
Original Paper

Classifying COVID-19 Patients From Chest X-ray Images Using
Hybrid Machine Learning Techniques: Development and
Evaluation

Thanakorn Phumkuea1*, BSc; Thakerng Wongsirichot2*, PhD; Kasikrit Damkliang2, PhD; Asma Navasakulpong3,
MD
1College of Digital Science, Prince of Songkla University, Songkhla, Thailand
2Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
3Division of Respiratory and Respiratory Critical Care Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
*these authors contributed equally

Corresponding Author:
Thakerng Wongsirichot, PhD
Division of Computational Science, Faculty of Science
Prince of Songkla University
15 Kanjanavanich Road, Hat Yai
Songkhla, 90110
Thailand
Phone: 66 846414784
Email: thakerng.w@psu.ac.th

Abstract

Background: The COVID-19 pandemic has raised global concern, with moderate to severe cases displaying lung inflammation
and respiratory failure. Chest x-ray (CXR) imaging is crucial for diagnosis and is usually interpreted by experienced medical
specialists. Machine learning has been applied with acceptable accuracy, but computational efficiency has received less attention.

Objective: We introduced a novel hybrid machine learning model to accurately classify COVID-19, non-COVID-19, and
healthy patients from CXR images with reduced computational time and promising results. Our proposed model was thoroughly
evaluated and compared with existing models.

Methods: A retrospective study was conducted to analyze 5 public data sets containing 4200 CXR images using machine
learning techniques including decision trees, support vector machines, and neural networks. The images were preprocessed to
undergo image segmentation, enhancement, and feature extraction. The best performing machine learning technique was selected
and combined into a multilayer hybrid classification model for COVID-19 (MLHC-COVID-19). The model consisted of 2 layers.
The first layer was designed to differentiate healthy individuals from infected patients, while the second layer aimed to classify
COVID-19 and non-COVID-19 patients.

Results: The MLHC-COVID-19 model was trained and evaluated on unseen COVID-19 CXR images, achieving reasonably
high accuracy and F measures of 0.962 and 0.962, respectively. These results show the effectiveness of the MLHC-COVID-19
in classifying COVID-19 CXR images, with improved accuracy and a reduction in interpretation time. The model was also
embedded into a web-based MLHC-COVID-19 computer-aided diagnosis system, which was made publicly available.

Conclusions: The study found that the MLHC-COVID-19 model effectively differentiated CXR images of COVID-19 patients
from those of healthy and non-COVID-19 individuals. It outperformed other state-of-the-art deep learning techniques and showed
promising results. These results suggest that the MLHC-COVID-19 model could have been instrumental in early detection and
diagnosis of COVID-19 patients, thus playing a significant role in controlling and managing the pandemic. Although the pandemic
has slowed down, this model can be adapted and utilized for future similar situations. The model was also integrated into a publicly
accessible web-based computer-aided diagnosis system.
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Introduction

COVID-19 has become a widespread pandemic causing high
levels of infection and mortality. The first cases were reported
in December 2019 and rapidly spread worldwide, leading to its
declaration as a severe disease by the World Health Organization
(WHO) in May 2020 [1]. Recently, more than 190 million
confirmed cases have been reported, with 4 million fatalities
worldwide [2]. The virus responsible for COVID-19, a severe
acute respiratory syndrome (SARS), was formally named
SARS-CoV-2 by the International Committee on Taxonomy of
Viruses [3]. An initial study showed that the virus originated
from bats and was transmitted to humans by unknown
intermediate animals [4,5]. COVID-19 has been divided into 5
clinical stages based on its characteristics: asymptomatic, mild
clinical symptoms, moderate clinical features, severe symptoms,
and critical cases [6]. The majority of COVID-19 patients have
fever, fatigue, cough, shortness of breath, myalgia, and dyspnea
[7,8]. However, patients may have asymptomatic COVID-19
disease [9]. Reverse transcription polymerase chain reaction
(RT-PCR) performed on throat swab samples is the gold
standard for COVID-19 diagnosis [10]. However, RT-PCR
results require a considerable amount of time to become
available [11]. Rapid diagnostic methods (such as the rapid
antigen and antibody tests) are available; however, they cannot
substitute for RT-PCR [12-14]. Generally, a chest x-ray (CXR)
is prescribed for a high-risk patient—old age, high blood
pressure, and chronic respiratory disease—who may be
classified as a patient under inspection [15]. Thereafter, a CXR
image is examined by medical doctors or specialists for lung
infection. A challenging situation occurs because the lung
infection may be due not only to SARS-CoV-2 but also to other
viruses and bacteria [16]. During the widespread COVID-19
pandemic, many areas with a high level of infection experienced
a shortage of physicians.

