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Abstract

Background: Sepsis is a leading cause of death in patients with trauma, and the risk of mortality increases significantly for
each hour of delay in treatment. A hypermetabolic baseline and explosive inflammatory immune response mask clinical signs
and symptoms of sepsis in trauma patients, making early diagnosis of sepsis more challenging. Machine learning–based predictive
modeling has shown great promise in evaluating and predicting sepsis risk in the general intensive care unit (ICU) setting, but
there has been no sepsis prediction model specifically developed for trauma patients so far.

Objective: To develop a machine learning model to predict the risk of sepsis at an hourly scale among ICU-admitted trauma
patients.

Methods: We extracted data from adult trauma patients admitted to the ICU at Beth Israel Deaconess Medical Center between
2008 and 2019. A total of 42 raw variables were collected, including demographics, vital signs, arterial blood gas, and laboratory
tests. We further derived a total of 485 features, including measurement pattern features, scoring features, and time-series variables,
from the raw variables by feature engineering. The data set was randomly split into 70% for model development with stratified
5-fold cross-validation, 15% for calibration, and 15% for testing. An Extreme Gradient Boosting (XGBoost) model was developed
to predict the hourly risk of sepsis at prediction windows of 4, 6, 8, 12, and 24 hours. We evaluated model performance for
discrimination and calibration both at time-step and outcome levels. Clinical applicability of the model was evaluated with varying
levels of precision, and the potential clinical net benefit was assessed with decision curve analysis (DCA). A Shapley additive
explanation algorithm was applied to show the effect of features on the prediction model. In addition, we trained an L2-regularized
logistic regression model to compare its performance with XGBoost.

Results: We included 4603 trauma patients in the study, 1196 (26%) of whom developed sepsis. The XGBoost model achieved
an area under the receiver operating characteristics curve (AUROC) ranging from 0.83 to 0.88 at the 4-to-24-hour prediction
window in the test set. With a ratio of 9 false alerts for every true alert, it predicted 73% (386/529) of sepsis-positive timesteps
and 91% (163/179) of sepsis events in the subsequent 6 hours. The DCA showed our model had a positive net benefit in the
threshold probability range of 0 to 0.6. In comparison, the logistic regression model achieved lower performance, with AUROC
ranging from 0.76 to 0.84 at the 4-to-24-hour prediction window.

Conclusions: The machine learning–based model had good discrimination and calibration performance for sepsis prediction
in critical trauma patients. Using the model in clinical practice might help to identify patients at risk of sepsis in a time window
that enables personalized intervention and early treatment.
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Introduction

Sepsis is a life-threatening type of organ dysfunction caused by
a dysregulated host response to an infection [1]. It is a major
contributor to the global burden of disease, with morbidity and
mortality rates having failed to decrease substantially during
the past decade, especially in the trauma population [2,3].
According to the international consensus guidelines for sepsis,
fluid resuscitation should commence within the first 3 hours of
sepsis, and antimicrobial treatment should commence within 1
hour of sepsis [4-6]. The mortality rate of sepsis increases
significantly with each hour of delayed administration of
antibiotics [5,6]. However, early recognition of sepsis can be
challenging due to the complexity of the sepsis response and
the heterogeneity of the population with sepsis [7,8].
Furthermore, delays in communication among health care
providers may exacerbate sepsis-management delays [9].
Therefore, closely evaluating and predicting the risk of sepsis
before onset at an individual level may provide insights for
clinicians to implement timely personalized medicine to improve
prognoses.

The traditional tools to predict sepsis are often based on
generalized linear models. The Epic Sepsis Model (ESM), a
penalized logistic regression model, is one of the most widely
implemented early warning systems for sepsis, especially in the
United States. However, Wong et al [10] recently found that
the ESM had poor discrimination performance, with an area
under the receiver operating characteristics curve (AUROC) of
0.76 to predict sepsis 4 hours in advance; it also failed to detect
sepsis before its onset in 67% of patients. Machine
learning–based predictive modeling is increasingly popular and
is being applied in clinical research and practice due to the
availability of large digitized medical data sets and computing
power [11,12]. The advantage of machine learning algorithms
lies in their capability to extract the most important information
from complex data and capture nonlinear relations between
features. Machine learning models, including gradient boosting
trees, random forests, and neural networks, have been developed
for real-time prediction of sepsis or sepsis shock in a general
intensive care unit (ICU) setting [13,14].

