
of 5 MB); iOS devices needed a median time of 8.83 minutes
before starting a new file, whereas Android devices took 1.80
hours before a new file was needed. The primary reason for this
discrepancy is that iPhones produce far more accelerometer and
gyroscope measurements than Android phones. In conclusion,
even if a participant does not upload their data to the server for
an entire day, only approximately 59.49 MB is stored on iPhones
and 17.33 MB is stored on Android phones.

After the data are sent to the server, they are removed from the
phone so that the file size is no longer an issue for users.
However, for researchers, the file size of the (unpacked) data
is still important owing to hardware constraints. The size of

these data deviates from the previously stated figures because
these were mainly ZIP files with highly compressed packed
data. Extracting the ZIP files to JSON and then converting them
into another format (for example, in an SQLite database) has
consequences for the corresponding size. The total size after
extracting the ZIP files (which only leaves JSON files) was
430.43 GB. Differences existed between Android and iOS
devices. Android users, for example, had an average of 389
JSON files with an average size of 4.71 MB, whereas iOS users
had an average of 1207 JSON files with an average size of 4.91
MB.

As the unpacked data were relatively large (430.43 GB) and
parsing each file to read it in an SQLite database would further
increase the size, importing all data to an SQLite database would
be a time-consuming and computationally expensive task.
However, the accelerometer and gyroscope sensors produced
many observations per second, accounting for approximately
90% of the data (in terms of size). Consequently, reducing the
data from these sensors while retaining relevant information
would be conducive to performing analyses more efficiently.
Using multiple values per second, we calculated the Manhattan
distance (L1-norm); Euclidean distance (L2-norm); and average
of each x, y, and z dimension per second, because for most
purposes, 1 accelerometer or gyroscope value per second
suffices. We used an incremental approach, by importing
accelerometer and gyroscope data in chunks of about 60 GB
and then shrinking the size by calculating these summary
metrics. The total SQLite database size—including relevant
indexes—after importing all data was 18.30 GB. Table 3 shows
the number of observations.
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Table 3. The number of observations per sensor across 104 participants over 21 days of sampling. It should be noted that these are the number of
observations for the accelerometer and gyroscope after binning these values to once per second, greatly reducing the size of the data (N=84,299,462).

Observations, n (%)Sensors

29,464,849 (34.95)Accelerometer

6,443,664 (7.64)Activity

393,440 (0.47)App use

1,889,310 (2.24)Battery

1,989,703 (2.36)Bluetooth

15,770 (0.02)Calendar

58,716 (0.07)Connectivity

4652 (0.01)Device

26,896,404 (31.91)Gyroscope

113,256 (0.13)Installed apps

757,034 (0.90)Light

3,675,559 (4.36)Location

743,018 (0.88)Memory

382,771 (0.45)Noise

3,397,663 (4.03)Pedometer

397,726 (0.47)Screen

23,793 (0.03)Weather

7,649,719 (9.07)Wi-Fi

Sampling Reliability
The first objective of the pilot study was to assess the reliability
of m-Path Sense in terms of the sampling frequency, that is,
whether the number of data points was satisfactory. Figure 3
depicts the average number of observations per hour for all
participants. As separate sensors have different target sampling
frequencies (and thus, different scales in the figure), the color
range of each row is determined from the sensor’s sampling
frequencies, ranging from 0 (red) to the maximum observed
sampling frequency for that sensor (blue). In general, we found
the number of collected observations for most sensors to be
quite satisfactory in terms of providing sufficient data for most
types of analyses and typical research questions. For example,
the accelerometer sensor provides approximately 780 samples
per hour (after binning), which is slightly more than once every
5 seconds. Another example is the location sensor that provides
a location update 97.20 times per hour on average (once every
37.04 seconds), with far more updates during the day (once
every 31.65 seconds) than at night (once every 1.74 minutes),
instead of its targeted sampling frequency of once per minute.
In general, sampling appears to be decreasing at night, possibly
owing to the OS pushing the app to the background.

Although results when looking at the absolute number of
measurements per hour appear to be good, the coverage
rate—the ratio between the actual number of measurements and
the expected number of measurements—may be a better method
for assessing sampling reliability. Figure 4 depicts the pilot
study’s relative coverage rate. Multimedia Appendix 1 provides
an overview of the expected number of measurements, that is,

the sampling schema. Figure 4 shows that the relative coverage
is well below 1, frequently hovering around 0.50. This means
that only half of the measurements were collected in comparison
with what the app was designed to do. For example, if the
location of the participants was supposed to be collected once
every minute, it was only collected every 2 minutes. For most
sensors, the targeted sampling frequency was quite high;
therefore, even collecting half of the intended data may be
sufficient for a given study. However, for a general-purpose
mobile sensing app, this effect is generally undesirable.

