
Original Paper

Predicting Measles Outbreaks in the United States: Evaluation of
Machine Learning Approaches

Boshu Ru1, PhD; Stephanie Kujawski2, PhD; Nelson Lee Afanador2, PhD; Richard Baumgartner2, PhD; Manjiri

Pawaskar2, PhD; Amar Das2, MD, PhD
1Merck & Co, Inc, West Point, PA, United States
2Merck & Co, Inc, Rahway, NJ, United States

Corresponding Author:
Boshu Ru, PhD
Merck & Co, Inc
770 Sumneytown Pike
Main Stop: WP37A
West Point, PA, 19486
United States
Phone: 1 2156524301
Email: boshu.ru@merck.com

Abstract

Background: Measles, a highly contagious viral infection, is resurging in the United States, driven by international importation
and declining domestic vaccination coverage. Despite this resurgence, measles outbreaks are still rare events that are difficult to
predict. Improved methods to predict outbreaks at the county level would facilitate the optimal allocation of public health resources.

Objective: We aimed to validate and compare extreme gradient boosting (XGBoost) and logistic regression, 2 supervised
learning approaches, to predict the US counties most likely to experience measles cases. We also aimed to assess the performance
of hybrid versions of these models that incorporated additional predictors generated by 2 clustering algorithms, hierarchical
density-based spatial clustering of applications with noise (HDBSCAN) and unsupervised random forest (uRF).

Methods: We constructed a supervised machine learning model based on XGBoost and unsupervised models based on HDBSCAN
and uRF. The unsupervised models were used to investigate clustering patterns among counties with measles outbreaks; these
clustering data were also incorporated into hybrid XGBoost models as additional input variables. The machine learning models
were then compared to logistic regression models with and without input from the unsupervised models.

Results: Both HDBSCAN and uRF identified clusters that included a high percentage of counties with measles outbreaks.
XGBoost and XGBoost hybrid models outperformed logistic regression and logistic regression hybrid models, with the area
under the receiver operating curve values of 0.920-0.926 versus 0.900-0.908, the area under the precision-recall curve values of
0.522-0.532 versus 0.485-0.513, and F2 scores of 0.595-0.601 versus 0.385-0.426. Logistic regression or logistic regression hybrid
models had higher sensitivity than XGBoost or XGBoost hybrid models (0.837-0.857 vs 0.704-0.735) but a lower positive
predictive value (0.122-0.141 vs 0.340-0.367) and specificity (0.793-0.821 vs 0.952-0.958). The hybrid versions of the logistic
regression and XGBoost models had slightly higher areas under the precision-recall curve, specificity, and positive predictive
values than the respective models that did not include any unsupervised features.

Conclusions: XGBoost provided more accurate predictions of measles cases at the county level compared with logistic regression.
The threshold of prediction in this model can be adjusted to align with each county’s resources, priorities, and risk for measles.
While clustering pattern data from unsupervised machine learning approaches improved some aspects of model performance in
this imbalanced data set, the optimal approach for the integration of such approaches with supervised machine learning models
requires further investigation.
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Introduction

Measles is a highly contagious viral infection that can cause
serious acute illness, complications including pneumonia and
encephalitis, and death [1]. A population immunity of ~95% by
5 years of age is required to disrupt transmission [2]. A
vaccination program initiated in the 1960s led to the formal
elimination of measles in the United States in 2000 [3].
However, measles has recently resurged in the United States,
with notable peaks occurring in 2014 (n=667 cases), 2018
(n=375), and 2019 (n=1282) [4-8].

