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Abstract

Background: Patient navigation (PN) programs have demonstrated efficacy in improving health outcomes for marginalized
populations across a range of clinical contexts by addressing barriers to health care, including social determinants of health
(SDoHs). However, it can be challenging for navigators to identify SDoHs by asking patients directly because of many factors,
including patients’ reluctance to disclose information, communication barriers, and the variable resources and experience levels
of patient navigators. Navigators could benefit from strategies that augment their ability to gather SDoH data. Machine learning
can be leveraged as one of these strategies to identify SDoH-related barriers. This could further improve health outcomes,
particularly in underserved populations.

Objective: In this formative study, we explored novel machine learning–based approaches to predict SDoHs in 2 Chicago area
PN studies. In the first approach, we applied machine learning to data that include comments and interaction details between
patients and navigators, whereas the second approach augmented patients’ demographic information. This paper presents the
results of these experiments and provides recommendations for data collection and the application of machine learning techniques
more generally to the problem of predicting SDoHs.

Methods: We conducted 2 experiments to explore the feasibility of using machine learning to predict patients’ SDoHs using
data collected from PN research. The machine learning algorithms were trained on data collected from 2 Chicago area PN studies.
In the first experiment, we compared several machine learning algorithms (logistic regression, random forest, support vector
machine, artificial neural network, and Gaussian naive Bayes) to predict SDoHs from both patient demographics and navigator’s
encounter data over time. In the second experiment, we used multiclass classification with augmented information, such as
transportation time to a hospital, to predict multiple SDoHs for each patient.

Results: In the first experiment, the random forest classifier achieved the highest accuracy among the classifiers tested. The
overall accuracy to predict SDoHs was 71.3%. In the second experiment, multiclass classification effectively predicted a few
patients’ SDoHs based purely on demographic and augmented data. The best accuracy of these predictions overall was 73%.
However, both experiments yielded high variability in individual SDoH predictions and correlations that become salient among
SDoHs.

Conclusions: To our knowledge, this study is the first approach to applying PN encounter data and multiclass learning algorithms
to predict SDoHs. The experiments discussed yielded valuable lessons, including the awareness of model limitations and bias,
planning for standardization of data sources and measurement, and the need to identify and anticipate the intersectionality and
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clustering of SDoHs. Although our focus was on predicting patients’ SDoHs, machine learning can have a broad range of
applications in the field of PN, from tailoring intervention delivery (eg, supporting PN decision-making) to informing resource
allocation for measurement, and PN supervision.

(JMIR Form Res 2023;7:e42683) doi: 10.2196/42683
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Introduction

Patient navigation (PN) programs have demonstrated efficacy
in improving health outcomes in marginalized populations across
a range of clinical contexts. Initially developed in 1990 to
address breast cancer disparities [1], PN has since been tested
in other medical fields, demonstrating improved outcomes for
other cancers [2], dementia [3], depression [4], sickle cell
disease [5], and complex multimorbidity in children [6] and
older adult populations [7], among other conditions. PN
programs in the United States have typically focused on serving
marginalized populations who experience health care inequities,
including low-income individuals [8], racial and ethnic minority
groups, immigrants and refugees, inner-city residents [9-12],
and rural residents [13,14]. Across the board, a growing body
of literature suggests that navigation is associated with increased
preventive services use (such as cancer screenings) and
follow-up, earlier detection of health abnormalities, earlier or
lower clinical stage of presentation, higher patient satisfaction,
improved outcomes during survivorship, and considerably
reduced health care disparities [15].

The widespread success of PN programs comes largely from
their effectiveness in alleviating patient barriers to accessing
health care and improving the timeliness of diagnosis, follow-up,
and treatment [16]. Research has identified a myriad of barriers
addressed by PN, including being uninsured or underinsured,
financial barriers, language discordance, housing issues,
transportation difficulties, and fear or mistrust [17]. Often,
patient navigators were found to be crucial in helping individuals
navigate complex bureaucracy within local health care systems
[18]. Some barriers that navigators address are
population-specific and other disease specific, but a common
underlying thread is social determinants of health (SDoHs),
defined by the Centers for Disease Control and Prevention as
the “conditions in the places where people live, learn, work,
and play that affect a wide range of health and quality-of-life
risks and outcomes” [19]. SDoHs are a well-recognized driver
of diverse health inequities across populations [20].

In ideal circumstances, SDoH information for patients can be
collected directly by health care providers and used to optimize
patient-centered care. However, it can be challenging for
providers to identify SDoH-related barriers experienced by
patients owing to a lack of time to ask [21], workflow integration
difficulties [22], prevalent data gaps [23], the lack of
standardized screening tools [24], and the lack of providers
competent in identifying SDoHs or those who come from
low-income backgrounds [25]. In recent years, several tools
have emerged to help clinical care providers identify patients’
SDoHs, including the Protocol for Responding to and Assessing

Patients’Assets, Risks, and Experiences; the Accountable Health
Communities Health-Related Social Needs Screening Tool; and
the International Classification of Diseases, Tenth Revision
codes in categories Z55 to Z65 (Z codes) [26-28]. These
strategies for identifying SDoHs have several limitations,
however, including ambiguous definitions, inconsistent
thresholds in clinical settings, the lack of structural incentives
for providers to screen and enter data into electronic health
records, time and labor costs of training staff to adopt screening
tools, and the limited ability of medical sites to address identified
barriers [22,24,29,30]. Patient navigators experience many of
these challenges.

