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Abstract

Background: Patient-generated health data (PGHD) captured via smart devices or digital health technologies can reflect an
individual health journey. PGHD enables tracking and monitoring of personal health conditions, symptoms, and medications out
of the clinic, which is crucial for self-care and shared clinical decisions. In addition to self-reported measures and structured
PGHD (eg, self-screening, sensor-based biometric data), free-text and unstructured PGHD (eg, patient care note, medical diary)
can provide a broader view of a patient’s journey and health condition. Natural language processing (NLP) is used to process and
analyze unstructured data to create meaningful summaries and insights, showing promise to improve the utilization of PGHD.

Objective: Our aim is to understand and demonstrate the feasibility of an NLP pipeline to extract medication and symptom
information from real-world patient and caregiver data.

Methods: We report a secondary data analysis, using a data set collected from 24 parents of children with special health care
needs (CSHCN) who were recruited via a nonrandom sampling approach. Participants used a voice-interactive app for 2 weeks,
generating free-text patient notes (audio transcription or text entry). We built an NLP pipeline using a zero-shot approach (adaptive
to low-resource settings). We used named entity recognition (NER) and medical ontologies (RXNorm and SNOMED CT
[Systematized Nomenclature of Medicine Clinical Terms]) to identify medication and symptoms. Sentence-level dependency
parse trees and part-of-speech tags were used to extract additional entity information using the syntactic properties of a note. We
assessed the data; evaluated the pipeline with the patient notes; and reported the precision, recall, and F1 scores.

Results: In total, 87 patient notes are included (audio transcriptions n=78 and text entries n=9) from 24 parents who have at
least one CSHCN. The participants were between the ages of 26 and 59 years. The majority were White (n=22, 92%), had more
than one child (n=16, 67%), lived in Ohio (n=22, 92%), had mid- or upper-mid household income (n=15, 62.5%), and had higher
level education (n=24, 58%). Out of 87 notes, 30 were drug and medication related, and 46 were symptom related. We captured
medication instances (medication, unit, quantity, and date) and symptoms satisfactorily (precision >0.65, recall >0.77, F1>0.72).
These results indicate the potential when using NER and dependency parsing through an NLP pipeline on information extraction
from unstructured PGHD.

Conclusions: The proposed NLP pipeline was found to be feasible for use with real-world unstructured PGHD to accomplish
medication and symptom extraction. Unstructured PGHD can be leveraged to inform clinical decision-making, remote monitoring,
and self-care including medical adherence and chronic disease management. With customizable information extraction methods
using NER and medical ontologies, NLP models can feasibly extract a broad range of clinical information from unstructured
PGHD in low-resource settings (eg, a limited number of patient notes or training data).
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Introduction

Patient-generated health data (PGHD) volume is growing
immensely with the increased use of digital devices. The Office
of the National Coordinator for Health Information Technology
defines PGHD as “health-related data created, recorded, or
gathered by or from patients or family members or other
caregivers to help address a health concern” [1]. Today, PGHD
can be collected out of the clinic using medical and
consumer-grade mobile devices as passive or active data, such
as blood glucose monitors, wearables (heart rate and SPO), and
smartphones (physical activity scores and patient-reported data,
such as screening survey responses) [2,3]. PGHD is becoming
a necessary component of personal health records as well as
remote monitoring and is influencing self-care and clinical
decisions [4]. Medical systems have the infrastructure available
to integrate digital tools generating PGHD with electronic health
record systems to enhance the clinical decision process and
eventually improve patients’ quality of life and produce better
health outcomes [3,5].

In a patient’s journey (especially patients with chronic
conditions or special health care needs), physical medical diaries
and patient notes have been the primary source of free-text
patient information (“unstructured PGHD”), facilitating the
collection of health information. With the adoption of smart
devices, there is an increased use of personal devices for digital
medical diaries and note-taking [6]. In addition, automatic
speech recognition, conversational agents, and voice-interactive
technologies ease the process of note-taking via natural
conversations [7-9]. However, the patient experience, health
events, medications, and symptoms captured in personal
notebooks or devices are expected to be communicated verbally
or written periodically, such as, during clinical visits. Given the
limited time and ability to read and communicate patient notes,
this information could be underused and create an additional
burden [10]. Integrating PGHD into electronic health record
systems is an acknowledged contribution, as it can create a more
comprehensive view of health conditions and eventually inform
shared decision-making [11]. Yet, free-text patient notes or
unstructured PGHD integration requires further considerations
on clinical workflow and clinical burden [3].

Therefore, a pipeline for processing unstructured PGHD to
inform self-care and clinical decision processes is needed and
preferable [12]. In the literature, there are a number of studies
reporting natural language processing (NLP) applications on
clinical notes to identify symptoms and conditions [13,14]. A
subset is focusing on electronic patient-authored texts, which
are the patient-reported symptoms and conditions that are shared
on the web but mostly out of medical records. The studies report
that the NLP applications accompanying large public data sets
of electronic patient-authored texts (eg, web-based forums or
social media posts) are based on rules, machine learning, or a
hybrid combination [15]. Rule-based methods are preferable
with the use of clinical domain knowledge (eg, ontologies) for

increasing accuracy in entity extraction at the expense of
generalizability [14]. Machine learning solutions have been
effective in extracting word or sentence meaning by using
probabilistic models and being structure-agnostic with variations
in spelling and grammar [16]. Yet, machine learning models
could be resource intensive. Hybrid models leverage the strength
of both approaches in terms of combinatorial patterns among
words and semantic relationships [17,18] and are adaptive to
low-resource settings.

In this paper, we evaluate a hybrid (machine learning +
rule-based) NLP pipeline [19] with low-resource unstructured
PHGD (ie, not depending on a large data set for training) and
report its feasibility. We focus on extracting medication and
symptom information, which must be tracked and communicated
to patients with chronic conditions. We complete an empirical
evaluation of automatic component extraction where we measure
the model’s ability to conduct automatic entity extraction using
ontologies (medication dose: RxNORM, symptoms: SNOMED
CT [Systematized Nomenclature of Medicine Clinical Terms])
[14,20] from the patient note data set. Namely, this NLP pipeline
constitutes a rule-based system that leverages the dependency
parsing, named entity recognition (NER), and ontology-linking
capabilities of pretrained machine learning models (specifically,
deep learning and pretrained language models [PLMs]), allowing
for increased interpretability, ease of deployment, and
generalization.