Despite this resurgence, measles outbreaks are still rare events
that are difficult to predict. Known correlates of measles
exposure and transmission include international importations,
high population density, and low vaccination coverage [9-13].
These factors vary substantially between and within states and
can be used to help predict the likelihood and impact of measles
outbreaks [9-12,14-16]. However, few prior studies have used
quantitative approaches to estimate the risk of measles outbreaks
at the county level. One recent model used a multiplicative risk
function of 4 factors—measles, mumps, and rubella vaccination
coverage; county population; the volume of international air
travel; and the incidence of measles at the origin points of
incoming international flights—to predict 20 high-risk counties,
of which 17 had at least 1 measles case in 2019, accounting for
~55% of 2019 measles cases [9]. However, the model used only
4 predictors and was not validated using outbreak data from
other years, meaning that its accuracy was not independently
assessed. Measles prediction models could be further improved
by incorporating additional county-level predictors of measles
outbreak risk. For example, socioeconomic and demographic
variables such as race or ethnicity, education, income,
urbanicity, and health insurance coverage have been shown to
correlate with measles vaccination coverage, while factors such
as household composition may affect measles transmission rates
[17-19].

The identification and modeling of additional measles risk
predictors may require unbiased algorithmic approaches [20,21].
However, traditional statistical approaches, such as logistic
regression, may be limited by incorrect assumptions about
linearly independent predictor variables (ie, the predictors for
neighboring counties may not be independent but rather
multicollinear) and the low incidence of measles in the United
States, which creates a data imbalance where the outcome of
interest is a very rare event.

Machine learning (ML) methods provide several potential
solutions to the above limitations. Decision tree–based ML
approaches such as the extreme gradient boosting (XGBoost)
classification model are inherently neutral to multicollinearity;
the training process chooses the most informative predictor at
any given decision or prediction split point, rather than using
all provided predictors as in logistic regression. Many ML
algorithms also permit adjustments to the balance between
majority and minority class instances in the training data set;
this regularization of the model, also referred to as cost-sensitive
training, allows the classification models to learn more
information from rare observations and avoid overfitting on the
majority negative class [22].

Hybrid ML approaches that combine complementary models
have been reported to have higher accuracy or a better
interpretation of results than standalone models [23-25].
Combining supervised models such as XGBoost and logistic
regression with unsupervised learning may help to overcome
the challenges of predicting measles cases, based on the
assumption that unsupervised learning processes will extract
patterns from data that can be used as a new set of features that
are less prone to biases introduced by multicollinearity and
imbalanced data [26].

The objective of this study is to validate and compare XGBoost
and logistic regression, 2 supervised learning approaches that
are commonly used on tabular data, to predict the US counties
most likely to experience measles cases. We compared these
models with hybrid ML approaches that extended the XGBoost
and logistic regression models to include additional predictors
generated by 2 clustering algorithms, hierarchical density-based
spatial clustering of applications with noise (HDBSCAN) and
unsupervised random forest (uRF).

Methods

Design
We used supervised (XGBoost and logistic regression) and
unsupervised (HDBSCAN and uRF) ML analyses, as well as
hybrid approaches that combined XGBoost and logistic
regression with HDBSCAN, uRF, or both (Figure 1). All
supervised and hybrid models were trained on input predictor
variable data from 2014 to 2018 (training data set), with the
cost-sensitive training option enabled. Predictor and outcome
data from 2019 (testing data set) were used to evaluate all
models.
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Figure 1. Study overview. HDBSCAN: hierarchical density-based spatial clustering of applications with noise; LR: logistic regression; PCoA: principal
coordinate analysis; uRF: unsupervised random forest; XGBoost: extreme gradient boosting.

Data
The outcome of interest was the occurrence of ≥1 measles case
at the county level. We performed a targeted search of published
literature, state and local health department websites, and news
articles to identify measles cases. We were able to identify
information for 2895 counties in 2014, 2850 counties in 2018,
and 2951 counties in 2019 and validate the county-level counts
against published state-level counts [27]. Each county-year pair
was considered 1 data point. Counties for which we could not
validate measles case counts for each year were removed from
the data set.

Variables relating to known and hypothesized predictors of
measles outbreaks, based on the literature [9-12,14-16], were
obtained from publicly available data sources at the county level
(Multimedia Appendix 1) [28-42]. State- or metropolitan
statistical area–level data were used as a proxy when
county-level data were unavailable. Data were extracted from
1 year before the outcome year when possible, or else the closest
possible prior year. Variables included sociodemographic data,
population statistics, measles vaccination and exemption
policies, health care access, and international air travel volume
and origin countries (Multimedia Appendix 1).