Navigators who serve the function of addressing patient barriers
to care typically identify barriers (including SDoHs) and risks
for their patients through assessments and ongoing interactions,
as navigators follow patients through a particular care
continuum. Depending on patient needs at each point in their
care, navigators may assist patients, for example, by scheduling
appointments, coordinating referrals, making social service
arrangements, providing health education, facilitating
patient-provider communication, providing psychosocial
support, and applying for health insurance [17]. However, for
each patient, it takes time for navigators to build sufficient
patient rapport to solicit a full picture of a patient’s SDoHs, as
well as the fine-tuning of cultural competency and
communication skills [31]. Many patients who navigators serve
experience a multiplicity of barriers that intensifies the
challenges that navigators face in identifying SDoH barriers.
Indeed, many patients’SDoH-related barriers require more than
one navigation encounter to uncover, owing to a myriad of
factors, including patients’ reluctance to disclose information,
communication barriers, and the variable experience level of
patient navigators. Patient navigators could benefit from
strategies that augment their current abilities to gather SDoH
data to efficiently identify and resolve social services and other
SDoHs needs in a timely manner.

In exploring strategies to augment the work of patient navigators
in identifying and mitigating SDoH-related patient barriers, we
turn to machine learning—the use of computational techniques
to detect patterns in data and predict outcomes—to predict the
SDoHs to create patient profiles that potentially enhance and
optimize the effectiveness of PN in improving health outcomes
for diverse patient populations. For example, by creating a
predicted profile of SDoHs for a patient, the navigator can
bolster information from existing SDoH assessments, find some
guidance as to what aspects of SDoHs screening to pay more
attention to, and conduct interactions to screen for specific
SDoHs that may not be self-evident. This helps both less
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experienced navigators detect SDoHs, as well as optimize the
time of underresourced navigators.

There has been a growing interest in the medical community in
the promise of machine learning and its potential contributions
to detecting and predicting SDoHs. For example, Kasthurirathne
et al [32] used patient clinical data and community data
representing SDoHs to predict the need for congruous social
services; their results regarding sensitivity, specificity, and
accuracy fell between 60% and 75%. Abarca-Alvarez et al [33]
created a model to describe and predict social vulnerability
based on the demographic and geographic characteristics
obtained from census data. Researchers have also attempted to
predict concrete outcomes using community, geographic, and
social indicators, including stillbirth [34], uncontrolled type 2
diabetes [35], and BMI [36]. However, community data do not
necessarily predict individual needs [37]. Most studies using
machine learning have used data from textual surveys, and few
have augmented these data with images, text, or sound [38].
However, we identified 3 gaps in the research on machine
learning algorithms for identifying SDoHs automatically,
especially in the PN context. First, although clinical notes with
social workers’ notes have been used to predict some SDoHs
[39], the combination of textual and demographic information
has not been attempted in the classification of multiple SDoHs.
Second, although community data have been used in previous
studies, these usually involve an aggregate of geographic area
data, not personalized community data (such as the proximity
of each individual to the nearest hospital) [38]. Finally, patients
often experience multiple SDoHs at a time, but existing research
has only used single classification algorithms instead of
multilabel classification, which can, in theory, detect richer and
more accurate co-occurrences of patients’ SDoHs [38].

To address these gaps, we report the results and lessons learned
in 2 experiments applying machine learning algorithms to PN
data collected from 2 PN studies in the Chicago area. In the first
experiment, we compared machine learning algorithms to predict
SDoHs from both patient demographic data and navigators’
textual patient encounter notes to determine whether 1 or more
algorithms are suitable for this task. In the second experiment,
we used multilabel classification with personalized augmented
information from the Google application programming interface
(API) to predict SDoHs from an initial demographic profile.
The reported case study and lessons learned can inform the use
of machine learning for future PN programs and other initiatives
that seek to identify and address SDoH barriers to care for
marginalized populations.

Methods

Experiment 1: Using Patient Navigator Encounter
Notes
The goal of this experiment was to compare machine learning
algorithms to predict SDoHs and determine whether 1 or more
algorithms are suitable for this task. In particular, we explored
whether demographic information alone or together with patient
navigator notes can help predict patients’ SDoHs.

Data Set
The data used in experiment 1 were sourced from the Chicago
Chinatown PN Program, a research study evaluating the
effectiveness of PN to enhance breast and cervical cancer
screening and follow-up among women residing in Chicago’s
Greater Chinatown area [40]. The data were obtained from
patient navigators’ tracking logs of 330 patients enrolled and
navigated in the study between July 2013 and November 2018.
After each patient interaction, the navigator entered a record of
the encounter into the REDCap (Vanderbilt University)
database. The data contained demographics of patients (Table
1), as well as information from each encounter involving a
navigator interacting with a patient or care provider on behalf
of a patient. PN encounter event records included notes left by
the patient navigator, all languages spoken by the patient, the
preferred language spoken, time spent with the physician, action
taken, the length of action taken, barriers and related SDoHs
labeled by a patient navigator, and the medium in which the
meeting was held (eg, in-person or phone call; Table 2). There
were 22 SDoH categories identified (Textbox 1). Notably, not
all patients had the same number of PN encounters.

Machine learning algorithms are based on instances (encounters
or patients) with attributes (discrete or continuous variables
associated with each instance; eg, language spoken at home or
age). The probabilistic nature of these algorithms requires textual
fields to be converted into numerical attributes. Otherwise, the
text associated with an instance may be too unique to help
generalize the machine learning algorithm in predicting new
instances. For example, a note for 1 patient specifying
“[navigator] recommended pt to see GYN doctor” and another
for a different patient saying, “email [navigator] to give her an
appointment with one of the gyne” are similar to that of a
human. However, for a computer, these are 2 data points that
are completely different. However, there are algorithms that
allow us to determine which words are similar and cluster
similar words into groups called topics. Thus, we converted
textual notes into a vector of topics using latent Dirichlet
allocation (LDA), a natural language processing algorithm to
group similar terms into clusters (topics) that has been widely
used in machine learning classification tasks in which textual
information is used [41].