Methods

Overview
Our study reports a secondary data analysis using the data set
collected on a prior research project [21].

Recruitment and Study Setting
A convenience (nonrandom) sampling method was used to
invite participants (parents and caregivers) to participate in the
study within the network of the complex care clinic at a large
pediatric hospital in the midwest. We sent email invitations and
announced the research participation opportunity over social
media and digital boards at the hospital. The recruitment
occurred between October-December 2020. Inclusion criteria
for the study were being a parent of a child with one or more
complex medical conditions and having an iPhone with iOS 13
or above (or an iPhone 8 or above) during the study period. A
total of 41 participants met these criteria and consented to
participate. Of these, 24 participants completed the full study,
which included a 2-week period of app use.

Data Collection
Data were collected from 24 parents of children with special
health care needs (CSHCN) between October 2020 and January
2021. Participants were onboarded to the study via a web-based
screening and survey tool. The eligible participants were guided
through a web-based tutorial to install and use the research app.
The app has functions to record, transcribe, and store notes [21].
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Participants were instructed to use the app for a 2-week period
for medical note-taking. During the study period, participants
received periodic (every 2-3 days) reminders and tips about
how to use the app features. They had the option to create

medical note entries through voice or text while at home. Voice
entries were transcribed by using Amazon Web Services
Transcribe services [22], and the transcriptions were used as
patient notes for analysis (Figure 1).

Figure 1. Data collection, processing, and output flow. AWS: Amazon Web Services; PGHD: patient-generated health data; SNOMED CT: Systematized
Nomenclature of Medicine Clinical Terms.

Data Analysis
Building upon an earlier NLP pipeline proposal with simulated
notes [19], we created a pipeline that leverages NER to identify
and map terms to existing ontologies, particularly the RXNorm
and SNOMED CT ontologies for medication and symptoms,
respectively. After that, our algorithm searches over the
sentence-level dependency parse trees alongside part-of-speech
tags to extract further entity information based on the syntactic
properties of the note [19]. Additionally, the relative date of the
note (the date reported in the notes), if different from the
authorship date, is derived with the assistance of the dateparser
python library [23]. The NER and dependency parsing tools are
retrieved from the open-source SciSpaCy Python package, which
consists of PLM and ML models [24]. More specifically, our
pipeline uses the SpaCy en_core_sci_lg model, which is a
pipeline for biomedical data leveraging word embedding with
more than 780,000 vocabulary terms and 600,000 word vectors
[24], and a set of tools that use deep learning models to process
biomedical and clinical text [25,26]. Researchers (SAH, ES)
compared the model output against the original sentence and
assessed it. They marked the information that the model
incorrectly extracted (false positive), incorrectly left behind
(false negative), and correctly extracted (true positive and true
negative) for the categories of medication instance and symptom.
We then calculated precision, recall, and combined F1 score.
This pipeline uniquely seeks to extract information about
medication and symptoms using a zero-shot approach, which
requires no training data and is adaptive to low-resource settings
[27]. Likewise, our study does not have standardized tasks;
therefore, no other baseline pipelines are available to compare
against it. For this reason, evaluation metrics are presented
solitarily to enable the evaluation and feasibility of the approach.

Figure 1 illustrates the data collection, processing, and output
flow. In summary, a patient or caregiver creates the notes
through voice interaction or text entries. Amazon Web Services
transcribes voice entries and stores. The entries, unstructured
PGHD, are processed using the proposed NLP model in this

study to identify medication amount, dose, medication name
(dependency parsing is shown with arrows), time and date, and
symptoms. The extracted information can be integrated into a
chart that can be used to inform a patient, caregiver, and provider
through local logs on a device, cloud services, or medical
records assisted by data visualization tools [19]. The integration
component is not in the scope of this study.

Ethics Approval
The study involves human participants and was reviewed and
approved by the institutional review board at Nationwide
Children’s Hospital (#00000231). The participants signed
written informed consent to participate in this study, allowing
the use of the data set for the data analyses described here. All
data reported in this study are deidentified. Participants were
compensated for their time with a gift card (US $30).

Results

Participant Demographics
The participants were aged between 26 and 59 years (mean 39,
median 38), mostly White (n=22, 92%), had more than one
child (n=16, 67%), lived in Ohio (n=22, 92%), had mid or
upper-mid household income (n=15, 62.5%), and received
higher-level education (n=24, 58%). Participants had CSHCN
with multiple chronic conditions. Frequently reported conditions
included developmental delay; speech, vision, and physical
problems; and genetic and neurological disorders. The majority
of parents were “always” or “often” tracking their child’s
symptoms, medications, or conditions (n=17, 71%) using an
app (n=13, 54%) or patient portal (n=16, 67%).

Notes Characteristics
In total, 87 patient notes were included (voice entry
transcriptions n=78 and text entries n=9). Thirty of the notes
are drug and medication-related, and 46 of the notes are
symptom-related, but there are overlapping notes having both
or none of the symptom and medication information. More
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specifically, 24 notes have no symptom or medication
information; 33 notes have only symptom information but no
medication information; 17 notes have only medication
information and no symptom information; 13 notes have both
medication and symptom information. Each note is structured
as 1 to 3 sentences, briefly recording the state of the patient,
medication given, and symptoms (see Textbox 1, [21]).

Content-wise, a patient note entry may have multiple
components (symptom and medication detail), such as a
summary of the day instead of multiple notes created throughout
a day. Please see Multimedia Appendix 1 for the medication
and symptoms captured through the pipeline and their
frequencies.

Textbox 1. Sample patient notes [21].

Symptoms or health condition

• “Spot on lip is gone. Overall doing well. Has a runny nose it no fever or any other symptoms.”

• “[patient name] oxygen was still hanging out around 80 today...blood sugar is 127.”