We aggregated international air travel volume for each county
and measles outbreak incidence at the origin of travel into a
single score measuring the risk of exposure to measles via
international air travel. The identification of trips from measles
outbreak countries was based on the initial origin and final
destination of travel using the same ticket [28]. The exposure
scale was modeled using spatial diffusion, whereby international
air travel passenger volumes to all US airports were
proportionally distributed by population size to the county where
the airport was located, the nearest neighbor counties, and the

next-nearest neighbor counties, weighted by measles incidence
at the travel origin and the county population [9].

The main models were run using all predictor variables, with a
sensitivity analysis to account for multicollinearity.
Multicollinearity between predictors was detected by the
variance inflation factor and correlation matrices [43]. We
hypothesized that eliminating predictor variables that were
highly correlated would improve model performance and thus
removed 10 predictor variables that were highly correlated to
create a reduced version of the data set. The full list with
summary statistics for each year and footnotes indicating
variables removed in the reduced version is provided in
Multimedia Appendix 2.

Ethical Considerations
With the exception of the air travel data, all data were extracted
from publicly available published literature, state and local
health department websites, and news articles. All data were
aggregated and deidentified, and, therefore, this study was
exempt from institutional review board approval.

Models
XGBoost is a gradient-boosting decision tree algorithm that is
commonly used for classification and regression problems. The
algorithm iteratively fits relatively simple models (typically
small decision trees) to weighted versions of the training data.
At each iteration, higher weights are assigned to data points that
were misclassified by the model in the previous iteration; these
are more likely to be from the minority class. Correctly
predicting the minority class is thus rewarded more at each
iteration. We magnified the weights assigned to data points in
each iteration by the number of measles cases in the county +
1. This enabled the iterative training process to focus more on
reducing classification errors for data points with more measles
cases.
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In standard logistic regression, classifying an event as a false
positive (FP) or false negative (FN) carries the same penalty in
the model. To address the challenge of imbalanced data, in
which one of the dependent values occurs infrequently, we
developed a weighted logistic regression approach that penalized
the model more for an FN result. The weights were based on a
cost-sensitive measure derived from the ratio between counties
in the training data set with and without measles cases.

HDBSCAN is a density-based clustering algorithm that
automatically optimizes cluster numbers and has the ability to
work with noisy data [44,45]. We built an HDBSCAN model
that maps each county-year observation into clusters using all
predictor variables. HDBSCAN is a density-based clustering
algorithm that automatically optimizes cluster numbers and has
the ability to work with noisy data [44, 45]. We built an
HDBSCAN model that maps each county-year observation into
clusters using all predictor variables. A score measuring the
algorithm’s confidence in assigning each observation to a cluster
was also calculated. To investigate whether clustering results
were informative for predicting measles cases, we compared
the percentage of county-year pairs reporting measles outbreaks
across the clusters. UMAP software was used to visualize
clusters in multi-dimension space into two-dimension surface
[46].

uRF combines many weak learners (individual decision trees)
as a vehicle for variance and bias reduction [47,48]. Methods
such as multidimensional scaling combined with hierarchical
clustering are used to create a lower-dimensional representation
of the observations. In this study, we fitted an uRF model to
obtain the proximity matrix for each county-year’s predictor
variable data in the training data set and then applied the model
to project proximity matrices for the testing data set. Each
county-year observation was then represented in 3 principal
coordinates (PCoA.1-3), which we applied to the training and
testing data sets to determine whether there were clustering
patterns among counties reporting measles cases.

We also created 3 XGBoost and 3 logistic regression hybrid
models that used outputs from HDBSCAN and uRF as additional
features for making predictions. XGBoost and logistic regression
with HDBSCAN models added cluster membership and
confidence of clustering as new features; XGBoost and logistic
regression with uRF models added PCoA.1-3; and XGBoost
and logistic regression with HDBSCAN+uRF used both sets of
new features. Data for 2014 and 2018 (5745 county-year pairs
in total) were used as a training data set, and data for 2019 (2951
counties) were used as testing data set.