A total of 5 machine learning algorithms were used to predict
SDoHs using only patient demographic data. These 5 algorithms
were logistic regression, random forest, support vector machine,
artificial neural network, and Gaussian naive Bayes. These
algorithms were chosen because of (1) their diversity of
approaches—regression, decision trees, algebraic, nonlinear,
and baseline probabilistic; (2) their fair performance on standard
classification tasks; and (3) their wide availability for use by
non–machine learning specialists. These models were trained
using a subset of the patients and tested on new patients the
model has not seen. Experiments were also conducted using
patient demographic data, along with patient navigator encounter
data. Some of the navigation encounter data were nonnumeric.
Categorical data were converted using 1-hot encoding, which
converts each value of an attribute into a new binary attribute.
Values were represented by 1 or 0 to indicate whether the data
point had acquired this attribute or not, respectively.
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These data presented the following idiosyncratic challenges in
the context of training machine learning algorithms: (1) patients
did not necessarily have the same number of navigation
encounters; and (2) some navigation encounters included more
than one SDoHs, some listed none, and some documented an
already reported SDoHs. Consequently, we attempted to prepare

the data in different ways, in consultation with the Chicago
Chinatown PN Program study team.

Six different strategies were used to prepare the data for the
classification algorithms. Strategies 1 to 4 considered patient
demographic data and data from each navigation encounter.
Strategies 5 and 6 only involved patient demographic data.

Table 1. Demographic attributes of each patient and how missing values were handled for each patient.

How missing values were handledTypeAttributes

AverageNumericAge

Most commonCategoricalOccupation

Most commonCategoricalMarital status

Most commonCategoricalEducation level

AverageNumericWhat year came to United States

Most commonCategoricalEnglish speaking level

Most commonCategoricalWhere are you from?

Most commonNumericZip code

AverageNumericHow many live in house

Most commonCategorical (binary)Born in United States?

Most commonCategoricalHousehold income (range)

Table 2. Data recorded for each patient navigation encounter, and how we dealt with missing data in our set.

How missing values were handledTypeAttributes

Most commonCategoricalPreferred language

Most commonCategoricalAll languages spoken

Most commonCategoricalType of service

Most commonCategoricalChannel

AverageNumericLength of action taken

Most commonCategoricalAction taken

Did not include this visitText (sentence or sentences)Comments

Did not include this visitCategorical (this stayed categorical because
it was the label for our data points)

SDoHa (label for data point)

aSDoH: social determinant of health.
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Textbox 1. Social determinants of health categories in the patient navigation tracking log.

1. Navigator barriers

2. Transportation

3. Housing

4. Social/practical support

5. Language/interpreter

6. Literacy

7. Childcare issues

8. Family/community issues

9. Distance from health care facility

10. Insurance/uninsured/underinsured

11. Financial problems

12. Work schedule conflicts

13. Communication concerns with medical personnel

14. Fear

15. Medical and mental health comorbidity

16. Patient disability

17. Out of town/country

18. Perceptions/beliefs about tests/treatment

19. System problems with scheduling care

20. Attitudes toward providers

21. Citizenship

22. Other (write-in)

Preparation Strategy 1: Each Patient Is a Data Point
Strategy 1 considered each patient as a data point. Although
navigators could report ≥1 of the 22 available SDoH categories
for each navigation encounter, we used the overall frequency
of occurrence to determine the most salient SDoHs in each
encounter. Because the sample was biased toward Chinese
speakers, if a patient had multiple navigation encounters in
which the navigator determined the SDoH of
“language/interpreter,” we aggregated the encounters leading

up to the first occurrence of an encounter that was not
“language/interpreter.” We labeled the data point or patient as
the non–language or interpreter SDoH. If every encounter had
an SDoH of “language/interpreter,” then we labeled that data
point’s SDoH as “language/interpreter” and only considered
the first navigation encounter for that patient because it only
took 1 navigation encounter to determine the patient’s singular
longitudinal SDoH. This reduced the weight algorithms assigned
to that pervasive SDoH. With this strategy, we had 300 data
points. Figure 1 illustrates this strategy.
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Figure 1. Strategy 1: each patient is a data point with 1 social determinant of health per encounter.

Preparation Strategy 2: Each Patient Is a Data Point,
Excluding the Language Barrier
This strategy is similar to strategy 1, except that once we have
all the data points, we eliminated all the data tuples that only

have “language/interpreter” as the SDoH label. Because most
data points were labeled as “language/interpreter,” we wanted
to see the effect of the attributes on the accuracy of predicting
other SDoHs. Figure 2 illustrates this strategy.

Figure 2. Strategy 2: each patient is an instance, but patients with only “language” as the social determinants of health barrier were excluded as data
points.

Preparation Strategy 3: Each Encounter Is a Data Point
This strategy considers each navigation encounter, not each
patient, as a data point, thereby generating a large number of

data points. Patient demographic information was the same for
many data points because multiple data points or encounters
came from the same patient. With this strategy, we obtained
>1400 data points. Figure 3 illustrates this strategy.
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Figure 3. Strategy 3: each navigation encounter is a data point.

Preparation Strategy 4: Each Encounter Is a Data Point,
Excluding the Language Barrier
This strategy used the same technique as strategy 3 in
considering each navigation encounter as a data point, but

similar to strategy 2, we eliminated all the data points with an
SDoH of “language/interpreter.” This strategy is illustrated in
Figure 4.

Figure 4. Strategy 4: each encounter is a data point, while “language” social determinants of health data points were excluded.