The low relative coverage rate raises the question of why few
observations were collected. A related issue is that the data
contains a large number of gaps (Figure 5). In this case, a gap
is defined as a period of at least 5 minutes during which no
measurements were recorded by any sensor. Counterintuitively,
the colored bars in Figure 5 depict these gaps over time for each
participant. During the 21-day pilot study, Android users had
a median of 157 gaps lasting 7.55 minutes in their data, whereas
iOS users had a median of 165 gaps lasting 47.36 minutes. Thus,
although Android and iOS users had roughly the same number
of gaps in their data, gaps occurring on iOS devices were much
long, resulting in great loss of data. Naturally, the more gaps
there are in the data, the fewer observations can be collected:
consider a total data loss of 4.19 days for Android users and
1.95 weeks for iOS devices, both of which would be undesirable.
Fortunately, nightly data could account for a large portion of
this data loss. After removing gaps between 12 PM and 6 AM,
the total data loss per participant over the 21-day study period
was 23.93 hours for Android devices and 5.02 days for iOS
devices.
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Figure 3. The average absolute number of measurements per hour across all participants, colored by frequency per sensor. The color range per row
varies because the sensors measure at different frequencies. The scale’s lower bound is always 0 and completely red. The maximum observed sampling
frequency for that sensor determines the upper bound. For example, weather has a value of 1 and is thus completely blue. However, in the case of
location, it is only at 166.50 that it is completely blue, with approximately 1 measurement every 22 seconds. It is also worth noting that the accelerometer
and gyroscope measurements were binned to an average value per second.

Figure 4. The relative number of measurements per hour averaged across all participants, where a value of 1 indicates that the actual number of
measurements was exactly equal to the expected number of measurements and a value of 0.50 indicates that only half of the expected number of
measurements were captured.
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Figure 5. Gaps in the data over time per participant. Each colored bar represents a gap, as measured by the absence of accelerometer measurements
for 5 minutes. iOS: iPhone Operating System.

Furthermore, we also assessed whether there were differences
between successive OS updates. To this end, we ran a 2-way
ANOVA (α=.05) with the total gap time per participant as the
dependent variable and whether it was a new or old version of
this OS as independent variables. The classification was required
because there may be only a few participants for some OS
versions, resulting in severely unbalanced groups. For example,
there were only 9.6% (10/104) participants who used an OS
older than Android 10. iOS 15 (22/104, 21.2%) and Android
11 (30/104, 28.8%) were considered as new OS versions,
whereas iOS 14 (22/104, 21.1%; there were no older versions)
and Android 10 or lower (23/104, 22.1%) were old OS versions.
Our ANOVA results suggested that devices running Android
experienced significantly fewer gaps (mean 5.59, SD 4.01 days)
than devices running iOS (mean 1.81 weeks, SD 4.97 days;

F1,102=52.10; P<.001; η2 [partial]=0.34, 95% CI 0.22-1).
Specifically, the results show that there was a difference in the
total gap time between Android and iOS. However, there were

no differences between old and new versions within either
Android (old: mean 4.50, SD 3.87 days; new: mean 6.43, SD
3.98 days) and iOS (old: mean 1.68 weeks, SD 5.81 days; new:

mean 1.99 weeks, SD 3.32 days; F1,102=3.69; P=.06; η2

[partial]=0.03, 95% CI 0-1). Therefore, although there were
differences between Android and iOS in terms of the overall
number of gaps, the specific OS versions did not show
statistically significant differences within each OS.

One of the most likely causes of these data gaps is the OS itself,
specifically how it attempts to save energy and resources when
the device is not in use (eg, Android’s doze mode). There are
some guidelines [44] that should help prevent the app from
being gradually pushed into the background (and eventually
killed), even though both Android and Apple have become
increasingly strict in recent years on apps that consume battery
in the background. A solution that is currently being
implemented to mitigate this issue is to send a signal to the
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server every 5 minutes to show that it is still alive. When the
server does not receive this signal, it can send a notification to
the app, which the user must then click on to resume sampling.