However, to our knowledge, there is no such real-time prediction
model aimed specifically at the trauma population. Unlike
general patients, most trauma patients are relatively young, are
predominantly male, and have few underlying medical
conditions [2,15]. The weight of these factors in the prediction
models for trauma patients might differ from the weights in
models developed for other critical patients. Furthermore, a
hypermetabolic baseline and explosive inflammatory immune
response mask clinical signs and symptoms of sepsis in trauma
patients, making it more difficult to diagnose sepsis in the early
stages [16,17]. Therefore, the development of a real-time
prediction model for sepsis in the trauma population would be
clinically valuable and could help clinicians to identify patients
at high risk of developing sepsis, leading to improved medical
care [13]. In this study, we aimed to develop a machine learning

model using Extreme Gradient Boosting (XGBoost) and a
publicly available database to predict the risk of sepsis at an
hourly scale in trauma patients admitted to an ICU.

Methods

Data Source
Data were obtained from a publicly available database, the
Medical Information Mart for Intensive Care IV (MIMIC IV;
version 1.0), which continuously collected medical records from
the ICU at Beth Israel Deaconess Medical Center (Boston, MA)
between 2008 and 2019 [18].

Patient Selection and Variable Extraction
All patients aged ≥18 years in the database who had a
first-discharge diagnosis of trauma according to the ninth or
tenth revisions of the International Classification of Diseases
(ICD) codes (ICD-9: 800-848, 850-854, 860-887, 890-897,
900-904, 910-929, or 950-957; ICD-10: S00-S99) were included.
In the case of multiple ICU admissions, we used only data from
the first episode of ICU admission to avoid repeated measures
of sepsis. Patients who developed sepsis before ICU admission
were excluded. Medical records after the occurrence of sepsis
were not used in the model development due to considerations
of the clinical applicability of the model.

A total of 42 raw variables were chosen based on the previous
literature and their clinical relevance. They were extracted based
on an SQL search with Navicat Premium (version 15.0.21;
PremiumSoft CyberTech Ltd) [13]. These features represented
a mix of static and dynamic information. A full set of the
variables is listed in Multimedia Appendix 1.

Ethical Approval
This database was approved by the Beth Israel Deaconess
Medical Center (45682859) [19]. The need for informed consent
was waived because of the completely anonymous nature of the
data and the retrospective nature of the study. We completed
the relevant courses to access the database and obtained a
certificate (45682859).

Outcomes
Sepsis was defined as the presence of both suspected infection
and organ dysfunction according to the recent sepsis-3 criteria
[1,20]. The onset time of sepsis was defined as the earliest time
of suspected infection and organ dysfunction, manifested as an
acute increase in the Sequential Organ Failure Assessment
(SOFA) score of at least 2 [21,22]. More details on the definition
of the onset time of sepsis are provided in Multimedia Appendix
2.

Data Preprocessing
To optimize the data for the model input, static variables were
repeated at each 1-hour time grid. Dynamic variables measured
more than once per hour were aggregated into 1-hour time steps
by calculating hourly medians. We adopted the
last-occurrence-carry-forward strategy to impute missing values
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for each variable. Population means were used for imputing the
remaining missing values occurring before the first measurement

[23]. A schematic workflow of the study is shown in Figure 1.

Figure 1. Flowchart of model development. MIMIC IV: Medical Information Mart for Intensive Care IV; SHAP: Shapley additive explanation.

Feature Engineering
A total of 485 features were derived from the raw variables,
classified into three subtypes: (1) 37 measurement pattern
features, (2) 7 scoring features, and (3) 441 time-series variables.
Details of the feature engineering are described in Multimedia
Appendix 3. Finally, a total of 527 features were used for model
development.