Preparation Strategy 5: Each Patient Is a Data Point,
and Only Demographic Data Are Included
Strategy 5 considers each patient as a separate data point but
only includes patient demographic data. Labels are obtained by

following the same procedure as in strategy 1, except that the
navigation encounter data are excluded. This is illustrated in
Figure 5.
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Figure 5. Strategy 5: each patient is a data point. After labeling the social determinants of health, navigation encounter information is excluded.

Preparation Strategy 6: Each Patient Is a Data Point,
Only Demographic Data Are Included, and Language
Barriers Are Excluded
Strategy 6 considers each patient as a separate data point, as in
strategy 1, but we only considered the demographics data. As

in strategy 2, patients with the label of “language/interpreter”
were excluded. Figure 6 illustrates this strategy.

Figure 6. Strategy 6: each patient is an instance; labels of “language/interpreter” and encounter data were excluded.

From Navigator Notes to Attributes
LDA was used to convert the comments of the navigator on
each encounter (text) into meaningful numerical data. This is a
generative statistical model used to capture textual documents
into k latent topics (clusters of related words). Each document
has a probability distribution of belonging to each of the k topics
[41]. Therefore, a document becomes a series of k probability
values. We used this approach to convert the text into k
attributes. For each strategy that used navigation encounter data
(strategies 1-4), we tested different numbers of topics or latent
attributes (k), including k=5, k=10, k=15, k=20, k=25, and k=30
for the number of topics. Although methods to compute an
optimum number of topics exist, these methods may lose
important information in our data, which were in short notes
form; therefore, we opted to test a variety of topic numbers
instead.

Once all data were converted to numeric data and fully
processed according to the 6 strategies, we tested 5 different
machine learning algorithms to create models that can predict
the SDoH. As mentioned earlier, LDA did not play a role in
strategies 5 and 6 because encounter data were not used for
these strategies. Thus, in total, we tested 130 different models
(strategies 1-4 × 6 topic configurations × 5 algorithms +
strategies 5-6 × 5 algorithms). These models were trained using
a subset of the PN data and tested on PN data that the model
had not yet seen (hereafter referred to as “new patients”). The
5 machine learning algorithms or classifiers that were used are
as follows:

1. Logistic regression was the first machine learning algorithm
used to predict SDoHs in new patients. Logistic regression
is a statistical model that in its primary form uses logistic
functions to model the behavior behind a binary class
problem. In our data, we included 22 different classes of
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SDoHs. To make this a binary class problem, logistic
regression considers 1 SDoH as 1 class (A) and the rest of
the SDoHs as the other class (not A). The algorithm does
this for every SDoH (class).

2. The second machine learning algorithm we used for
prediction was a random forest classifier. A random forest
classifier creates many decision trees during training. A
test data point runs through each tree, and the prediction is
determined by the label the most often determined by the
decision trees. A decision tree is a rule-based classifier that
tests attributes according to the entropy they contribute to
the data. Attributes with less entropy are tested first.

3. The third machine learning algorithm is a support vector
machine. Support vector machines take data in higher
dimensions and separate them from the hyperplanes in a
lesser dimension. New data points will be classified
depending on where they lay in the N-dimensional space.
This will depend on how the N-1 dimensional hyperplane
separates from the N-dimensional space.

4. Artificial neural networks were used as the fourth machine
learning algorithm. This algorithm is a function modeled
after the biological neural networks in the human brain.
The algorithm consists of initializing the weights and biases,
forward propagation, calculated costs, backpropagation,
and convergence to a local minimum. Each node in an
artificial neural network is called an artificial neuron and
is very similar to a biological neuron because it takes some
input and sends out some output. Artificial neural networks
take in and output only numbers.

5. The fifth algorithm we used was Gaussian naive Bayes,
which is based on applying Bayes’ theorem with the naive
belief that attributes are conditionally independent of each
other. Gaussian naive Bayes supports continuous-valued
features and models each as conforming to a Gaussian
(normal) distribution, whereas Classical naive Bayes
supports categorical features and models, each in line with
a multinomial distribution.

The accuracy of the classifiers was determined by running 10
cross-fold validation and then these averages were compared
directly.

Experiment 2: Multiclass Classification With
Augmented Information

Overview
Another approach that can be used to predict SDoHs is
multiclass classification, which allows each patient to be
classified under multiple SDoHs simultaneously. In addition to
this mode of classification, we explored options to augment
patient demographic data with personalized, publicly available
information on proximity and time to travel to the nearest
hospital. Thus, the goal of this second experiment was to assess
the accuracy and utility of a multiclass machine learning
classification with augmented personalized data for predicting
patients’ SDoHs.

Data Set
Because the Chinatown PN study data set (experiment 1 data)
was highly biased toward the language or interpreter SDoH, we

decided to include data from another PN study with a different
population. Thus, the data for this second experiment came from
the Chinatown PN study (experiment 1 data) and the DuPage
PN study, a research study evaluating PN for enhancing breast
and cervical cancer screening timeliness and follow-up in
DuPage County, Illinois [42,43]. Both the Chinatown PN and
DuPage PN studies were implementation and dissemination
studies that adapted PN protocols originating from the National
PN Research Program [44,45]. For both studies, patient
demographics and tracking log data sets included a patient’s
sociodemographic information, including their age, income
range, and education level. The data set from Chinatown is
described in experiment 1. The data from the DuPage County
study provided preexisting demographic data from 478 unique
patients and navigation tracking (encounter) data from 435
patients collected between 2009 and 2012. Unfortunately, the
DuPage data set did not include navigation encounter notes.
Therefore, using topic modeling on those data was not possible.

Data Preparation
To use the data as one data set, it was necessary to consolidate
both data sets by selecting common attributes and excluding
data points that did not overlap. The DuPage data had 1 SDoH
noted for each encounter along with an action to be taken by
the patient (eg, an examination). We compiled all the SDoHs
across encounters and assigned them to each patient. Patients
without navigation encounters were excluded from this study.
This process produced complete data for 400 unique patients
in the DuPage study.