In addition to the app simply being pushed to the background
and eventually killed, we investigated several other possible
causes for the gaps in the pilot study data. Differences between
smartphone brands were one of the first explanations we
considered. For example, it is possible that a particular brand
may be underperforming, thus lowering the overall coverage
rate. Multimedia Appendix 2 shows the average coverage rate
per day for each brand. There are some differences between
brands, but they are minor. A second hypothesis proposed that
the low average sampling frequency was caused by a small
number of participants who provided very little data. The
average relative coverage per participant is presented in
Multimedia Appendix 2. This demonstrates that, although there
is some variation in the average relative coverage of participants
for most sensors, there are no obvious outliers or skewed
distributions. Finally, we hypothesized that the large gaps in
iOS data were caused by a previously identified problem in the
study, namely, iOS abruptly deleting some files owing to a
backup issue. If the m-Path Sense folder became very large,
they were backed up by iOS, which inexplicably deletes all
files. After a few days, we fixed this bug by explicitly stating
that these data should not be backed up and that it will be sent
to the server more frequently. However, as this backup solution
only applied to log-in data, the sensing data could still be
compromised. A method to evaluate the impact of this problem
would be to identify a relationship between the proportion of
Wi-Fi and mobile data and the total number of gaps. If the data
were sent every 5 minutes when connected to Wi-Fi, the
possibility of a large amount of data being lost is low. Thus,
participants who use Wi-Fi more frequently will most likely
have few gaps, and a negative association between total Wi-Fi
time and gaps stands to reason. Although there was a negative
relationship between the 2 aspects, it was neither very strong
(r=−0.16) nor statistically significant (P=.10) when considering
the OS version.

User Experience
We assessed the participants’ perceived user experience with
m-Path Sense using feedback from the debriefing session and
an ESM item assessing app issues (“Has your smartphone and/or
app worked normally since the last beep?”). The figures in
parentheses represent the number of participants who mentioned
the issue at least once; however, this was not a structured
interview because we wanted to let the participants decide what
they thought was most important to address. They were asked,
among other things, whether they had any problems with the
app, what parts bothered them, and what could be improved.

First, participants noticed minor battery drain (as also reported
by battery tests [27]), but this was not perceived as bothersome
(27/104, 25.9%). This is also reflected in the fact that only
1.34% (133/9924) of all beeps received on Android and 15.00%
(1365/9096) of all beeps on iOS devices reported that
participants noticed the battery running down faster than usual
at that time. However, when asked whether this was a burden
during the debriefing session, most participants (27/104, 25.9%)

reported that it was manageable because they carried their
charger with them.

Second, some participants (18/104, 17.3%) reported that the
app sometimes crashed or froze on start-up; however, this was
only reported in 2.23% (221/9924) and 0.45% (41/9096) of
ESM beeps for Android and iOS users, respectively. Finally,
participants who used an iOS device (12/104, 11.5%) mentioned
a problem at the beginning of the study (for iOS only), where
some of m-Path Sense’s files were deleted by the OS, causing
the app to stop working. Participants who experienced this issue
were asked to reinstall the app, and the problem was
permanently resolved through an update after a few days.

Discussion

Principal Findings
In this study, we attempted to combine the collection of ESM
and mobile sensing data in 1 app, m-Path Sense, and an
associated R package and Shiny app, so that these data can be
easily brought together and can interact with each other in the
future. The platforms combined for this purpose are m-Path
[26] and CAMS [27]. During integration, there was a strong
emphasis on security and privacy, such as the decision to create
a separate version for m-Path Sense (rather than including this
as an option in m-Path itself) and encrypting and hashing
different types of data.

A pilot study with 104 participants was conducted to assess the
evaluation criteria (sufficient reliability and not very invasive
for the user). Although the total amount of data collected was
adequate for most studies, it was less than the intended sampling
frequency, likely caused by the OS’s attempts to save energy
and resources when the device is not in use (eg, Android’s doze
mode). This issue is not uncommon in the mobile sensing
literature. For example, a study [40] discovered that when
collecting geolocation data using a smartphone, 12% of all gaps
lasted longer than 60 minutes, even though measuring every 30
minutes was planned. In another study [39], 17.2% of
participants had only 2 location measurements per day, whereas
24 were planned, and 17.2% had no measurements at all, with
significant differences between Android (better) and iOS. As
these gaps may have a direct impact on sampling reliability, it
is critical to assess their effect on studies’ findings.