Evaluation
The models were compared using evaluation metrics derived
from the proportions of true positive (TP), FP, true negative
(TN), and FN predictions. Sensitivity was defined as TP / (TP
+ FN), specificity as TN / (TN + FP), positive predictive value

(PPV) as TP / (TP + FP), and the F2 score as (5 × PPV ×
sensitivity) / (4 × PPV + sensitivity). Given the highly infectious
nature of measles, and thus the importance of sensitivity, we
selected F2 over the more common F1 score, defined as (2 ×
PPV × sensitivity) / (PPV + sensitivity), to prioritize sensitivity
over PPV.

The predicted class (positive or negative) of our models was
determined at the threshold of 0.20 (eg, Yprob>0.20 → Ypred=1),
which is smaller than the most commonly used value (0.50) due
to data imbalance; adopting a lower threshold was expected to
identify more counties vulnerable to measles outbreaks. Model
prediction power was also measured using the area under the
receiver operating curve (AUROC) and the area under the
precision-recall curve (AUPRC), as suggested by previous
studies on imbalanced data [22,49]. The AUROC values were
calculated from plots of sensitivity against the FP rate across
prediction thresholds and the AUPRC values from plots of PPV
against sensitivity across prediction thresholds, with a perfect
predictive model having an AUPRC and an AUROC of 1.0 and
a coin-flip having an AUROC of 0.5 [49]. There is no fixed
AUPRC value for random models; the baseline performance is
commonly recognized as the percentage of positive class
members, which was 3.1% for this study (proportion of US
counties having ≥1 measles case in 2019) [49].

Data preprocessing and logistic regression modeling were
conducted using SAS Studio release 3.8 (Basic Edition; SAS
Institute, Inc). Python (version 3.6; distributed by Anaconda,
Inc) with Pandas, Numpy, Scikit-learn, HDBSCAN, XGBoost,
Matplotlib, UMAP libraries, and R (version 3.6.3; The R
Foundation) with STATS package were used to build the
XGBoost, HDBSCAN, and uRF models.

Results

Measles Cases
We were able to identify counties for 635/667 (95.2%) of
Centers for Disease Control and Prevention–reported US
measles cases in 2014, 366/375 (97.6%) of 2018 cases, and
1247/1287 (96.9%) of 2019 cases. In 2014, 81 of the 3143
(2.6%) counties in the United States had ≥1 measles case, while
64 (2.0%) had ≥1 measles case in 2018 and 98 (3.1%) in 2019.

Unsupervised Machine Learning
The HDBSCAN model identified 4 clusters in the training data
sets using all predictor variables (Figure 2A). The number of
counties in clusters A and D with ≥1 measles case was 73/294
(24.8%) and 72/5936 (1.2%), respectively, while no counties
with measles cases were found in clusters B or C. When
applying the HDBSCAN clustering model to the testing data
set, the measles cases also appeared only in clusters A and D,
with frequencies of 58/207 (28%) and 40/2911 (1.4%),
respectively.
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Figure 2. Unsupervised learning results. (A) HDBSCAN-identified clusters, color-coded by cluster size and percentage of counties reporting measles
cases. (B) Visualization of counties with and without measles cases by 2 of 3 uRF-generated principal coordinates. HDBSCAN: hierarchical density-based
spatial clustering of applications with noise; PCoA: principal coordinate analysis; uRF: unsupervised random forest.

The first and second PCoA derived by uRF for each county in
the training and testing data sets were plotted using all predictor
variables (Figure 2B). The observed clustering effects of
counties with measles cases in the training and testing data sets
were between 0.3 and 0.5 in the axis of PCoA.1 and between
−0.05 and 1.5 for PCoA.2. These ranges are meaningful in that
they reflect a similar projection of dissimilarities in both the
training and testing data sets.