Medication with dose, unit, and time

• “Gave [patient name] 2 Benadryl at 6:00 am…[patient name] does not take his medicine after lunch.”

• “Yesterday we started…gabapentin at a rate of 2.6 ml that will continue for one week, then we will switch rate to 2 ml over the course of another
week, then 1.6 ml for another week with final rate at 0.6 ml...”

Evaluation Results
Table 1 presents precision, recall, and F1 scores. In the table,
notes refer to the number of individual notes considered for
each data component (eg, medication or symptom-related term).
Instances refer to the number of times a data component is
considered with allowance for multiple instances per note. A
medication instance refers to all subcomponents (medication
name, unit of measurement, quantity, and date information) of

the medication when present. An instance is correct if all
subcomponents are correctly extracted when present and is
wrong if any one of the presented subcomponents is wrong.
Precision-recall scores of medication information
subcomponents provide a granular breakdown per extracted
instance. Some of the extracted symptoms could be ambiguous
to be classified as a symptom, such as emotional states (eg,
“happiness”). We categorized them as symptoms in our research,
as mood can affect health conditions.

Table 1. Evaluation of extracting medication and symptom information through precision, recall, and F1 scores.

Instances, nNotes, nF 1RecallPrecisionData component

62300.800.770.83Medication instance

62300.900.840.97Medication

27140.660.530.86Unit

1690.270.190.50Quantity

33130.840.760.93Date

71460.720.820.65Symptom

At an instance level, which is considered correct if all relevant
subcomponents are correctly extracted, the medication-instance
extraction pipeline has moderately good performance, with a
precision and recall both near 0.8. At the subcomponent level,
medication name recognition has the highest performance with
high precision, while unit and quantity extraction have low
recalls. In medication-related false-positive cases, patient names,
or common terms (eg, water) overlap with medication names
or ingredients (eg, water irrigation solution) within the RXNorm
ontology. Unit and quantity extraction errors are often caused
by irregular sentence structures or information split between
multiple sentences. Date extraction performs well in both
precision and recall (except in cases with phrasal referents, such
as “A few days ago”). Both brand names and generic names are
identified with errors caused by overlap between patient names
and RXNORM. For symptoms, we find recall scores higher
than precision, implying that often entities were extracted when
they were not proper symptoms (eg, “sitting” and “sign”).

Discussion

Principal Findings
We present findings of our proposed NLP pipeline with
real-world PGHD to demonstrate the feasibility of its
implementation. The results demonstrate that the NLP pipeline
performance matches contemporary works with a zero-shot
approach for information extraction [28], specifically for most
of our targeted information categories of medications and
symptoms (with an F1 score above 0.6). These results cannot
be compared directly since the other studies in the literature do
not focus on PGHD or the same combination of medication,
dosage, and symptom extraction. However, the results indicate
acceptable performance when using NER and dependency
parsing through open-source and hybrid NLP models. The
performance of the pipeline may increase over time with
improvements in automatic speech recognition and text
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prediction and suggestion methods (methods that also use NLP
models that are not covered within the scope of this study)
[29-31]. However, in this study, the pipeline performance was
potentially affected by the transcription errors or typing errors
existing in the data set (n=16, 18% of 87 notes had at least one
error; errors have not been corrected to contain real-world data
features).

This study extends the existing literature [15], presenting the
capability of current models to extract key information from
patient notes. This approach can inform patients and caregivers
out of the clinic toward enabling self-care (eg, improving
medical adherence, symptom tracking) and remote monitoring
(eg, detection, intervention, and communication) [11]. In clinical
practice, the use of such artificial intelligence and machine
learning approaches potentially facilitates the inclusion of
personal health records into medical records, which can allow
the identification of health condition changes and build early
detection mechanisms [3,32]. Integrating unstructured PGHD
via an NLP pipeline within electronic medical records can also
contribute to improving patient-reported outcomes and shared
decision-making at the clinic, allowing health care providers to
remotely observe health conditions and intervene in a timely
manner [33,34].

Extending Digital Health Technologies for Special
Health Care Needs
Considering the patient population with special health care
needs and their caregivers that receive care from multiple
providers and clinics, there is a continuous need for
documentation, medication, and symptom tracking during home
care. Timely communication of patient conditions with multiple
health care providers is needed but creates additional burden
and stress for patients and caregivers given their daily life and
workload [35,36]. The literature shows that currently available
digital health technologies including mobile apps, SMS text
messages, and web portals have been used for patient care
management [37-41] and communication of patient medical
conditions remotely [41-44]. As digital health technology eases
the process of documentation and the tracking of symptoms and
medications, NLP approaches can improve the process by
enabling the use of natural and preferred language. Furthermore,
an NLP pipeline integrated with preferred technologies
(text-based and voice-interactive apps, patient portals) can
reduce the burden and complexity of accessing personal notes,
summarizing and searching patient notes, and reducing the need
to learn a technology to complete tasks or take notes, and reduce
required attention on a device or modality and time spent on
documentation [12,21,45]. In addition, the use of the zero-shot
approach demonstrates the ability to use artificial intelligence
and machine learning in data-scarce environments (eg, data on
rare diseases, data from rural hospitals), which increases the
equitable and accessible use of artificial intelligence and
machine learning in health care.

Implementing NLP Pipeline
Our study presents the feasibility of PLM use within zero-shot
biomedical settings. Whereas other works require specialized
pretraining of NLP models [28,46] or are limited to handling
the formalized writing style of the biomedical literature, our

approach makes use of more task-general biomedical PLMs to
better generalize over the various syntactic forms found in
PGHD. Namely, we gather our PLMs from the SciSpacy model
suite, which shows high performance in its various capabilities
when evaluated on PubMed and clinical notes [25]. We use
SciSpacy’s entity extraction capabilities before linking to various
ontologies. It is followed by the extraction of additional
information related to these entities, such as medication dosage
information by leveraging sentence-level dependency parse
trees, providing insight into the capabilities and using automatic
dependency parsing. This is a novel approach to our study,
which has not previously been implemented in biomedical
research [47-49]. Furthermore, the performance of our pipeline
can be improved through the use of cohort- or patient-specific
vocabularies to augment the NER subcomponent, allowing for
a human-in-the-loop component to our hybrid model where
domain experts can define model parameters and integrate
human knowledge [50]. Human-in-the-loop methods span a
variety of directions with the general consensus being that such
methods allow for compensation of model weaknesses with
domain expertise and vice versa, alongside a high ratio of model
performance against model creation cost, causing it to be an
increasingly important component of applied machine learning
[18,50]. Using publicly available models and ontologies improve
the dissemination of the model as well as access and
customization specific to conditions and patient populations.
Since our NLP models are pretrained on clinical data and use
publicly available ontologies, replication and scalability of a
pipeline have low costs in terms of the requirement for training
data, computational power requirements, and expertise.