As the field of digital phenotyping and mobile sensing research
expands and evolves, we can expect increased scrutiny and
device OS constraints imposed by corporations such as Apple
and Google. Further limitations may include strict guidelines
for data collection, such as limitations on the types of sensors
that can be accessed and prioritizing transparency to users about
what data apps collect. Although this may make it more difficult
for researchers to gather the data they need for their studies, it
is also possible that these limitations will drive innovation in
the field and lead to the development of new, more
privacy-sensitive mobile sensing methods. This increased
transparency is unlikely to provide a long-term impediment to
mobile sensing research, as researchers already strive to be
maximally transparent to participants about the data collected
in their studies. The future of digital phenotyping and mobile
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sensing research will almost certainly be influenced by a
trade-off between the requirement for precise and extensive
data collection and the need to preserve individuals’ privacy
and prevent unnecessary battery drain.

One of m-Path Sense’s shortcomings in comparison with other
mobile sensing apps is the lack of a web-based dashboard in
which the researcher can inspect and possibly extract all data
at a glance. It should be noted that this functionality is already
available for ESM data [26,45]. To accomplish this, a new
pipeline (possibly with another backend) should be built, through
which data are automatically extracted, imported, and stored in
a structured format (as the R package does now). The researcher
should then be able to generate several interactive plots to check
the data via the web-based dashboard, such as a coverage plot
(Figure 3).

When conducting mobile sensing research, it is not always
necessary to collect and store all types of smartphone data. An
important reason for this is to protect the participant’s privacy,
but it is also because adding sensors consumes extra battery
power, which is unnecessary. Therefore, one of our next steps
forward will be to configure sensors and their sampling
frequencies remotely. A concrete implementation could include
allowing researchers to choose sensors from a web-based
dashboard (as described previously) and adjust the sampling
frequency according to their liking. This could also be done
during the study if certain sensors are no longer considered to
be relevant or if a sensor’s sampling frequency is found to be
very high or very low.

A third important functionality for the future is the integration
of event-contingent sampling, particularly regarding just-in-time
adaptive intervention. CAMS already supports event-contingent
sampling to some extent by allowing certain sensors to trigger
each other. For instance, location activity could only be activated
when the accelerometer activity increases, which saves battery
when the participant is not moving. The web-based dashboard
should be configured so that researchers can specify whether
certain beeps or items should be requested only when a sensor

reaches a certain value. A good example of this is in dyadic
research, where beeps could only be requested when the
participant is within Bluetooth range of their partner.

Limitations
The study has certain limitations that should be considered when
interpreting the results. A limitation is that the study was
conducted as a pilot study with a small sample size; therefore,
not all smartphone brands were adequately covered. This could
have an impact on the validity of the findings and their
generalizability to a large group. Another limitation is that
mobile sensing technology is subject to changes and updates
from companies such as Apple and Google; therefore, the results
of this study are merely a snapshot of the performance at the
time of measurement. At the same time, m-Path Sense is a
software package that is continually evolving to stay up to date
with these developments. These limitations should be considered
when interpreting the findings; however, the study still provides
useful information for evaluating the current performance of
m-Path Sense.

Conclusions
We combined the strengths of m-Path (a comprehensive ESM
platform) and CAMS (mobile sensing) to produce m-Path Sense,
a new mobile software app that prioritizes ESM and can be
easily expanded to include mobile sensing. By examining its
sampling reliability and perceived user experience in a pilot
study, we found that the total amount of data gathered is
sufficient for most studies, even though it is lower than the
intended sampling frequency owing to OS limitations. Minor
battery drain was reported by some individuals, but it was not
considered to be problematic. m-Path Sense can be a step-up
for research into digital phenotyping that calls for a combination
of complete ESM and mobile sensing functionality, even though
the accessibility of sensors is increasingly being restricted by
OSs. Future studies should include a web-based dashboard for
inspecting data and switching sensors on and off,
event-contingent sampling, and more methods for monitoring
and reactivating the app to minimize data gaps.
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Multimedia Appendix 1
The average daily relative number of measurements across brands, where a value of 1 indicates that the actual number of
measurements was exactly equal to the expected number of measurements and a value of 0.50 indicates that only half of the
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expected number of measurements were captured. ‘Other’ brands include included Nokia (n=2), Motorola (n=1), OPPO (n=1),
Realme (n=1), and Xiaomi (n=1).
[PNG File , 55 KB-Multimedia Appendix 1]

Multimedia Appendix 2
The average daily relative number of measurements across participants, where a value of 1 indicates that the actual number of
measurements was exactly equal to the expected number of measurements and a value of 0.50 indicates that only half of the
expected number of measurements were captured. While iOS often has a higher coverage rate, there are no obvious outliers,
meaning that no participants (or groups of participants) consistently underperformed and lowered the average coverage rate. iOS:
iPhone Operating System.
[PNG File , 97 KB-Multimedia Appendix 2]
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