Recent work explored deep learning and medical imaging
techniques to diagnose CXR film of COVID-19 for early
detection purposes [17-20]. In [21], the researchers presented
a series of steps for classifying COVID-19 and other lung
diseases based on 2 data sets: a CXR data set of 1926 images
and a computed tomography (CT) scan data set of 2482 images.
The results from the CXR data set have an accuracy of 0.993
and an F1-score of 0.931. Furthermore, the results from the CT
scan data set have an accuracy of 0.932 and an F1-score of 0.921.
The experiment used Raspberry Pi Linux and Python code to
perform a sequential feature selector. A similar work,
documented in [22], implemented VGG16 and Xception to
distinguish COVID-19 infections from noninfected cases. They
developed 2 models using 1037 CXR images (402 COVID-19
images, 400 normal images, 200 pneumonia images, and 35
images without COVID-19 or pneumonia infection). Regarding
this study, each convolutional neural network (CNN)
architecture was subjected to 10 rounds of experimentation for
model evaluation purposes. The highest accuracy rate achieved

was 0.970 for the VGG16 and 0.984 for Xception. An Xception
model [23] was proposed to classify COVID-19 CXR images,
with 0.896 and 0.950 accuracies for 4 and 3 classes of
classification, respectively. The data set consisted of 284
COVID-19, 327 viral pneumonia, 330 bacterial pneumonia, and
310 normal CXR images. In [24], researchers proposed a
classification model to classify COVID-19 from CXR images.
The study comprised 4290 pneumonia, 1583 normal, and 76
COVID-19 CXR images. Furthermore, pneumonia and normal
classes were partially used and split to balance the data set. The
researchers focused on the use of a data preprocessing step. An
image augmentation technique was used with COVID-19 CXR
images. The fine-tuning of a pretrained model, SqueezNet, used
Bayesian optimization. The proposed model obtained a test
accuracy and F-measure of 0.983 and 0.983, respectively. Four
transfer learning techniques, ResNet18, ResNet50, SqueezeNet,
and DenseNet-121, were used to identify COVID-19 on CXR
images in [25]. The COVID-19 CXR data set was divided into
2084 training and 3100 test images. The results showed that
SqueezeNet achieved 0.929 specificity and 0.98 sensitivity.
However, there was no presence of accuracy of the selected
transfer learning techniques. A similar study was conducted in
[26]. Pretrained AlexNet, GoogLeNet, and SqueezeNet models
were fine-tuned to classify lung infections from CXR images.
They used 6 CXR image data sets that were collected from
several public databases. The classification results of the
pretrained models were promising. Another research work [27]
used the transfer learning technique with GoogLeNet,
ResNet-18, and DenseNet-12 to perform binary classification
of normal and pneumonia images from 2 publicly available
CXR image data sets; a 5-fold cross-validation technique was
used to evaluate the models. The experimental results showed
accuracy and sensitivity of 0.988 and 0.988, respectively, for
the first data set and 0.869 and 0.870, respectively, for the
second data set. In [28], a CNN-based architecture was proposed
to delineate CXR images into 3 categories: healthy, pneumonia,
and COVID-19. The data sets were collected from 6 public
databases, including 10,451 healthy, 573 COVID-19, and 11,673
pneumonia images. The proposed model achieved an accuracy
of 0.912 in the prediction of the 3 classes (healthy, pneumonia,
and COVID-19) and an accuracy of 0.982 in the prediction of
the 2 classes (COVID-19 or pneumonia). In [29], a new
end-to-end trained CNN model was proposed with deep feature
extraction and fine-tuning of a pretrained CNN. The proposed
model consisted of 3 deep learning approaches for COVID-19
detection. The data set used in this study contained 180
COVID-19 and 200 healthy CXR images. The selected features
extracted from the ResNet50 model and support vector machine
(SVM) classifiers outperformed other approaches, with a
classification accuracy of 0.947. In [30], 5 different pretrained
deep models (decision tree [DT], random forest, AdaBoost,
bagging, and SVM) were used to classify COVID-19 CXR.
With this experiment, the data set contained 1102 CXR images:
565 normal and 537 COVID-19. The data set was divided into
training and test sets at a ratio of 70:30. The results showed that
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the Xception combined with the SVM classifier achieved the
best classification result, with accuracy, sensitivity, and
specificity of 0.993, 0.992, and 0.993, respectively. This study
was exceptional by proposing combinations of traditional
machine learning and deep learning techniques. A hybrid
ensemble model using MobileNet and Inception V3 was
proposed in [31]; 4-fold cross-validation was performed to