As previously described, the Chinatown data recorded medical
history, including barriers and interventions, already listed
together for individual patients (tracked by a unique Record
ID), so there was no need for reformatting in that regard.
However, “barrier” or “actions taken” were separated by
encounter rather than listed together, such as it was in the
DuPage data. To generate a similar list as DuPage, in which all
barriers and interventions for a patient are immediately
associated with them, the SDoH for each individual encounter
was concatenated. If a patient had no navigation encounters,
that record was excluded. This resulted in 274 unique patient
data points for the Chinatown set.

The next task was to combine these new data sets. Both data
sets did not collect the same demographic or navigational
encounter information, and when they did, the data were
formatted differently. Thus, we grouped the data that was
common to both sets into a larger set. The codes for SDoHs did
not have a 1:1 correspondence, but most were sufficiently close
that we could assign correspondences between them. The
DuPage data had generic codes that were easily mapped to the
Chinatown data, but they also had more specific SDoH codes
under each generic code. If an SDoH was not found in the
Chinatown data, we used the generic code to establish
correspondence to the Chinatown code.

The selection of patient demographic attributes did not have
direct correspondence. For example, for employment, DuPage
had only 3 categories (“unemployed,” “part-time,” or “full
time”), whereas the Chinatown data broke this attribute down
further differentiating unemployed from retirees, homemakers,
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and students. In cases in which direct conversions could not be
made, values from attributes were converted to the system
(DuPage or Chinatown), in which most alternative values were
provided. For instance, employment status was formatted to
follow Chinatown employment categories, because the latter
provided more options. Furthermore, any values entered in a
foreign language were converted to “none.” Any codes for
values that were not specified in the DuPage codebook were
changed to “chose not to answer” or “other” if these were
available codes for the corresponding attribute in the Chinatown
data set. Otherwise, they were changed to “none.” Numerical
fields with missing values were replaced with average values
for that attribute.

We grouped the 3 most frequent barriers (SDoHs) and the 3
most frequent interventions received. Selecting the most frequent
barriers and interventions for a patient represented the most
impactful or persistent obstacles they faced. Therefore, the
model that these data would be fed into would be built to predict
multiple barriers and multiple interventions per patient, up to
3. Frequencies of their appearance were counted from the
consolidated lists produced earlier, and the 3 most common
values were entered into the 3 new barrier fields or intervention
fields.

Augmenting the Data
Given the tracking history and counting dates of services, a field
was calculated for the number of navigation encounters
associated with each patient, thus capturing the intensity of
encounters. The mean (16.94) and SD (13.06) of encounter
counts were determined. A new field (encounter range) was
created, and patients received a value of L, M, H, or VH for
low, medium, high, or very high, respectively. The upper
thresholds for these categories were based on the SD, with visit
counts <3 labeled as L, between 3 and 16 as M, between 16 and
29 as H, and >29 as VH.

Although patients’ specific addresses were not available, we
used their zip codes and the Google Maps API to determine the
patient’s nearest hospital, distance in kilometers, potential
driving time, and potential travel time on public transportation
in the middle of the day. Public transportation data are not
always available because of the API’s own limitations; therefore,
missing values were replaced with average transit time values.

Finally, all fields containing string (text)-type data were
binarized, that is, all distinct strings were converted into
columns, and each data point had a 1 or 0 for the attribute,
depending on whether the text column contained that string.
The classification model was required to predict 3 potential
classes per patient (the top 3 SDoHs). Each SDoH, therefore,
had its own column, and each patient had 1 or 0 in the top 3
SDoHs extracted as described earlier.

Machine Learning Model
The multilabel classification model involved a standard approach
to convolutional neural network [46] using TensorFlow and
Keras. The model consisted of 9 layers. The input layer was a
1D convolutional layer with a kernel width of 3, 10 filters, and
a rectified linear unit activation function. The rectified linear
unit function is a commonly used activation function with

convolutional neural networks owing to its flexibility in
approximating functions with less expensive operations than
other activation functions. The input shape was the number of
features per patient.

The filter and kernel values were determined after experimenting
with a subset of data. A 1D MaxPooling layer was included
after the kernel, with a pool size and stride value of 2. This
reduces the dimensionality of the data by abstracting them,
making them more general, and avoiding overfitting. The pool
size and stride values were the results of experimentation to
maximize accuracy.

Together with the MaxPooling layer, a convolutional layer aided
in reducing the impact of smaller values in the feature set and
gave them less weight in the final predictions. Subsequently, a
Flatten layer was included to reduce the dimensionality, again
reducing the computational cost by reducing the number of
parameters to learn and avoiding overfitting. The remaining
layers further abstract data features and were a series of 3 pairs
of Dropout layers and Dense layers. Each Dropout layer drops
a 25% proportion of the incoming values. Each Dense layer has
a decreasing number of nodes, equal to a multiple of the number
of classes. The first Dense layer has triple the number of output
nodes, the next has twice the number of output nodes, and the
final Dense layer has an equal number of nodes to classes. The
output layer uses a sigmoid activation function to ensure that
the value of each output node is considered independent of one
another, which is necessary for multilabel classification. The
model uses the binary cross-entropy loss function to determine
the final class probabilities independently. Combined with the
previous sigmoid activation function, this model produces the
probability of each class being included in the given set of
classes for a patient.

The model was evaluated through 10-fold cross-validation.
K-fold cross-validation allowed repeated iterations of training
and testing the model with different data splits each time.

We also explored the classification of visit intensity to determine
whether demographic data could predict the intensity of visits
per patient (L, M, H, and VH). Support vector machine
algorithms were used for this task.