Model Development
The data set was randomly split into three sub–data sets: 70%
for model training with stratified 5-fold cross-validation, 15%
for calibration, and 15% for testing. Records for each patient,
rather than individual time steps, were assigned to the same
training, validation, calibration, and test sets to avoid label
leaking. As just over 2% (529/26,140) of individual time steps
presented to the model were labeled as sepsis, we remedied this

imbalance in the data set by tuning parameters to change the
weight between the positive and negative classes during the
training process.

We used XGBoost, a gradient boosting algorithm well-known
for obtaining winning solutions in various data competitions
[24], to predict the risk of sepsis onset among trauma patients
in the following prediction windows: 4, 6, 8, 12, and 24 hours;
the temporal resolution was 1 hour. The choice of time windows
was in accordance with previous literature predicting the risk
of sepsis in general ICU patients [13,25] and takes into account
the time needed before making interventions in clinical sepsis
management, as well as prediction accuracy [26]. To reduce the
risk of model overfitting, 5-fold cross-validation was used to
produce 5 XGBoost models on the training set. Bayesian
optimization was used to select the optimal hyperparameter
combinations by maximizing AUROC in the validation set [27].
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The ensemble method was used to provide robust estimation
by averaging prediction probabilities from the above 5 models
[28].

In addition, we trained an L2-regularized logistic regression
model to compare its performance with XGBoost. Continuous
features were standardized to improve the speed of model
convergence before fitting. The grid search algorithm was
applied to select the optimal strength of regularization. The
ensemble approach was also adopted for the final prediction.

Model Evaluation and Model Calibration
We evaluated model discrimination performance on the test set
at both the time-step level and outcome level. At the time-step
level, we calculated the AUROC and the area under the
precision-recall curve (AUPRC) with prediction windows of 4,
6, 8, 12, and 24 hours for XGBoost and logistic regression.
Sensitivity and specificity were calculated for prediction
window/precision pairs (at 5%, 8%, and 10%) for XGBoost. At
the outcome level, we computed sensitivity at different levels
of precision. Unlike time-step–level sensitivity, outcome-level
sensitivity corresponded to the percentage of all sepsis episodes
that had at least one correct prediction within a specific time
window before sepsis onset. Model calibration was evaluated
with the average calibration error (ACE) [22] and reliability
plots [29]. Isotonic regression was used to recalibrate the
probability from the XGBoost model in the calibration set to
obtain more accurate predictions [30]. Furthermore, a decision
curve analysis (DCA) was conducted to assess the potential

benefit of guiding sepsis management based on predictions from
our model across the threshold probabilities of 0 to 0.6. We set
the upper limit of threshold probability at 0.6 because it is
clinically unreasonable for a patient or doctor to accept a risk
greater than 0.6 by balancing the harms of missing a patient
with sepsis and unnecessary intervention on a patient without
sepsis [31,32].

Shapley Additive Explanation Algorithm
The Shapley additive explanation (SHAP) algorithm was used
to show the average effect of each feature on the prediction
model [33,34]. Bootstrapping was used to construct 95% CIs
of the estimates using 1000 bootstrap samples of sepsis
probabilities with replacement [23]. All computational analyses
were conducted with Python (version 3.9.7; Python Software
Foundation).

Results

Patient Characteristics
We obtained the medical records of 4603 trauma patients
admitted to the ICU from MIMIC IV. After splitting the data
randomly, there were 3222, 691, and 690 patients in the training,
calibration, and testing sets, respectively. The 3 cohorts had
similar characteristics, with a median age of 63 to 65 years and
a higher proportion of males (ranging from 61% to 65%). The
prevalence of sepsis in the above data sets was around 26%
(Table 1).

Table 1. Characteristics of the trauma patients in the training, calibration, and testing sets.