Limitations
Our study has several limitations. We did not use fine-tuned
models or custom vocabularies, which might improve the
performance (eg, missing condition-specific treatments and
therapies). In addition, we do not implement and evaluate
negation. We are unable to compare the feasibility of our
pipeline against other NLP models. This is, in part, due to the
lack of comparable and available pipelines and tasks to those
presented in this study. However, future work is suggested to
compare our pipeline against other PLMs as well as performance
comparison against a model fine-tuned on general PGHD and
clinical notes. These additional approaches may inform how
our pipeline can be improved in the future to improve task
completion or generalizability.

Our evaluation process was toward feasibility, rather than only
performance assessment. In that regard, we used a nonstandard
evaluation process as we annotated the examples coming after
we ran the pipeline over these examples. As it was necessary
to capture the false positives that the pipeline extracted, certain
extracted values were considered partially valid only after the
model was seen to have captured them, such as moods being
considered symptoms. In these cases, the capture of such entities
was not considered a false positive, while omittance was not
necessarily considered a false negative. Additionally, for
medication and dosage entities, it was unlikely for bias to be
introduced due to the definite nature of these values (eg, if
“Tylenol” is referenced, it is clearly a medication that should
be captured).
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Due to the limited text-based entries against voice entries, we
were not able to measure the discrepancy of the model
performance of extracting entities from written notes versus
voice transcriptions.

Technical Contribution
The first key contribution is the use of pretrained language and
deep learning models and the extraction of information using
syntax parsing and entity-to-ontology linking in the proposed
methodology. To our knowledge, these individual components
have yet to be combined into a clinical information extraction
pipeline. Second, we focus on PGHD for chronic conditions
which has been understudied, and, to our knowledge, no
examples exist in the literature regarding the use of a
text-processing pipeline with the real-world PGHD from this
specific population (CSHCN). While previous studies explore
similar NLP pipelines with NER, only a few studies use the
automatic dependency parser for further relation and entity
extraction [47], layer multiple rounds of dependency parsing
to extract general relationships from within scientific literature
[49], and use dependency parsing to identify SNOMED CT
expressions form clinical notes and [48]. These studies show
the promise of using syntactic dependency trees to improve
generalizability but do not fit the unstructured format of PGHD
and are not focused on extracting values related to chronic care,
such as medications and dosages.

To accomplish the task of extracting key care-related
information from PGHD (medications and symptoms), we
created a pipeline that applies dependency parsing to key terms

and relationships for chronic care management. Instead of
expanding generalizability through training of a deep learning
model, which can often be costly in time and labor, the pipeline
can be improved and expanded with a system to allow for user
input to inform NER and dependency-based relation extraction
systems. This inclusivity of users (eg, clinician, patient, or
caregiver) allows for flexibility of modification of our system
depending on patient condition or clinical needs [19].
Furthermore, by using publicly available ontologies and models,
the proposed pipeline can be replicated, customized, and
improved for different cohorts with chronic conditions.

Future Work
Future work will focus on building and fine-tuning
condition-specific models, ontologies, and vocabularies,
prototyping PGHD integration to clinical workflow, and
improving clinical decision support mechanisms through
PGHD-informed visuals.

In addition, we plan to analyze voice and audio characteristics
and extract-related features (such as pause rates, pitch, loudness,
acoustic and spectral features, and multiple speakers, such as
parent and child) [51,52]. Voice analytics will add a new
dimension to PGHD analytics by investigating vocal and
environmental audio features (markers) with patient notes and
building a multimodal pipeline, such as improving transcription
quality, improving sentiment analysis, identifying the
environmental factors [53,54], and guiding future data collection
protocols. Textbox 2 provides a glimpse at the data for the
proposed future work with voice analytics.

Textbox 2. Augmenting patient-generated health data with voice analytics pipeline in addition to natural language processing pipeline.

Our study reveals that the voice data have been created in different environments (eg, alone in a silent room, while driving, or in a room with children).
This affects the quality of transcriptions and, hence, NLP performance. We plan to transform and analyze audio or voice data with melspectrograms
that can help decompose complex features or magnitude of signals of the voice and help extract features efficiently [51]. Eventually, we plan to use
convolutional neural network models to extract features and classify them [53]. Figure 2 provides melspectrograms of nine participants’ voice
recordings.
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Figure 2. Melspectrogram of participants’voices. Librosa library was used via Anaconda Spyder (Python 3.10; n_fft=2048, hop_length=512, n_mels=128;
audio bitrate at 24 kbps and 20 Hz to 20 kHz frequency range). The top row is from 3 different participants with 6 seconds of recording, the middle row
is from 3 different participants with 28 seconds of recording, and the bottom row is from 3 different participants with 60 seconds of recording. The first,
third, and sixth melspectograms have higher noise or children sound in the background.

Conclusion
We present the feasibility of an NLP pipeline with real-world
data in a low-resource setting, focusing on medication and
symptom information extraction. Unstructured PGHD can
inform decision-making and support remote monitoring and

self-care. With customizable information extraction methods
using NER and medical ontologies, NLP models can feasibly
extract a broad range of clinical information from unstructured
PGHD in low-resource settings. We suggest future work to
build medical condition-specific models, test the integration to
clinical workflow, and use audio features in the analysis.