Evaluation of Prediction Models
The performance of all models at a prediction threshold of 0.20
is summarized in Table 1. The XGBoost and XGBoost hybrid
models achieved higher AUROC and AUPRC scores than the
logistic regression and logistic regression hybrid models
(AUROC 0.920-0.926 vs 0.900-0.908; AUPRC 0.522-0.532 vs
0.485-0.513). All AUPRC values were considered high when
compared with the low percentage of US counties reporting ≥1

measles case in 2019 (3.1%). At the threshold of 0.20, the hybrid
models of XGBoost with HDBSCAN and uRF and XGBoost
with uRF achieved the highest PPVs (0.367). Logistic regression
with HDBSCAN and uRF features and logistic regression with
uRF features produced the highest sensitivity (0.857), but the
corresponding PPVs (0.141 and 0.139, respectively) were lower
than those of the XGBoost and XGBoost hybrid models
(0.340-0.367). XGBoost and XGBoost hybrid models had higher
specificity (0.952-0.958) and F2 (0.595-0.601) than logistic
regression and logistic regression hybrid models (0.793-0.821
and 0.385-0.426, respectively). For both XGBoost and logistic
regression, the overall differences in performance measures
between the original and hybrid versions of the same model
were relatively small. The performance of all the models at a
range of prediction thresholds between 0.0 and 1.0 is depicted
in Figure 3.
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Table 1. Performance of models predicting US counties with ≥1 measles case in 2019.

AUPRCdAUROCcF 2
b

SpecificitySensitivityPPVaModel

All variables

0.5220.9260.6010.9530.7350.348XGBooste

0.5250.9240.5910.9520.7240.340XGBoost with HDBSCANf

0.5240.9200.5950.9580.7040.367XGBoost with uRFg

0.5320.9220.5950.9580.7040.367XGBoost with HDBSCAN+uRF

0.4850.9000.3850.7930.8370.122LRh

0.4970.9000.3910.7980.8370.125LR with HDBSCAN

0.5120.9080.4220.8180.8570.139LR with uRF

0.5130.9070.4260.8210.8570.141LR with HDBSCAN+uRF

Reduced data set

0.5250.9310.5870.9500.7240.333XGBoost

0.5190.9300.5960.9510.7350.340XGBoost with HDBSCAN

0.5150.9240.5880.9510.7240.335XGBoost with uRF

0.5150.9270.5870.9480.7350.326XGBoost with HDBSCAN+uRF

0.3680.8440.3040.7150.7960.087LR

0.4020.8940.3330.7200.8670.096LR with HDBSCAN

0.4030.8980.3900.7810.8780.121LR with uRF

0.4330.9020.3840.7790.8670.119LR with HDBSCAN+uRF

aPPV: positive predictive value.
bF2 score = (5 × PPV × sensitivity) / (4 × PPV + sensitivity).
cAUROC: area under the receiver operating curve.
dAUPRC: area under the precision-recall curve.
eXGBoost: extreme gradient boosting.
fHDBSCAN: hierarchical density-based spatial clustering of applications with noise.
guRF: unsupervised random forest.
hLR: logistic regression.

Figure 3. Comparative model performance at different prediction thresholds. F2 score = (5 × PPV × sensitivity) / (4 × PPV + sensitivity). PPV: positive
predictive value; XGBoost: extreme gradient boosting.
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As a sensitivity analysis, we also evaluated the performance of
models trained on the reduced variable data set (Table 1). The
XGBoost and XGBoost hybrid models outperformed the logistic
regression and logistic regression hybrid models on this data
set in terms of AUPRC (0.515-0.525 vs 0.368-0.433) and
AUROC (0.924-0.931 vs 0.844-0.902) but had lower sensitivity
(0.724-0.735 vs 0.796-0.878). The PPV, sensitivity, specificity,
and F2 scores at a prediction threshold of 0.20 were very similar
among the original and hybrid models of the same type, for both
XGBoost and logistic regression. The performance of logistic
regression and its hybrid models was more impacted by
removing the correlated predictor variables, with lower AUROC
and AUPRC scores than for the corresponding models using
the full data set (0.844-0.902 vs 0.900-0.908 and 0.368-0.433
vs 0.485-0.513, respectively). In contrast, the performance of
XGBoost and its hybrid models was similar between the 2 data
sets.