Testing set (n=690)Calibration set (n=691)Training set (n=3222)All (N=4603)Characteristics

65 (42-82)63 (44-81)64 (42-81)64 (42-81)Age (years), median (IQR)

Sex, n (%)

445 (64.5)418 (60.5)2015 (62.5)2878 (62.5)Male

245 (35.5)273 (39.5)1207 (37.5)1725 (37.5)Female

4 (1-5)4 (1-5)4 (1-5)4 (1-5)Charlson comorbidity index, median (IQR)

27.9 (27.6-27.9)26.9 (26.9-26.9)26.9 (26.9-26.9)26.9 (26.9-26.9)BMI (kg/m2), median (IQR)

1 (0-2)1 (0-1)1 (0-1)1 (0-1)Time interval from hospital to ICUa admission
(hours), median (IQR)

42 (21-81)41 (21-84)39 (21-82)40 (21-82)Length of stay in ICU (hours), median (IQR)

179 (25.9)180 (26.1)837 (26)1196 (26)Sepsis, n (%)

aICU: intensive care unit.

Model Evaluation and Model Calibration
In the test set, XGBoost outperformed logistic regression in
both discrimination and calibration across all prediction
windows (Table 2). For a prediction window of 6 hours,
XGBoost had a higher AUROC (0.87, 95% CI 0.85-0.89), higher
AUPRC (0.27, 95% CI 0.23-0.31) and lower ACE (0.33, 95%
CI 0.31-0.35) than the logistic regression (AUROC=0.83, 95%
CI 0.81-0.85; AUPRC=0.18, 95% CI 0.15-0.21; and ACE=0.44,
95% CI 0.44-0.45; Table 2, Multimedia Appendix 4). With
longer prediction windows, the model discrimination as
evaluated by AUROC or AUPRC decreased. The AUROC of

the XGBoost model decreased from 0.88 (95% CI 0.86-0.90)
in the 4-hour prediction window to 0.83 (95% CI 0.81-0.84) in
the 24-hour window, and the AUROC of the logistic regression
model decreased from 0.84 (95% CI 0.82-0.86) to 0.76 (95%
CI 0.74-0.77). However, the model calibration improved slightly
with an increase in the prediction window. The ACE of the
XGBoost model decreased from 0.35 (95% CI 0.32-0.37) in the
4-hour prediction window to 0.30 (95% CI 0.28-0.32) in the
24-hour window, and the ACE of the logistic regression model
decreased from 0.45 (95% CI 0.44-0.45) to 0.42 (95% CI
0.42-0.43; Table 2).
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At the time-step level, by using XGBoost, 73% (386/529) of
sepsis-positive time steps were predicted at the 6-hour prediction
window with a ratio of 9 false predictions for every true positive
(10% precision), while 81% (428/529) of sepsis-positive time
steps were predicted with a ratio of 12 false predictions for every
true positive (8% precision; Figure 2). At the outcome level,
the proportion of predicted sepsis episodes decreased with
increased precision level. At the 10% precision level, XGBoost
identified 91% (163/179) of sepsis events occurring in the
subsequent 6 hours. Of note, the total number of events to be

identified became fewer as the time period became shorter.
There was a total of 22% (40/179) of patients for whom sepsis
could be predicted 5 to 6 hours in advance, and XGBoost
successfully predicted 60% (24/40) of them at the 10% precision
level. The calibration curve showed that the predictions from
XGBoost consistently overestimated the risk, whereas the
predictions after recalibration lay snugly around the diagonal
(Figure 3). The DCA demonstrated that XGBoost had a positive
net benefit in clinical use for threshold probability across the
threshold probabilities of 0 to 0.6 (Figure 3).

Table 2. Summary of model performance on the test set for Extreme Gradient Boosting (XGBoost) and logistic regression.

Value at 24 hours
(95% CI)

Value at 12 hours
(95% CI)

Value at 8 hours (95%
CI)

Value at 6 hours (95%
CI)

Value at 4 hours (95%
CI)

Performance metric

XGBoost

0.83 (0.81-0.84)0.84 (0.83-0.86)0.86 (0.84-0.87)0.87 (0.85-0.89)0.88 (0.86-0.90)AUROCa

0.23 (0.20-0.26)0.25 (0.22-0.28)0.26 (0.23-0.30)0.27 (0.23-0.31)0.27 (0.23-0.31)AUPRCb

0.30 (0.28-0.32)0.32 (0.30-0.34)0.32 (0.30-0.35)0.33 (0.31-0.35)0.35 (0.32-0.37)ACEc