evaluate the model using a data set of 1050 normal, 1050 viral
pneumonia, 1050 bacterial pneumonia, and 1050 COVID-19
CXR images. The classification results for diagnosing
COVID-19 from CXR achieved accuracy, precision, and
specificity of 0.942, 0.899, and 0.883, respectively. Table 1
shows a summary of related studies on COVID-19 CXR images.

Table 1. Related studies of COVID-19 chest x-ray images.

ReferenceCross-val-
idation

Classes, nBalanced
data set

Data setMethod

[21]5-fold2NoCOVID-19=212, non-COVID-19=1696Sequential feature selection

[22]No2NoCOVID-19=402, pneumonia=200, normal=400, without
COVID-19 or pneumonia=35

Xception and VGG16

[23]4-fold3 and 4NoCOVID-19=284, bacterial pneumonia=330, viral pneumo-
nia=327, normal=310

CoroNet (Xception)

[24]No3NoCOVID-19=1979, pneumonia=3895, normal=3111Bayes-SqueezeNet

[25]5-fold2NoCOVID-19=184, normal=5000Different pretrained CNNa model

[26]No2 and 3No6 different COVID-19 data setsDifferent pretrained CNN model

[27]5-fold2No2 different pneumonia data setsGoogLeNet, ResNet-18, and
DenseNet-121

[28]No2NoCOVID-19=573, normal=10,546, pneumonia=11,673Customized CNN model

[29]No2NoCOVID-19=180, normal=200ResNet50 for Features extraction

+ SVMb

[30]10-fold2NoCOVID-19=537, normal=565Xception + SVM

[31]4-fold4YesCOVID-19=1050, viral pneumonia=1050, bacterial
pneumonia=1050, normal=1050

Hybrid ensemble model

Our proposed
method

10-fold3YesCOVID-19=1050, non-COVID-19=2100, healthy=1050MLHC-COVID-19

aCNN: convolutional neural network.
bSVM: support vector machine.

According to the literature review, most of the reported studies
used deep learning and a pretrained model with data
augmentation for COVID-19 detection from CXR images.
However, there are several limitations that remain to be
addressed. These limitations include (1) the use of an
imbalanced data set, (2) the use of deep learning techniques that
require significant computational resources, and (3) longer time
consumption of the training model. The main contributions of
our study, with the aim of addressing these issues, are as follows:

1. We proposed a multilayer hybrid classification model for
COVID-19 (MLHC-COVID-19) detection. Our model
integrates several machine learning techniques applied to
a large CXR image data set of 3 different categories:
healthy, non-COVID-19 (viral and bacterial pneumonia),
and COVID-19. The MLHC-COVID-19 model was
evaluated through a 10-fold cross-validation process to
assess its classification performance.