Ethics Approval, Informed Consent, and Participation
The Northwestern University Institutional Review Board
approved all study procedures with institutional review board
#STU00006041 and #STU00059420. Written informed consent
was obtained from all participants of the DuPage PN
Collaborative and Chicago Chinatown PN Program. Participants
were compensated US $50 (Chinatown study) and US $20
(DuPage study) in the form of gift cards for completing surveys.
All study personnel were trained in the Collaborative
Institutional Training Initiative and approved by the institutional
review board. Data used in this analysis were deidentified to
protect the privacy and confidentiality of the study participants.
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Results

Results of Experiment 1
In the first experiment, as detailed in the Methods section, we
compared 6 strategies and 5 learning algorithms. The heat map
in Figure 7 shows the accuracy of the various machine learning
algorithms over different data preparation strategies as they use
different configurations of LDA attributes (number of topics).
Colors closer to dark red indicate a higher accuracy. Colors
closer to blue indicate a lower accuracy. LDA was not applicable
to strategies 5 and 6, which only used patient demographic data;
therefore, they are shown as a block.

The random forest classifier obtained the highest accuracy
among the 5 classifiers tested. It outperformed all others in data
preparation strategies 1 and 3 with every configuration of LDA
topics. Notably, random forest with 15 LDA topics using
strategy 1 yielded the highest accuracy of 71.3%. Logistic
regression and support vector machine showed moderate
accuracies for strategies 1 and 3, respectively. Gaussian naive
Bayes was outperformed by all other algorithms under all
strategies.

Figure 8 shows the confusion matrix for each individual SDoH
for strategy 1, using random forest and 15 LDA topics—the
configuration that yielded the highest accuracy. This model had
an accuracy of 71.3% for predicting a new patient with a single
SDoH. The confusion matrix shows the accuracy of each SDoH
method. The “language/interpreter” SDoH had the best accuracy
and the most instances in our data set. Moreover, for the
“language/interpreter” SDoH, the actual percentage of true
positives is 79.2% (137/173), whereas the false positives
corresponded to “social/practical support” in 12.7% (22/173)
of instances, and “fear” in 3.5% (6/173) of instances.

Other moderate rates of true positives occurred for SDoH
categories “social/practical support,” “fear,” and
“insurance/insured/underinsured.” Of the 22 patients classified
with an SDoH of fear, 14 (64%) were accurate predictions, 3
(14%) were actually “language/interpreter,” 2 (9%) were
“perceptions/beliefs about tests/treatment,” and 2 (9%) were
“social/practical support.” Of the 59 patients predicted to have
an SDoH of “social/practical support,” 37 (63%) were accurately
labeled with the SDoH of social or practical support, whereas

6 (10%) were actually “insurance/uninsured/underinsured,” 5
(9%) were “fear,” and 4 (8%) were “other.” Of the 34 patients
classified as having an SDoH of “insurance/uninsured
/underinsured,” 19 (56%) were accurately classified as having
an SDoH of “insurance/uninsured/underinsured,” whereas
among the false positives, 4 (12%) were “other,” 2 (6%) were
“communication concerns with medical personnel,” 2 (6%)
were “financial problems,” and 2 (6%) were “social/practical
support.”

Examining the confusion matrix for random forest with strategy
1 and 15 LDA topics (the most accurate algorithm), we can see
that certain attributes can be grouped to provide a better
understanding of potential SDoHs for a patient. For example,
if a new patient is classified as having a “language/interpreter”
SDoH, our model can predict this with 71.3% confidence.
However, the classifier was 95.4% confident that the SDoH for
that patient was “language/interpreter,” “social/practical
support,” or “fear,” which suggests that it may be beneficial for
patient navigators to pay attention to associated SDoHs when
identifying a “language/interpreter” barrier.

In a similar manner, if a new patient is predicted to have (labeled
with) an SDoH of “fear,” we are 96% (21/22) confident that the
SDoH for that patient is “fear,” “language/interpreter,”
“perceptions/beliefs about tests/treatment,” or “social/practical
support.” For patients labeled as having an SDoH of
“insurance/uninsured/underinsured,” there is 85% (29/34)
probability that their SDoH is “insurance/uninsured
/underinsured,” “other,” “communication concerns with medical
personnel,” “social/practical support,” or “financial problems.”
Finally, if a new patient is labeled as having an SDoH of
“social/practical support,” there is an 88% (52/59) chance that
the patient’s SDoH is actually “social/practical support,”
“insurance/uninsured/underinsured,” “fear,” or “other.” We find
that it is possible to group other attributes together and create
broader classes of SDoH that are highly correlated.

However, the data are heavily biased toward the language barrier
of an SDoH, which makes it difficult to extract other SDoH. In
addition, although we have notes from the navigators, they did
not report the SDoH in every encounter. Consequently, we were
unable to determine whether the notes were meaningful for each
recorded SDoH.
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Figure 7. Accuracy for all tests (ranges from 0.00 to 0.75). Each rectangle represents different data preparation strategies, machine learning algorithms,
and number of topics from latent Dirichlet allocation.

Figure 8. Confusion matrix of classification using random forest with data preparation strategy 1 and 15 latent Dirichlet allocation topics.

Results of Experiment 2
In the second experiment, as detailed in the Methods section,
we trained a convolutional neural network with augmented
demographic data for each patient. Figure 9 shows the multilabel

classifications for SDoH barriers and the resulting mix of correct
and incorrect predictions for each class.

Figure 9 shows that the SDoH “none” was dominating the
predictions, as it was the most common SDoH noted (in most
encounters, patient navigators noted “none” if there were no
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other SDoHs besides what they had already determined, if any).
Experiment 2 data show that our method is 90% accurate in
detecting a language barrier and 73% accurate in predicting the
need for “case management.” Other SDoHs were not predicted
with any consistent accuracy.