Discussion

This work developed supervised and hybrid ML models to
identify US counties at risk of measles cases and compared
them with predictions made using logistic regression. To our
knowledge, this study is the first to determine the absolute risk
of a county having a measles outbreak using ML approaches.
This model is an improvement over the previous work done in
this area, as it takes into account a comprehensive list of
predictors that are associated with measles outbreaks to further
improve the predictions.

Two different types of the unsupervised model could identify
clusters or groups of counties that had ≥1 measles case. In the
supervised learning analysis, all models achieved very high
prediction scores for future measles outbreaks as measured by
AUROC and AUPRC, with XGBoost and XGBoost hybrid
models outperforming logistic regression and logistic regression
hybrid models. Adding clustering results and principal
coordinates from unsupervised learning models as additional
predictors did not improve all performance metrics of XGBoost
models; in contrast, adding these features improved all
performance metrics of the logistic regression models by small
margins. The optimal way to incorporate information from
HDBSCAN, uRF, or other unsupervised clustering algorithms
into prediction models remains an open question. One potential
direction is to develop predictive models tailored to clusters of
counties that were identified through unsupervised learning
methods. We also found that removing 10 correlated predictors
with high variance inflation factors did not improve model
performance in this study; however, models with a reduced
number of variables may provide more interpretable results and
prove more practical for public health implementation by
streamlining the data collection process. It is also worth
mentioning that we presented evaluation metrics as point
estimates instead of constructing approximate CIs by the

bootstrapping or jackknife approaches, as is used in some
research, because our models produced similar performance
metrics, especially for AUROC and AUPRC, and comparing
their rank and point estimates of scores was, therefore, sufficient
[50].

In this study, we selected 0.20 as the threshold to calculate PPV,
sensitivity, specificity, and F2. This was a subjective decision
based on the rarity of measles outbreaks. The threshold can be
adjusted depending on decision makers’ tolerance for FP and
FN results; for example, counties with fewer resources may
need to implement higher thresholds. A dedicated cost-utility
model that anchors changes in costs and mortality to FP and
FN rates can also be built and empirically evaluated in the future
to guide threshold selection [51].

This study is subject to several limitations. We were unable to
identify the affected county for a small proportion of measles
cases, which may impact prediction accuracy. County-level data
on vaccination coverage and exemption rates were not available
for all counties, and metropolitan statistical area- or state-level
data may not necessarily be good proxies. Some predictor
variables were included based on the association between
vaccine hesitancy and individual-level variables; including these
variables at the county level may have introduced an atomistic
fallacy [52]. Further, we only included 3 distinct years of data
in the study; adding more years of data (when they become
available) may improve the generalizability of the results.
Finally, a spatial diffusion model was used to estimate the final
destination counties of travelers after arrival at the destination
airport, but we did not account for the risk of spreading via
domestic air travel or other major long-distance domestic travel
routes.

The COVID-19 pandemic has affected the volume and pattern
of domestic and international air traffic and has negatively
impacted the on-time administration of routine childhood
vaccinations in the United States [53-55]. In the United States,
the pandemic may have also increased hesitancy related to
vaccines and altered the demographic patterns of this hesitancy
[56]. However, the long-term impact of the pandemic on measles
importation and the rates and patterns of vaccination coverage
are not yet known. Predictive models of measles outbreak risk
may therefore have to be adjusted before their application to
years after 2019.

In conclusion, XGBoost outperformed logistic regression in
predicting the US counties at risk of measles cases.
Unsupervised learning models also identified clustering patterns
for counties with measles cases, and these features helped to
improve the PPVs of both XGBoost and logistic regression.
Additional work on developing hybrid models that incorporate
unsupervised ML methods may lead to further optimization of
outbreak prediction.
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AUPRC: area under the precision-recall curve
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FN: false negative
FP: false positive
HDBSCAN: hierarchical density-based spatial clustering of applications with noise
ML: machine learning
PCoA: principal coordinate analysis
PPV: positive predictive value
TN: true negative
TP: true positive
uRF: unsupervised random forest
XGBoost: extreme gradient boosting
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