Logistic regression

0.76 (0.74-0.77)0.79 (0.77 0.80)0.81 (0.79-0.83)0.83 (0.81-0.85)0.84 (0.82-0.86)AUROC

0.16 (0.14-0.18)0.17 (0.14-0.20)0.18 (0.15-0.21)0.18 (0.15-0.21)0.18 (0.15-0.22)AUPRC

0.42 (0.42-0.43)0.44 (0.43-0.44)0.44 (0.44-0.44)0.44 (0.44-0.45)0.45 (0.44-0.45)ACE

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cACE: average calibration error.
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Figure 2. Time-step–level and outcome-level sensitivity and specificity by pairs of precision level (5%, 8%, and 10%) and prediction window for the
Extreme Gradient Boosting (XGBoost) model. (A) Time-step–level sensitivity. (B) Time-step–level specificity. (C) Outcome-level sensitivity. (D) The
proportion of (candidate) adverse events to be identified within each window.

Figure 3. Calibration and clinical utility of the Extreme Gradient Boosting (XGBoost) model. (A) Calibration curves before and after calibration. (B)
Decision curve.

SHAP Algorithm
When considering the relative importance of each feature in the
model, we found that the latest measurement time gap of fraction
of inspired oxygen (FiO2) had the greatest impact on the

predictions, followed by BMI (Figure 4). Patients with a shorter
measurement time gap of FiO2 or a higher BMI had an increased
risk of sepsis. For time series variables of SD, differential SD,
and the difference between maximum and minimum values of
a feature, low values increased the risk of sepsis.
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Figure 4. Bar plots showing (A) overall impacts of the top 20 features and (B) beeswarm plots showing impacts of the top 20 features across all patients.
BMI: body mass index; Bun: blood urea nitrogen; delta: the latest measurement time gap; diff_std: differential standard deviation; diff: the difference
between maximum and minimum values; FiO2: fraction of inspired oxygen; GCS: Glasgow Coma Scale; Mbp: mean blood pressure; PO2: arterial
partial pressure of oxygen; RR: respiratory rate; Sbp: systolic blood pressure; SHAP: Shapley additive explanation; SpO2: saturation of peripheral
oxygen; std: standard deviation.

Discussion

Principal Findings
In this study, we developed an XGBoost risk prediction model
to predict sepsis onset among trauma patients admitted to the
ICU with a temporal resolution of 1 hour. This model achieved
an AUROC ranging from 0.83 to 0.88 at the 4-to-24-hour
prediction window. It predicted 73% (386/529) of sepsis-positive
time-steps and 91% (163/179) of sepsis events in the subsequent
6 hours with a ratio of 9 false alerts for every true alert.
Furthermore, the model achieved better discriminative and
calibration performance than a traditional logistic regression
model. However, this finding remains to be validated in other
data sets; the classical logistic regression might be suboptimal
compared with the XGBoost model.

Wong et al [10] recently reported that the widely applied ESM
only identified sepsis before onset in 33% of patients, whereas
our model identified up to 91% (163/179) of patients who
developed sepsis in the subsequent 6 hours at 10% precision.
To our knowledge, the XGBoost model in our study has better
discrimination performance (with an AUROC of 0.87) than
most previously published models that have been developed
for real-time prediction of sepsis in the general ICU setting.
Nemati et al [35] achieved an AUROC of 0.85 with a modified
Weibull-Cox proportional hazards model for predicting sepsis
6 hours in advance, and Yang et al [28] achieved similar
performance, also with the XGBoost algorithm. Kim et al [36]
recently developed a type of deep learning model to predict
sepsis that had higher discrimination performance than our
model, with an AUROC of 0.91. However, their model could
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be seen as a complex black box due to its lack of interpretability,
which might limit its acceptance among clinicians. Moreover,
deep learning models like neural networks usually have a large
number of parameters to estimate and have poor generalizability
without sufficient training data, and it takes longer to train them
than XGBoost [37]. The random forest model is another widely
applied machine learning approach, but XGBoost might be a
better option for imbalanced data sets, such as the one used in
our study [38,39].