Regarding the correlation between each SDoH and encounter
intensity, the highest correlation was with “other primary
language” (r=0.55) followed by “Spanish primary language”
(r=0.27). When we also looked at correlations between other
attributes and SDoHs, we found a positive correlation between
“no near family support” and “China” being a country of origin
(r=0.44), and a negative correlation between “no near family
support” and “Spanish” being a primary language (r=−0.26).

These predictions were not very different from those obtained
in the first experiment, and this may be, in part, because of the
dominance of language as a barrier, as both data sets included
mostly individuals for whom English was not their primary
language. It is worth noting that in the experiment 2 data, many
annotations for SDoH had the word “none” in them, despite an
SDoH being recorded either at a later or earlier time point.
Moreover, we were not able to fully personalize the augmented
data because of the absence of specific patient addresses, but
we did show a proof of concept that it is possible to augment
the data with personalized information through other methods.

Figure 9. Accumulated correct predictions for each class of social determinants of health or barrier (a visualization of a confusion matrix).

Discussion

Principal Findings
In this case study, we report on 2 experiments exploring the
feasibility of using machine learning to predict the SDoHs for
PN research. This study offers novel approaches to address
several research gaps in the literature, including using textual
data, augmenting data with personalized information, and using
multiclass predictions. The findings of this study were mixed.
In the first experiment, we used data from patients living in
Chinatown in Chicago. We compared 5 algorithms with each
other, and examined whether the text in the notes of the
navigator can make a difference in the prediction of SDoHs. In
this experiment, the random forest classifier with 15 LDA topics
using data preparation strategy 1 (each patient is a data point)
yielded the highest prediction accuracy of 71.3%. Moreover,
we were able to group certain attributes to provide a better
understanding of the potential clustering of SDoHs for a patient.
In the second experiment, using data from both Chinatown and
DuPage County, we augmented demographic information and
used multiclass classification to predict SDoHs. We were able
to effectively predict a handful of SDoHs but did not result in

better predictions than the most accurate models in the first
experiment.

Although the predictive power of our approach was limited to
a handful of SDoH-related barriers and we found a few useful
correlations among SDoHs, our study produced other insights.
In applying machine learning algorithms to the Chicago
Chinatown and DuPage PN data sets, our case study yielded
some valuable lessons learned that can inform future use of
machine learning for PN programs and other initiatives
addressing SDoH barriers to care. As discussed, the lessons
learned include (1) planning for the standardization of data
sources and measurement that purposefully lend themselves to
predictive analysis; (2) identifying and anticipating the
intersectionality and clustering of SDoHs; and (3) being aware
of model limitations.

Standardization of Data Sources and Measurement
If we call the action of observing a patient and their associated
data “x,” then a patient navigator will try to take “x” and predict
a set of SDoHs “s.” Machine learning algorithms try to replicate
this human prediction process by finding a function that
statistically fits a large number of human predictions so that
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when given a particular “x” it can determine “s” as accurately
as possible (f(x)=s). Because this fit is statistical in nature, it
requires data that are relevant to the attribute being predicted
(≥1 SDoHs). Because it is generally the case that the more data
available for training an algorithm, the better the predictive
results, larger data sets and replication are needed. However, a
larger data set does not guarantee an accurate prediction of
SDoHs. Because many studies on SDoHs target specific
populations, it is not unusual to observe bias in the data [38].
For example, when working with English-learner immigrants
of low socioeconomic status, it is reasonable to expect finances
and language among the SDoHs. In this case, the machine
learning predictor will be very accurate for these 2 SDoHs;
however, it could be less useful for real-life applications, as
most patient navigators will be able to notice these 2 SDoHs in
their patient encounters. Accurate prediction of less-common
SDoHs may be a more useful application of these algorithms,
but biases in the data make these predictions hard.

Therefore, in our case study we conducted extensive data
preparation for our 2 experiments, and we tried to exclude
“language” as it was a very pervasive SDoH (experiment 1).
Our results align with those of previous research [39]; however,
we provide an alternative method to augment traditional models
with textual information and individualized information from
publicly available data (eg, Google Maps API).

To optimize the use of machine learning for predicting and
addressing SDoHs in PN contexts, data collection protocols and
data structures should be intentionally collected for machine
learning purposes. First, collecting more samples with
less-common SDoHs is key. It is not sufficient to collect data
from a large pool of individuals, but the variety of SDoHs is
fundamental for accurate statistical predictions. Second, there
must be planning for multiclass prediction tasks from the outset.
This includes a system for accurately recording SDoHs during
encounters, a protocol to handle when new SDoHs are recorded,
and when wildcard SDoHs are recorded. In experiment 2, “none”
was a wildcard SDoH and, as such, very pervasive as well.
Third, there should be considerations for recording additional
information that helps augment the data with readily available
personalized information from the web. For example, patient
voice and textual data are underused, but hold tremendous
potential as a source for SDoH prediction. Responses to general
questions such as “How are you feeling today?” could add to
the data on patient barriers, from which speech recognition can
be used to identify SDoH-related topics and conversations that
emerge. Automated tools with speech recognition could be used
when possible; however, special care must be taken by testing
them before their use, as the collection method or other external
circumstances may result in the collection of unusable data. For
example, if the interviews are conducted over the phone, then
the audio quality is vital. This quality can be affected by
interference in the call, a speech impediment, low volume, or
slurred speech in older individuals. In addition, the language
spoken by the patients can be a dialect. In our Chinatown data,
patients do not speak Mandarin or Cantonese, but Toishanese,
for which we could not find satisfactory speech recognition
software. Finally, additional questions, such as “At what time
are you available to go to the doctor?” together with the patient’s

address and the provider’s address can provide augmented data
that indicate the driving time or public transportation time it
would take the individual to see a health care provider.