Acknowledgments
This study was supported by Award Number UL1TR002733 from the National Center for Advancing Translational Sciences.
The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center
for Advancing Translational Sciences or the National Institutes of Health.

Data Availability
Because the data sets analyzed during the current study contain personally identifiable information and sensitive health information,
they are not publicly available. Research consent did not include making the data available publicly.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Medication and symptom names captured.
[DOCX File , 10 KB-Multimedia Appendix 1]

References

1. What are patient-generated health data? HealthIT. URL: https://www.healthit.gov/topic/otherhot-topics/
what-are-patient-generated-health-data [accessed 2022-07-22]

JMIR Form Res 2023 | vol. 7 | e43014 | p. 7https://formative.jmir.org/2023/1/e43014
(page number not for citation purposes)

Sezgin et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=formative_v7i1e43014_app1.docx&filename=b5b6c4929612a435fcdd0fde602804b9.docx
https://jmir.org/api/download?alt_name=formative_v7i1e43014_app1.docx&filename=b5b6c4929612a435fcdd0fde602804b9.docx
https://www.healthit.gov/topic/otherhot-topics/what-are-patient-generated-health-data
https://www.healthit.gov/topic/otherhot-topics/what-are-patient-generated-health-data
http://www.w3.org/Style/XSL
http://www.renderx.com/


2. Nittas V, Lun P, Ehrler F, Puhan MA, Mütsch M. Electronic patient-generated health data to facilitate disease prevention
and health promotion: scoping review. J Med Internet Res 2019;21(10):e13320. [doi: 10.2196/13320] [Medline: 31613225]

3. Tiase VL, Hull W, McFarland MM, Sward KA, Del Fiol G, Staes C, et al. Patient-generated health data and electronic
health record integration: a scoping review. JAMIA Open 2020;3(4):619-627 [FREE Full text] [doi:
10.1093/jamiaopen/ooaa052] [Medline: 33758798]

4. Jim HSL, Hoogland AI, Brownstein NC, Barata A, Dicker AP, Knoop H, et al. Innovations in research and clinical care
using patient-generated health data. CA Cancer J Clin 2020;70(3):182-199 [FREE Full text] [doi: 10.3322/caac.21608]
[Medline: 32311776]

5. Marwaha JS, Landman AB, Brat GA, Dunn T, Gordon WJ. Deploying digital health tools within large, complex health
systems: key considerations for adoption and implementation. NPJ Digit Med 2022;5(1):13 [FREE Full text] [doi:
10.1038/s41746-022-00557-1] [Medline: 35087160]

6. Cercato MC, Vari S, Maggi G, Faltyn W, Onesti CE, Baldi J, et al. Narrative medicine: a digital diary in the management
of bone and soft tissue sarcoma patients. Preliminary results of a multidisciplinary pilot study. J Clin Med 2022;11(2):406
[FREE Full text] [doi: 10.3390/jcm11020406] [Medline: 35054100]

7. van Buchem MM, Boosman H, Bauer MP, Kant IMJ, Cammel SA, Steyerberg EW. The digital scribe in clinical practice:
a scoping review and research agenda. NPJ Digit Med 2021;4(1):57 [FREE Full text] [doi: 10.1038/s41746-021-00432-5]
[Medline: 33772070]

8. Coiera E, Kocaballi B, Halamka J, Laranjo L. The digital scribe. NPJ Digit Med 2018;1:58 [FREE Full text] [doi:
10.1038/s41746-018-0066-9] [Medline: 31304337]

9. Bin Sawad A, Narayan B, Alnefaie A, Maqbool A, Mckie I, Smith J, et al. A systematic review on healthcare artificial
intelligent conversational agents for chronic conditions. Sensors (Basel) 2022;22(7):2625 [FREE Full text] [doi:
10.3390/s22072625] [Medline: 35408238]

10. Haggstrom DA, Carr T. Uses of personal health records for communication among colorectal cancer survivors, caregivers,
and providers: interview and observational study in a human-computer interaction laboratory. JMIR Hum Factors
2022;9(1):e16447 [FREE Full text] [doi: 10.2196/16447] [Medline: 35076406]

11. Walker J, Leveille S, Kriegel G, Lin CT, Liu SK, Payne TH, et al. Patients contributing to visit notes: mixed methods
evaluation of ournotes. J Med Internet Res 2021;23(11):e29951 [FREE Full text] [doi: 10.2196/29951] [Medline: 34747710]

12. Sezgin E, Noritz G, Lin S, Huang Y. Feasibility of a voice-enabled medical diary app (SpeakHealth) for caregivers of
children with special health care needs and health care providers: mixed methods study. JMIR Form Res 2021;5(5):e25503
[FREE Full text] [doi: 10.2196/25503] [Medline: 33865233]

13. Seinen TM, Fridgeirsson EA, Ioannou S, Jeannetot D, John LH, Kors JA, et al. Use of unstructured text in prognostic
clinical prediction models: a systematic review. J Am Med Inform Assoc 2022;29(7):1292-1302 [FREE Full text] [doi:
10.1093/jamia/ocac058] [Medline: 35475536]

14. Gaudet-Blavignac C, Foufi V, Bjelogrlic M, Lovis C. Use of the systematized nomenclature of medicine clinical terms
(SNOMED CT) for processing free text in health care: systematic scoping review. J Med Internet Res 2021;23(1):e24594
[FREE Full text] [doi: 10.2196/24594] [Medline: 33496673]

15. Dreisbach C, Koleck TA, Bourne PE, Bakken S. A systematic review of natural language processing and text mining of
symptoms from electronic patient-authored text data. Int J Med Inform 2019;125:37-46 [FREE Full text] [doi:
10.1016/j.ijmedinf.2019.02.008] [Medline: 30914179]

16. Wei Q, Ji Z, Li Z, Du J, Wang J, Xu J, et al. A study of deep learning approaches for medication and adverse drug event
extraction from clinical text. J Am Med Inform Assoc 2020;27(1):13-21 [FREE Full text] [doi: 10.1093/jamia/ocz063]
[Medline: 31135882]