2. The MLHC-COVID-19 is composed of 2 layers of binary
classification. The first layer acted as a screening
mechanism, directing unhealthy CXR images to the second
layer for further classification into COVID-19 and
non-COVID-19 images. This model has been thoroughly

compared with other preprocessing techniques and methods
to assess its effectiveness.

3. The first layer of the MLHC-COVID-19 uses the highest
performance model between DTs, SVMs, and neural
networks (NNs) to differentiate between healthy and
unhealthy CXR images. The second layer uses the most
effective model between the same 3 techniques to
distinguish between COVID-19 and non-COVID-19 CXR
images. The model performance was evaluated through
10-fold cross-validation.

4. We developed a web-based application for the
MLHC-COVID-19 model, allowing for practical use in
diagnosing COVID-19 from CXR images. The web-based
application can be accessed at [32].

This paper is organized as follows: The proposed method
(MLHC-COVID-19) is discussed in the Methods section. The
Results section presents the in-depth experimental results,
compared with deep learning–based methods. The conclusion
of the study and suggestions for future research are discussed
in the Discussion section.
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Methods

Data Set
In a real-world situation, lung infection can be due to many
factors. The distinction of our work lies in the combination of
various types of lung infection and healthy CXR images from
different data sources. The target classes were healthy,
COVID-19, viral pneumonia, and bacterial pneumonia. We used
5 data sets of CXR images that were made publicly available
by Mendeley [33], the Italian Society of Medical and
Interventional Radiology [34], GitHub [35], Radiopaedia [36],
and Kaggle [37]. The total number of images used in this study
was 4200. We utilized an annotated data set of CXR images

consisting of 3 distinct classes: (1) healthy individuals, (2)
individuals infected with non-COVID-19 diseases (viral and
bacterial pneumonia), and (3) individuals infected with
COVID-19. The COVID-19 class was comprised of 1050 CXR
images, of which 912 images were obtained from the first 4
sources and 138 images were obtained from the last source. The
non-COVID-19 and healthy classes were comprised of a total
of 3150 CXR images, with 1050 images being healthy and 2100
images being non-COVID-19. The annotation of each image
was performed by skilled medical specialists. Table 2 shows a
summary of the CXR images data set used in this study, and
samples of the CXR images in the combined data set are shown
in Figure 1.

Table 2. Chest x-ray image data set.

Number of images, nOpen source/classes

Kaggle [37]

1050Healthy

2100Non-COVID-19

Mendeley data set [33]

912COVID-19

SIRMa [34], GitHub [35], and Radiopaedia [36]

138COVID-19

aSIRM: Italian Society of Medical and Interventional Radiology.

Figure 1. Samples of the chest x-ray images in the combined data set: (A) heathy images, (B) viral pneumonia images, (C) bacterial pneumonia images,
(D) COVID-19 images.
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Overview
The general overview of the proposed MLHC-COVID-19 for
identifying CXR images of COVID-19 infection is shown in

Figure 2. The block diagram depicts vital processes that were
embedded in the model. The following subsections will discuss
each of the processes.

Figure 2. Block diagram of the proposed multilayer hybrid classification model (MLHC)-COVID-19.

Image Preprocessing
In this study, image preprocessing consisted of 3 steps (Figure
3): image segmentation, image analysis, and feature extraction.
Considering the image segmentation, we designed 3 substeps:
removal of the partial black background, image resizing, and
grayscale conversion. The combined data set had different
formats and a partial black background in the CXR images.
This was attributed to several factors including the positioning
during the filming process and the type of x-ray machines
utilized. The black background affects the classification
performance. We programmatically removed the black
background from the CXR image. Figure 4 shows an example
of a completed programmatic removal of a black background.
Furthermore, the CXR images were of different dimensions;
therefore, all the images were resized to an identical dimension
of 500 × 500 pixels. The last step of the image segmentation
was the conversion of the images to grayscale to reduce the
image features. Reduction of the image features is known to
improve the classification result and mimic the complexity of
the algorithm [38]. The grayscale formula is given by equation
1.