Identifying and Anticipating SDoH Intersectionality
Using the random forest algorithm with data preparation strategy
1 and 15 LDA topics (the most accurate algorithm in the first
experiment), we grouped certain attributes to provide a better
understanding of the potential correlations of SDoHs for a
patient. These findings underscore the growing recognition that
SDoHs are not discrete phenomena; they operate in complex,
integrated ways. Their intersectionality should be anticipated
and identified for machine learning to help advance the work
of patient navigators. The National Institute on Minority Health
and Health Disparities has proposed a multidimensional research
framework to understand and address minority health and health
disparities [47]. This framework conceptualizes SDoHs as
involving a wide array of health determinants spanning different
domains of influence and multiple levels of influence within
each domain. As the National Institute on Minority Health and
Health Disparities research framework indicates, there are not
just single social factors but rather their interrelatedness may
have an overall effect on an individual’s health outcomes.
Moreover, as the framework suggests, a combination of several
determinants could play a larger role in a person’s health than
any single determinant. Building a predictive model that
considers this framework as part of its predictive algorithm
could be a powerful tool for patient navigators and health care
providers. It would allow them to recognize and address a
patient’s unique set of social determinants to improve health
outcomes for that individual. In the future, methods such as
Conditional Random Fields could not only be used to predict
multi-SDoH outcomes but also the strength of the correlation
among them for every single patient. Methods such as
convolutional neural networks [46] can leverage these
correlations for more accurate outcomes.

Limitations
The limitations of this research can be grouped into 2 main
areas: limitations in the models and limitations in the
experiments. Regarding limitations of the models, multiple
recent reports and systematic reviews have brought attention to
issues of bias in health models of machine learning and the
unintended harms that can arise when using machine learning
for prediction [48-51]. In the case of Chinatown and DuPage
PN data, our patient population consisted primarily of
low-income individuals whose primary language was not
English; thus, the model classifications were biased toward
language and financial (eg, health insurance) SDoH barriers. If
used for prediction purposes, machine learning algorithms would
primarily guide navigators toward focusing on patients’ language
and health insurance–related barriers while largely ignoring
other SDoH barriers. This is not to say that other SDoH barriers
do not exist in these patient populations, but because of the bias
in the data set from which the algorithms were trained, 1
unintended harm that may arise is that other SDoHs are at risk
of being ignored. Although the findings and lessons learned
from this study demonstrate the promising use of machine
learning algorithms in predicting SDoHs in PN work, there are
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some considerations that support the retention of human experts
(eg, patient navigators) in many aspects of identifying and
addressing SDoHs. As noted earlier, the predictions made by
machine learning algorithms are only as good as the data
available for training the algorithms. Thus, without better data,
navigators will still need to rely on manual identification of
SDoHs to ensure that less-common but pertinent SDoHs are
addressed to truly provide patient-centered care.

In terms of methods, a limitation of the 2 experiments was the
small sample size. As discussed earlier, small and biased
samples are detrimental to the detection of marginal patterns.
In addition, because of its small size, we did not use validation
data sets, but larger training and testing data sets. Another
limitation is that these experiments used data collected from
PN research studies. Data from other real-world PN contexts
may vary in quality and content; therefore, further investigation
is required.

Future Work and Conclusions
Although our focus was on predicting SDoHs, we envision that
machine learning can have a broad range of applications in the
field of PN, tailoring intervention delivery (eg, supporting PN
decision-making), informing resource allocation for
measurement, and augmenting PN supervision. Recent findings
from intervention research studies in the health care space also
support the potential use of machine learning to enhance
interventions. For example, Pfob et al [52] tested 3 machine
learning algorithms to predict outcomes at a 1-year follow-up
to facilitate patient-centered decision-making in women with
breast cancer. In another example, O’Donovan et al [53]
developed an open-access machine learning web application
(CHWsupervisor) to support community health worker
supervision in Uganda and Kenya. They found that
CHWsupervisor had “moderate” predictive accuracy compared
with human coders in coding instant messages exchanged
between community health workers and their supervisors and
noted that machine learning approaches hold promise, but that
supportive supervision still requires a level of human expertise

because of the complexity of exchanges that often require
nuanced interpretation [53]. In this study, we similarly
experienced that preparing data for machine learning was
challenging because of the nuanced interpretation required to
convert the navigator’s comments on each visit (text) into
meaningful numerical data.

However, any application of machine learning to PN work will
be constrained by the availability of data from which to train
algorithms. Thus, attention is needed on bolstering data that can
be made useful for machine learning algorithms. Recent efforts
to link SDoH-screening responses from electronic health records
with existing medical coding tools may be vital to this effort,
as exemplified by the National Association of Community
Health Centers’ preliminary linkages between its SDoH
screening items and the International Classification of Diseases,
Tenth Revision codes [24]. Machine learning has previously
been used for thematic analysis of qualitative data [39];
therefore, speech recognition can potentially be used on patient
voice and text data to form another rich source of data for
machine learning algorithms.

Finally, the sheer amount of data is not necessarily sufficient.
A variety of SDoHs is essential for a bias-free data set.
Sometimes, this may not be possible, and in that case,
researchers will need to focus on statistical methods that
simulate instances of patients with a diverse pool of SDoHs
based on existing data or boost classification with a combination
of methods and voting strategies [54,55].

Despite these limitations, this case study illuminates the value
of machine learning in offering new opportunities to predict
SDoHs to enhance the effectiveness of PN in improving health
outcomes in diverse patient populations, and further
investigation is warranted. Future work should involve a more
intentional data collection process, together with larger data
sets that allow our models to make better inferences and allow
researchers to run validation data sets for better classification
outcomes.
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