In addition to AUROC, a commonly reported measure of
discriminative performance, we report AUPRC results for our
model. This is more informative in class-imbalanced situations
[22], such as sepsis prediction. Our model had an AUPRC of
0.27, which indicates low precision across a wide range of
sensitivities in this extremely imbalanced data set. We found
that the model achieved higher AUROC and AUPRC with
shorter prediction windows. This could be attributed to the fact
that a decreasing prediction window improved the timeliness
of information, which boosted the predictive performance of
the model. Moreover, we report calibration performance in
addition to the commonly reported discriminative performance
[40]. Calibration evaluates the agreement between the estimated
and true risk of an outcome [41], which is important when a
model is designed to make predictions at an individual level.
Here, our model had an ACE of 0.33 before using isotonic
regression calibration, which suggests that the model
overestimated the risk of sepsis. However, model calibration
decreased as the prediction window shortened, which might be
associated with a decreasing number of positive steps due to
the reduction of the prediction window. Several studies have
reported a similar trend for AUROC across different prediction
windows but have not reported changes in AUPRC or calibration
[35,36]. Most importantly, a model with good discrimination
and calibration performance does not necessarily have high
clinical value [42]. Hence, DCA was used to assess the clinical
utility of the model, and this showed a positive net benefit,
suggesting that the model could help to inform timely treatment
before sepsis onset in clinical practice. As the net benefit takes
into account both true positives and false positives, the model
with a net benefit is therefore worth choosing irrespective of
the size or statistical significance of the benefit [42]. However,
our model is not a practical tool at present, and we plan to
develop a handy risk prediction tool by integrating the model
into electronic health records for early identification of sepsis
among trauma patients.

The matter of model applicability has not been well addressed
in previous studies. In this study, we evaluated the
time-step–level sensitivity and specificity of the model at
different degrees of precision. The precision explicitly shows
the number of false positives that the clinician encountered to

identify one true positive episode or case. However, the
sequential nature of making predictions determines the total
number of positive steps; this does not directly correspond to
the total number of patients with sepsis. Multiple positive time
steps may be associated with a single sepsis episode. In fact,
one positive prediction in the prediction window was enough
to attract the attention of a clinician to make further decisions.
Therefore, we calculated the outcome-level sensitivity (ie, the
percentage of all sepsis episodes that had at least one correct
prediction within a fixed time window before sepsis onset) to
show the ability of the model to identify the percentage of true
positive patients [43,44]. Furthermore, some previous studies
have screened patients based on length of stay in the hospital,
which might influence the generalizability and implementation
of the model in a prospective setting [22,45].

Through SHAP analysis, we found that obese trauma patients
were at an increased risk of sepsis. Obesity is associated with
altered cellular immunity, increased use of central venous
catheters because of difficulties with gaining peripheral access,
and inadequate antibiotic dosing, all of which increase the risk
of sepsis [46,47]. Moreover, obesity is associated with
comorbidities like diabetes and hypertension, which have been
identified as risk factors for sepsis [46,48]. Low values for
time-series variables, such as differential SD of SpO2 and
differential SD of respiratory rate, were associated with an
increased risk of sepsis. One possible explanation was that most
patients developed sepsis in a short time after admission. We
compared the top 20 variables in the sorted SHAP value diagram
in our model for critical trauma patients with those from other
models developed for general critical patients and found that
BMI ranked second for trauma patients but was not in the top
20 for general critical patients [28,49]. Contrarily, age ranked
14th for general critical patients but was not in the top 20 for
trauma patients (Figure 4) [49].

Limitations
This study has several limitations. First, though our model has
shown good performance and clinical utility, it needs to be
further validated at other medical centers. Second, the Injury
Severity Score was not used for model development, even
though this score is commonly used for assessing injury severity
and might contain predictive information for sepsis in the trauma
population. However, the Injury Severity Score is not available
in the MIMIC database, and it is not an objective metric [50].

Conclusions
In summary, an XGBoost model achieved high performance in
both discrimination and calibration for continuous prediction
of sepsis onset in the next 6 hours among trauma patients.
Furthermore, the model was clinically useful and had a positive
net benefit across the threshold probability.
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