Gintensity(x,y)=0.2989 × f(x,y,R) + 0.5871 × f(x,y,G)
+ 0.1140 × f(x,y,B) (1)

where, if Gintensity(x,y) is an image with grayscale, then f(x,y,R)
is a pixel value in the (x,y) coordinates of the red channel,
f(x,y,G) is a pixel value in the (x,y) coordinates of the green
channel, and f(x,y,B) is a pixel value in the (x,y) coordinates of
the blue channel [39].

The second step in the image preprocessing was image
enhancement. We utilized the power law transformation to

adjust the brightness of the CXR images. We applied a γ value
of 0.5. The power-law transformation formula is shown in
equation 2 [40,41]. In addition, we selected the 2-dimensional
Gaussian filter technique to reduce the Gaussian and
salt-and-pepper noises [42]. The Gaussian filter technique is
given by equation 3. Figure 5 shows the processed CXR image
after the image enhancement.

s=c × rγ(2)

where s is the output pixel value, c is a value of the normalized
image, γ is the gamma value, and r is the input pixel value.

where ∂2 is the variance of the Gaussian filter with 3 x 3 kernel
size and x and y are the horizontal and vertical axes, respectively,
of the kernel size [43].

The last step in image preprocessing is feature extraction. We
performed histogram analysis and L2-normalization. Histogram
analysis reduces the image features by retrieving vital image
statistics. Specifically, low-intensity values dictate an image in
a dark tone and vice versa [44]. Upon completion of the
histogram analysis, each feature in the histogram has different
scales. Subsequently, to achieve the same standard scale, we
performed L2-normalization. L2-normalization or the Euclidean
norm normalizes the features of the histogram into the same
scale using equation 4. Figure 6 shows the output of feature
extraction.

where X is a feature of the histogram.
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Figure 3. Image preprocessing.

Figure 4. (A) An original chest x-ray (CXR) image with a partial black background and (B) the CXR image after the removal of the partial black
background.

Figure 5. Image after the (A) image segmentation, (B) power law transformation, (C) Gaussian filter.

Figure 6. The final output of the image preprocessing step.
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Multilayer Hybrid Classification Model
First, the original MLHC was developed to automatically
classify the multisleep stages. Each layer in the MLHC is a
binary classification model that uses different machine learning
techniques [45]. The MLHC model was a stacking-based
machine learning model that utilized multiple models to improve
its performance. “Multilayer” refers to the stacking of multiple
models, while “hybrid” signifies the combination of different
model types, such as DTs, SVMs, and NNs. The primary
objective of the MLHC was to diagnose COVID-19 from CXR
images. By stacking various models, the MLHC aimed to take
advantage of the strengths of each model and enhance the
accuracy and robustness of the system in diagnosing COVID-19
patients.

The MLHC-COVID-19 model in the experiment was designed
using a 2-step approach. The first step aimed to differentiate
between healthy and unhealthy individuals, where the latter
included those infected with viral, bacterial, or COVID-19
infection. Once the differentiation was made, the infected
individuals were then directed to the second step, which was to
classify them further into either COVID-19 or non-COVID-19
cases (consisting of viral and bacterial infections). Figures 7
and 8 show the MLHC-COVID-19.

Regarding our experiment, we evaluated 3 machine learning
techniques: DT, SVM, and NN. These selected techniques were
candidates for embedding into MLHC-COVID19. DT is a
well-known supervised machine learning method. Each node
represents a condition for decision on data classification, in
which various branches of trees represent results from testing
and the leaves of the DT represent the classification [46,47].
DT is one of the simplest techniques to understand and is
suitable for classification tasks [48]. SVM is a supervised
machine learning method. It exhibits promising performance
in statistical classifications [49]. It distinguishes data by finding
hyperplanes as separators. The process of identifying
hyperplanes is iteratively toward the best line during the training
[50]. We selected the radial basis function as the kernel function
[51]. Finally, NNs are types of mathematical models for
processing data with connected computation nodes that mimic
the functions of biological NNs [52]. It builds complex models
between the inputs and outputs with high efficiency [53]. We
designed 4 fully connected layers (dense layers) and 2 dropout
layers. The input to the first dense layer consisted of 256
histograms. The first and second dense layers used 128 neurons,
and the third dense layer used 32 neurons. The last dense layer
was fed into the softmax classifier [54]. In addition, the dropout
layers, with a ratio of 0.2, intervened between the dense layers
[55].