17. Li X, Cui M, Li J, Bai R, Lu Z, Aickelin U. A hybrid medical text classification framework: integrating attentive rule
construction and neural network. Neurocomputing 2021 Jul;443:345-355. [doi: 10.1016/j.neucom.2021.02.069]

18. Cronin RM, Fabbri D, Denny JC, Rosenbloom ST, Jackson GP. A comparison of rule-based and machine learning approaches
for classifying patient portal messages. Int J Med Inform 2017;105:110-120 [FREE Full text] [doi:
10.1016/j.ijmedinf.2017.06.004] [Medline: 28750904]

19. Hussain SA, Sezgin E, Krivchenia K, Luna J, Rust S, Huang Y. A natural language processing pipeline to synthesize
patient-generated notes toward improving remote care and chronic disease management: a cystic fibrosis case study. JAMIA
Open 2021;4(3):ooab084 [FREE Full text] [doi: 10.1093/jamiaopen/ooab084] [Medline: 34604710]

20. Nelson SJ, Zeng K, Kilbourne J, Powell T, Moore R. Normalized names for clinical drugs: RxNorm at 6 years. J Am Med
Inform Assoc 2011;18(4):441-448 [FREE Full text] [doi: 10.1136/amiajnl-2011-000116] [Medline: 21515544]

21. Sezgin E, Oiler B, Abbott B, Noritz G, Huang Y. "Hey Siri, help me take care of my child": a feasibility study with caregivers
of children with special healthcare needs using voice interaction and automatic speech recognition in remote care management.
Front Public Health 2022;10:849322 [FREE Full text] [doi: 10.3389/fpubh.2022.849322] [Medline: 35309210]

22. Amazon Web Services (AWS). URL: https://aws.amazon.com/products/ [accessed 2023-02-10]
23. dateparser 1.1.7. PyPl. URL: https://pypi.org/project/dateparser/ [accessed 2022-08-27]
24. scispacy. GitHub. URL: https://allenai.github.io/scispacy/ [accessed 2022-08-27]

JMIR Form Res 2023 | vol. 7 | e43014 | p. 8https://formative.jmir.org/2023/1/e43014
(page number not for citation purposes)

Sezgin et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/13320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31613225&dopt=Abstract
https://europepmc.org/abstract/MED/33758798
http://dx.doi.org/10.1093/jamiaopen/ooaa052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33758798&dopt=Abstract
https://europepmc.org/abstract/MED/32311776
http://dx.doi.org/10.3322/caac.21608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32311776&dopt=Abstract
https://doi.org/10.1038/s41746-022-00557-1
http://dx.doi.org/10.1038/s41746-022-00557-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35087160&dopt=Abstract
https://www.mdpi.com/resolver?pii=jcm11020406
http://dx.doi.org/10.3390/jcm11020406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35054100&dopt=Abstract
https://doi.org/10.1038/s41746-021-00432-5
http://dx.doi.org/10.1038/s41746-021-00432-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33772070&dopt=Abstract
https://doi.org/10.1038/s41746-018-0066-9
http://dx.doi.org/10.1038/s41746-018-0066-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304337&dopt=Abstract
https://www.mdpi.com/resolver?pii=s22072625
http://dx.doi.org/10.3390/s22072625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35408238&dopt=Abstract
https://humanfactors.jmir.org/2022/1/e16447/
http://dx.doi.org/10.2196/16447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35076406&dopt=Abstract
https://www.jmir.org/2021/11/e29951/
http://dx.doi.org/10.2196/29951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34747710&dopt=Abstract
https://formative.jmir.org/2021/5/e25503/
http://dx.doi.org/10.2196/25503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33865233&dopt=Abstract
https://europepmc.org/abstract/MED/35475536
http://dx.doi.org/10.1093/jamia/ocac058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35475536&dopt=Abstract
https://www.jmir.org/2021/1/e24594/
http://dx.doi.org/10.2196/24594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33496673&dopt=Abstract
https://europepmc.org/abstract/MED/30914179
http://dx.doi.org/10.1016/j.ijmedinf.2019.02.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30914179&dopt=Abstract
https://europepmc.org/abstract/MED/31135882
http://dx.doi.org/10.1093/jamia/ocz063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31135882&dopt=Abstract
http://dx.doi.org/10.1016/j.neucom.2021.02.069
https://europepmc.org/abstract/MED/28750904
http://dx.doi.org/10.1016/j.ijmedinf.2017.06.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28750904&dopt=Abstract
https://europepmc.org/abstract/MED/34604710
http://dx.doi.org/10.1093/jamiaopen/ooab084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34604710&dopt=Abstract
https://europepmc.org/abstract/MED/21515544
http://dx.doi.org/10.1136/amiajnl-2011-000116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21515544&dopt=Abstract
https://europepmc.org/abstract/MED/35309210
http://dx.doi.org/10.3389/fpubh.2022.849322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35309210&dopt=Abstract
https://aws.amazon.com/products/
https://pypi.org/project/dateparser/
https://allenai.github.io/scispacy/
http://www.w3.org/Style/XSL
http://www.renderx.com/


25. Neumann M, King D, Beltagy I, Ammar W. ScispaCy: fast and robust models for biomedical natural language processing.
2019 Presented at: The 18th BioNLP Workshop and Shared Task; August 2019; Florence, Italy. [doi: 10.18653/v1/w19-5034]

26. Honnibal M, Montani I. SpaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks
and incremental parsing. SpaCy. 2017. URL: https://spacy.io/ [accessed 2023-02-12]

27. Wang W, Zheng VW, Yu H, Miao C. A survey of zero-shot learning. ACM Trans Intell Syst Technol 2019 Jan 16;10(2):1-37.
[doi: 10.1145/3293318]

28. Papanikolaou Y, Staib M, Grace J, Bennett F. Slot filling for biomedical information extraction. ArXiv. Preprint posted
online on September 17, 2021 [FREE Full text] [doi: 10.18653/v1/2022.bionlp-1.7]

29. Liao J, Eskimez SE, Lu L, Shi Y, Gong M, Shou L, et al. Improving readability for automatic speech recognition transcription.
arXiv. Preprint posted online on April 9, 2020 [FREE Full text]