Figure 7. Pseudocode of the multilayer hybrid classification model (MLHC)-COVID-19.
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Figure 8. Flowchart of multilayer hybrid classification model (MLHC)-COVID-19.

Performance Evaluation
We divided the data set into a training set and a testing set at a
ratio of 80:20. The training set was utilized to train the
MLHC-COVID-19 model, and its performance was evaluated
through 10-fold cross-validation. The testing set, representing
unseen data, was utilized to select the optimal model among
the models generated in the training phase. The performance
measures were accuracy, sensitivity, specificity, precision, F
measure, and area under the curve (AUC) [56,57]. The
performance measure formulae are given in equations 5-10, and
the measured performances included the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). In
addition, the classification performance was evaluated using
the area under the receiver operating characteristic curve (AUC
of the ROC). We used the Python module 3.8.3 known as
Scikit-learn for machine learning algorithms [58] with an
NVIDIA GeForce-960 M GPU, 4 GB GDDR5 onboard memory
with Intel Core i7-6700 HQ (2.60 GHz, 6 MB L3 cache,
approximately 3.50 GHz), 8 GB DDR4 RAM, and 1 TB hard
drive.

Results

Considering the MLHC-COVID-19 design, the distribution of
data in each layer was imbalanced, potentially causing bias in
the evaluation. To solve the imbalance issue, we used the
synthetic minority oversampling technique (SMOTE) to balance
the classes [59]. The SMOTE synthesized new data from the
existing data using k-nearest neighbors and inserted them into
the original data set [60]. The results of using SMOTE are
presented in Table 3, which shows the number of images in
each class of the original and the SMOTE-augmented data sets
based on the MLHC-COVID-19 design. For instance, the
original data set consisted of 840 images in the healthy class
and 2520 images in the unhealthy class, resulting in the healthy
class being the minority class in Layer I. To balance both
classes, 1680 synthetic healthy instances were generated using
SMOTE.

We investigated 3 machine learning techniques: DT, SVM, and
NNs. The best classification model for each layer was selected
for the MLHC-COVID-19. Table 4 shows the classification
results for training and testing. During training, 10-fold
cross-validation was performed, and the results are shown as
the average (SD). First, the NNs achieved the highest accuracy
at 0.983 (SD 0.013) during the training, followed by SVM and
DT in Layer I. In addition, the NNs achieved the highest position
with a mean sensitivity of 0.987 (SD 0.012), specificity of 0.980
(SD 0.022), precision of 0.979 (SD 0.023), F measure of 0.983
(SD 0.013), and AUC of 0.995 (SD 0.005). Considering the
time, the DT minimized the time spent in Layer I. Considering
Layer II, the SVM had the highest performance metric in all
the aspects during the training (mean AUC 0.984, SD 0.004).
The second best was the NN, followed by the DT.
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Table 3. Comparison of the number of instances of the original and applied synthetic minority oversampling technique (SMOTE) data sets.

Images in the training set (80%), nMLHC-COVID-19a class

SMOTEOriginal

Layer I

2520840Healthy

25202520Unhealthy

Layer II

1680840COVID-19

16801680Non-COVID-19

aMLHC: multilayer hybrid classification model for COVID-19.

Table 4. 10-fold cross-validation results.

Train (10-fold cross-validation)Layer and performance metric

NNc, mean (SD)SVMb, mean (SD)DTa, mean (SD)

Layer I (healthy, unhealthy)

0.988 (0.010)d0.962 (0.006)0.863 (0.018)Accuracy

0.992 (0.007)d0.972 (0.009)0.719 (0.048)Sensitivity

0.985 (0.015)d0.953 (0.012)0.912 (0.009)Specificity

0.985 (0.014)d0.954 (0.011)0.728 (0.042)Precision

0.989 (0.009)d0.963 (0.005)0.723 (0.040)F measure

0.995 (0.005)d0.962 (0.006)0.819 (0.025)AUCe

24.888 (1.277)1.201 (0.123)1.108 (0.066)dTraining time (sec)

Layer II (COVID-19, non-COVID-19)

0.979 (0.005)0.985 (0.004)d0.936 (0.012)Accuracy

0.977 (0.007)0.981 (0.007)d0.950 (0.012)Sensitivity

0.981 (0.015)0.987 (0.005)d0.908 (0.026)Specificity

0.981 (0.015)0.987 (0.005)d0.954 (0.011)Precision

0.979 (0.005)0.984 (0.004)d0.952 (0.009)F measure

0.979 (0.005)0.984 (0.004)d0.929 (0.015)AUC

18.183 (0.493)0.275 (0.020)d0.749 (0.070)Training time (sec)

aDT: decision tree.
bSVM: support vector machine.
cNN: neural network.
dBest classification results.
eAUC: area under the curve.

Figure 9 shows a graphical representation of the averaged ROC
of the 0-fold cross-validation of the training. The NNs achieved
the best classification result in Layer I, and SVM outperformed
all the other models in Layer II.

Considering the 10-fold cross-validation, the proposed
MLHC-COVID-19 model consisted of 2 layers, in which NNs
were utilized in the first layer and SVM was utilized in the
second layer. The first layer was designed to differentiate

between healthy and unhealthy based on CXR images. The
second layer then classified the infected individuals into either
COVID-19 or non-COVID-19. For the testing, we separated
20% of the data set as mentioned in the previous section. The
classification results in the unseen test also confirmed that the
NNs and SVM are the best classifiers in Layers I and II,
respectively. However, to address the issue of class imbalance
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in the unseen test set, we applied the SMOTE to the data as
shown in Table 5.

The MLHC-COVID-19 model demonstrated superior
performance compared with other techniques in the unseen test
results. As presented in Table 6, the accuracy and F measure
of the MLHC-COVID-19 model in the unseen test set were
0.962 and 0.962, respectively. Figure 10 displays the full
confusion matrix of the MLHC-COVID-19 in the unseen test.
The MLHC-COVID-19 correctly identified 415 cases of

COVID-19. There were 2 COVID-19 cases that were
misclassified as non-COVID-19, and 3 COVID-19 cases were
incorrectly classified. Conversely, there were 8 cases (7
non-COVID-19 and 1 healthy) that were incorrectly classified
as COVID-19 cases. For the non-COVID-19 class, 7 cases were
misclassified as COVID-19, while 400 cases were correctly
classified, and 13 cases were misclassified as healthy. For the
healthy class, only 1 case was misclassified as COVID-19, 22
cases were misclassified as non-COVID-19, and 397 cases were
correctly classified.

Figure 9. Receiver operating characteristic (ROC) in (A) Layer I and (B) Layer II. ANN: artificial neural network; AUC: area under the curve; DT:
decision tree; SVM: support vector machine.

Table 5. Results of synthetic minority oversampling technique (SMOTE) on the unseen testing set.

Images in the testing set (20%), nClass

SMOTEOriginal

420210COVID-19

420420Non-COVID-19

420210Healthy

Table 6. Classification results from the multilayer hybrid classification model (MLHC)-COVID-19.

AccuracyF measureSensitivityPrecisionClass

—a0.9850.9880.981COVID-19

—0.9480.9520.943Non-COVID-19

—0.9530.9450.961Healthy

0.9620.9620.9620.962Macro-average

aNot assessed.
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Figure 10. Confusion matrix of the multilayer hybrid classification model (MLHC)-COVID-19.