30. Khattak FK, Jeblee S, Pou-Prom C, Abdalla M, Meaney C, Rudzicz F. A survey of word embeddings for clinical text. J
Biomed Inform 2019;100S:100057 [FREE Full text] [doi: 10.1016/j.yjbinx.2019.100057] [Medline: 34384583]

31. Sirrianni J, Sezgin E, Claman D, Linwood SL. Medical text prediction and suggestion using generative pretrained transformer
models with dental medical notes. Methods Inf Med 2022;61(5-06):195-200. [doi: 10.1055/a-1900-7351] [Medline:
35835447]

32. Juhn Y, Liu H. Artificial intelligence approaches using natural language processing to advance EHR-based clinical research.
J Allergy Clin Immunol 2020;145(2):463-469 [FREE Full text] [doi: 10.1016/j.jaci.2019.12.897] [Medline: 31883846]

33. Iqbal FM, Lam K, Joshi M, Khan S, Ashrafian H, Darzi A. Clinical outcomes of digital sensor alerting systems in remote
monitoring: a systematic review and meta-analysis. NPJ Digit Med 2021;4(1):7 [FREE Full text] [doi:
10.1038/s41746-020-00378-0] [Medline: 33420338]

34. Celi LA, Marshall JD, Lai Y, Stone DJ. Disrupting electronic health records systems: the next generation. JMIR Med Inform
2015;3(4):e34 [FREE Full text] [doi: 10.2196/medinform.4192] [Medline: 26500106]

35. Ranade-Kharkar P, Weir C, Norlin C, Collins SA, Scarton LA, Baker GB, et al. Information needs of physicians, care
coordinators, and families to support care coordination of children and youth with special health care needs (CYSHCN). J
Am Med Inform Assoc 2017;24(5):933-941 [FREE Full text] [doi: 10.1093/jamia/ocx023] [Medline: 28371887]

36. Sezgin E, Noritz G, Elek A, Conkol K, Rust S, Bailey M, et al. Capturing at-home health and care information for children
with medical complexity using voice interactive technologies: multi-stakeholder viewpoint. J Med Internet Res
2020;22(2):e14202 [FREE Full text] [doi: 10.2196/14202] [Medline: 32053114]

37. Richardson PA, Harrison LE, Heathcote LC, Rush G, Shear D, Lalloo C, et al. mHealth for pediatric chronic pain: state of
the art and future directions. Expert Rev Neurother 2020;20(11):1177-1187 [FREE Full text] [doi:
10.1080/14737175.2020.1819792] [Medline: 32881587]

38. Jacob C, Sezgin E, Sanchez-Vazquez A, Ivory C. Sociotechnical factors affecting patients' adoption of mobile health tools:
systematic literature review and narrative synthesis. JMIR Mhealth Uhealth 2022;10(5):e36284 [FREE Full text] [doi:
10.2196/36284] [Medline: 35318189]

39. Coughlin SS, Prochaska JJ, Williams LB, Besenyi GM, Heboyan V, Goggans DS, et al. Patient web portals, disease
management, and primary prevention. Risk Manag Healthc Policy 2017;10:33-40 [FREE Full text] [doi:
10.2147/RMHP.S130431] [Medline: 28435342]

40. Debon R, Coleone JD, Bellei EA, De Marchi ACB. Mobile health applications for chronic diseases: a systematic review
of features for lifestyle improvement. Diabetes Metab Syndr 2019;13(4):2507-2512. [doi: 10.1016/j.dsx.2019.07.016]
[Medline: 31405669]

41. Marcolino MS, Oliveira JAQ, D'Agostino M, Ribeiro AL, Alkmim MBM, Novillo-Ortiz D. The impact of mHealth
interventions: systematic review of systematic reviews. JMIR Mhealth Uhealth 2018;6(1):e23 [FREE Full text] [doi:
10.2196/mhealth.8873] [Medline: 29343463]

42. Baysari MT, Westbrook JI. Mobile applications for patient-centered care coordination: a review of human factors methods
applied to their design, development, and evaluation. Yearb Med Inform 2015;10(1):47-54 [FREE Full text] [doi:
10.15265/IY-2015-011] [Medline: 26293851]

43. Gentles SJ, Lokker C, McKibbon KA. Health information technology to facilitate communication involving health care
providers, caregivers, and pediatric patients: a scoping review. J Med Internet Res 2010;12(2):e22 [FREE Full text] [doi:
10.2196/jmir.1390] [Medline: 20562092]

44. Hartasanchez SA, Heen AF, Kunneman M, García-Bautista A, Hargraves IG, Prokop LJ, et al. Remote shared decision
making through telemedicine: a systematic review of the literature. Patient Educ Couns 2022;105(2):356-365. [doi:
10.1016/j.pec.2021.06.012] [Medline: 34147314]

45. Militello L, Sezgin E, Huang Y, Lin S. Delivering delivering perinatal health information via a voice interactive app
(SMILE): mixed methods feasibility study. JMIR Form Res 2021;5(3):e18240 [FREE Full text] [doi: 10.2196/18240]
[Medline: 33646136]

46. Noh J, Kavuluru R. Joint learning for biomedical NER and entity normalization: encoding schemes, counterfactual examples,
and zero-shot evaluation. ACM BCB 2021;2021:55 [FREE Full text] [doi: 10.1145/3459930.3469533] [Medline: 34505115]

JMIR Form Res 2023 | vol. 7 | e43014 | p. 9https://formative.jmir.org/2023/1/e43014
(page number not for citation purposes)