Discussion

Principal Findings
Our study showed that the MLHC-COVID-19 model achieved
promising results in terms of accuracy, sensitivity, and precision
for classifying healthy, non-COVID-19, and COVID-19 images.
Image preprocessing played a crucial role in obtaining
meaningful information and accurate classification by
eliminating noisy or distorted pixels from each image. This
allowed the classification model to diagnose infections from
CXR images effectively. Additionally, histogram analysis of
CXR images and L2-normalization reduced the training time
of the model to less than 30 seconds. The data set was also
divided based on a newly proposed multilayer design.

Comparison With Prior Work
Diagnosis of COVID-19 was based on analyzing or classifying
CXR images. Recent studies showed various preprocessing

techniques, feature extraction methods, and classification
approaches. Two main deep learning techniques, the customized
CNN and ensemble learning methods, were extensively used
in most recent research. Due to the complexity of the deep
learning techniques, they require extensive computer processing
performance. We aimed to develop the MLHC-COVID-19
model to reduce the processing time compared with other deep
learning techniques while still maintaining acceptable
performance. Our objective was to achieve a reliable COVID-19
diagnosis from CXR images and reduce the likelihood of
misdiagnosis. The model achieved an accuracy of over 95%,
which was higher than other similar work. These results are
detailed in Table 7, which compares our model with those in
other studies. Our MLHC-COVID-19 model outperformed the
hybrid ensemble model, which achieved an accuracy of 0.942,
sensitivity of 0.884, precision of 0.899, and F measure of 0.886
on the same data set in [31]. Our proposed model achieved a
higher accuracy of 0.962 and F measure of 0.962.
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Table 7. Comparison of the COVID-19 classification results.

StudyAUCaF measurePrecisionSpecificitySensitivityAccuracyHybrid or ensemble
model

Number of
classes

[21]—b0.9380.9090.9910.9680.990No2

[22]—0.9540.9540.9760.9540.969Yes2

[23]—0.9560.9500.9750.9690.950No3

[24]—0.983—0.991—0.983Yes3

[25]———0.9000.980—Yes2

[26]0.9990.9690.9850.97760.9540.975Yes3

[28]—————0.912No3

[29]—0.9430.9760.9800.9110.947Yes2

[30]0.9930.9930.9930.9940.9900.993Yes2

[31]—0.8860.899—0.8840.942Yes4

MLHC-COVID-19c—0.9620.962—0.9620.962No3

aAUC: area under the curve.
bNot assessed.
cMLHC: multilayer hybrid classification model for COVID-19.

Limitations
The MLHC-COVID-19 model has some limitations that can be
improved upon. Currently, the model is designed for global
classification, meaning it cannot identify specific abnormal
regions within CXR images. We plan to explore other data
preprocessing techniques beyond histogram analysis that may
lead to better classification results. Additionally, there are still
other techniques available for COVID-19 classification that we
aim to explore. Last, our goal is to enhance the
MLHC-COVID-19 model by adding another layer that can
classify viral pneumonia and bacterial pneumonia, resulting in
a 4-class classification system.

Conclusion
We developed the MLHC-COVID-19 to diagnose COVID-19
from CXR images. Our model combines multiple individual
models to leverage the strengths of each and improve the overall

accuracy and robustness of the system for diagnosing
COVID-19. The MLHC-COVID-19 model was designed to
differentiate COVID-19–infected CXR images from healthy
and non-COVID-19 images, such as those affected by viral or
bacterial pneumonia. The model was thoroughly evaluated and
compared with other preprocessing techniques and methods to
assess its effectiveness. The findings of this study were
acceptable when compared with the other techniques.
Considering the current situation, the computer-aided diagnosis
tool must be easily accessible; therefore, a web-based solution
is also feasible. In terms of the practical implication, we
developed a prototype for a web-based computer-aided diagnosis
tool [32] as an alternative to bring the MLHC-COVID-19
technique into the clinical setting as a useful tool for supporting
radiologists in improving COVID-19 accuracy. The main system
of this tool allows users to upload CXR images, which are then
diagnosed by the MLHC-COVID-19. The tool will evaluate
whether the image is healthy, non-COVID-19, or COVID-19.
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SVM: support vector machine
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TP: true positive
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