Sezgin et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.18653/v1/w19-5034
https://spacy.io/
http://dx.doi.org/10.1145/3293318
http://arxiv.org/abs/2109.08564
http://dx.doi.org/10.18653/v1/2022.bionlp-1.7
http://arxiv.org/abs/2004.04438
https://linkinghub.elsevier.com/retrieve/pii/S2590-177X(19)30056-3
http://dx.doi.org/10.1016/j.yjbinx.2019.100057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34384583&dopt=Abstract
http://dx.doi.org/10.1055/a-1900-7351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35835447&dopt=Abstract
https://europepmc.org/abstract/MED/31883846
http://dx.doi.org/10.1016/j.jaci.2019.12.897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31883846&dopt=Abstract
https://doi.org/10.1038/s41746-020-00378-0
http://dx.doi.org/10.1038/s41746-020-00378-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33420338&dopt=Abstract
https://medinform.jmir.org/2015/4/e34/
http://dx.doi.org/10.2196/medinform.4192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26500106&dopt=Abstract
https://europepmc.org/abstract/MED/28371887
http://dx.doi.org/10.1093/jamia/ocx023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28371887&dopt=Abstract
https://www.jmir.org/2020/2/e14202/
http://dx.doi.org/10.2196/14202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32053114&dopt=Abstract
https://europepmc.org/abstract/MED/32881587
http://dx.doi.org/10.1080/14737175.2020.1819792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32881587&dopt=Abstract
https://mhealth.jmir.org/2022/5/e36284/
http://dx.doi.org/10.2196/36284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35318189&dopt=Abstract
https://europepmc.org/abstract/MED/28435342
http://dx.doi.org/10.2147/RMHP.S130431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28435342&dopt=Abstract
http://dx.doi.org/10.1016/j.dsx.2019.07.016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31405669&dopt=Abstract
https://mhealth.jmir.org/2018/1/e23/
http://dx.doi.org/10.2196/mhealth.8873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29343463&dopt=Abstract
http://www.thieme-connect.com/DOI/DOI?10.15265/IY-2015-011
http://dx.doi.org/10.15265/IY-2015-011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26293851&dopt=Abstract
https://www.jmir.org/2010/2/e22/
http://dx.doi.org/10.2196/jmir.1390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20562092&dopt=Abstract
http://dx.doi.org/10.1016/j.pec.2021.06.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34147314&dopt=Abstract
https://formative.jmir.org/2021/3/e18240/
http://dx.doi.org/10.2196/18240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33646136&dopt=Abstract
https://europepmc.org/abstract/MED/34505115
http://dx.doi.org/10.1145/3459930.3469533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34505115&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


47. Kuebler J, Tong L, Jiang M. Multi-round parsing-based multiword rules for scientific knowledge extraction. 2021 Presented
at: 2021 IEEE International Conference on Big Knowledge; December 7-8, 2021; Auckland, New Zealand. [doi:
10.1109/ickg52313.2021.00051]

48. Liu X, Tan J, Fan J, Tan K, Hu J, Dong S. A Syntax-enhanced model based on category keywords for biomedical relation
extraction. J Biomed Inform 2022;132:104135. [doi: 10.1016/j.jbi.2022.104135] [Medline: 35842217]

49. Peterson KJ, Liu H. Automating the transformation of free-text clinical problems into SNOMED CT expressions. AMIA
Jt Summits Transl Sci Proc 2020;2020:497-506 [FREE Full text] [Medline: 32477671]

50. Wu X, Xiao L, Sun Y, Zhang J, Ma T, He L. A survey of human-in-the-loop for machine learning. Future Gener Comput
Syst 2022 Oct;135:364-381. [doi: 10.1016/j.future.2022.05.014]

51. Kumar A, Jaquenoud T, Becker JH, Cho D, Mindt MR, Federman A, et al. Can you hear me now? Clinical applications of
audio recordings. medRxiv. Preprint posted online on February 8, 2022. [doi: 10.1101/2022.02.07.22270598]

52. Zhang L, Chen X, Vakil A, Byott A, Ghomi R. DigiVoice: voice biomarker featurization and analysis pipeline. arXiv.
Preprint posted online on June 17, 2019 [FREE Full text]

53. Purwins H, Li B, Virtanen T, Schlüter J, Chang S, Sainath T. Deep learning for audio signal processing. arXiv. Preprint
posted online on May 25, 2019 [FREE Full text] [doi: 10.1109/jstsp.2019.2908700]

54. García-Ordás MT, Alaiz-Moretón H, Benítez-Andrades JA, García-Rodríguez I, García-Olalla O, Benavides C. Sentiment
analysis in non-fixed length audios using a Fully Convolutional Neural Network. Biomed Signal Process Control 2021
Aug;69:102946. [doi: 10.1016/j.bspc.2021.102946]

Abbreviations
CSHCN: children with special health care needs
NER: named entity recognition
NLP: natural language processing
PGHD: patient-generated health data
PLM: pretrained language model
SNOMED CT: Systematized Nomenclature of Medicine Clinical Terms

Edited by A Mavragani; submitted 27.09.22; peer-reviewed by J Kim, D Whitehead; comments to author 09.12.22; revised version
received 24.01.23; accepted 30.01.23; published 07.03.23

Please cite as:
Sezgin E, Hussain SA, Rust S, Huang Y
Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing
Methods: Feasibility Study With Real-world Data
JMIR Form Res 2023;7:e43014
URL: https://formative.jmir.org/2023/1/e43014
doi: 10.2196/43014
PMID:

©Emre Sezgin, Syed-Amad Hussain, Steve Rust, Yungui Huang. Originally published in JMIR Formative Research
(https://formative.jmir.org), 07.03.2023. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete
bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license
information must be included.

JMIR Form Res 2023 | vol. 7 | e43014 | p. 10https://formative.jmir.org/2023/1/e43014
(page number not for citation purposes)

Sezgin et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1109/ickg52313.2021.00051
http://dx.doi.org/10.1016/j.jbi.2022.104135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35842217&dopt=Abstract
https://europepmc.org/abstract/MED/32477671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32477671&dopt=Abstract
http://dx.doi.org/10.1016/j.future.2022.05.014
http://dx.doi.org/10.1101/2022.02.07.22270598
https://www.semanticscholar.org/paper/02f242a04c683ca0fbd7adfaf098812fe4e513fc
http://arxiv.org/abs/1905.00078
http://dx.doi.org/10.1109/jstsp.2019.2908700
http://dx.doi.org/10.1016/j.bspc.2021.102946
https://formative.jmir.org/2023/1/e43014
http://dx.doi.org/10.2196/43014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

