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Abstract

Background: Medical artificial intelligence (AI) has significantly contributed to decision support for disease screening, diagnosis,
and management. With the growing number of medical AI developments and applications, incorporating ethics is considered
essential to avoiding harm and ensuring broad benefits in the lifecycle of medical AI. One of the premises for effectively
implementing ethics in Medical AI research necessitates researchers' comprehensive knowledge, enthusiastic attitude, and practical
experience. However, there is currently a lack of an available instrument to measure these aspects.

Objective: The aim of this study was to develop a comprehensive scale for measuring the knowledge, attitude, and practice of
ethics implementation among medical AI researchers, and to evaluate its measurement properties.

Methods: The construct of the Knowledge-Attitude-Practice in Ethics Implementation (KAP-EI) scale was based on the
Knowledge-Attitude-Practice (KAP) model, and the evaluation of its measurement properties was in compliance with the
COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) reporting guidelines for
studies on measurement instruments. The study was conducted in 2 phases. The first phase involved scale development through
a systematic literature review, qualitative interviews, and item analysis based on a cross-sectional survey. The second phase
involved evaluation of structural validity and reliability through another cross-sectional study.

Results: The KAP-EI scale had 3 dimensions including knowledge (10 items), attitude (6 items), and practice (7 items). The
Cronbach α for the whole scale reached .934. Confirmatory factor analysis showed that the goodness-of-fit indices of the scale

were satisfactory (χ2/df ratio:=2.338, comparative fit index=0.949, Tucker Lewis index=0.941, root-mean-square error of
approximation=0.064, and standardized root-mean-square residual=0.052).

Conclusions: The results show that the scale has good reliability and structural validity; hence, it could be considered an effective
instrument. This is the first instrument developed for this purpose.
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Introduction

The expression “artificial intelligence” (AI) was introduced by
John McCarthy, and the official birth of AI as a field of research
was unanimously considered at the Dartmouth Conference in
1956 [1]. AI has been defined as “the machine simulation of
human mental reasoning, decision making, and behavior” [2].
The increased power of computing, storage capacity expansion,
and compilation of big medical data helped the AI
implementation surge in medical practice and research [2].
Medical AI is currently used in various medical fields such as
medical image analysis, disease screening and prediction,
clinical decision support, surgical robotics, health management,
virtual medical assistants, and aiding in screening drug targets
[3-7]. However, while the rapid development of AI brings higher
efficiency, accuracy, and convenience to medicine and health
care, it is also accompanied by many risks and challenges. Such
issues are related to the intrusion of AI algorithms into the
privacy and intimacy of people under investigation, enormous
deficits of informed consent detected in AI research processes,
and shirking liability in medical malpractice where AI is applied
in decision-making [8-10]. There is now a growing consensus
among experts that implementing ethics in medical AI research
is crucial [11].

National and international research institutions have put forward
several principles or guidelines for ethical governance of
medical AI. The guidelines of the Ethics and Governance of
Artificial Intelligence for Health (World Health Organization,
2021) [12] contains a set of recommendations to ensure that the
governance of AI holds all stakeholders accountable and
responsive to end users, and TheNew Generation of Ethical
Norms of Artificial Intelligence (Ministry of Science and
Technology of China, 2021) [13] and TheGuidelines of
Strengthening Governance over Ethics in Science, Technology
(General Office of the State Council of China, 2022) [14] raise
some similar principles of ethics governance in the development
and application of AI. Meanwhile, the Data Governance Act
(European Parliament, 2020) [15] suggests certain technical
instruments to ensure the preservation of protection, privacy,
and confidentiality in the transfer, reuse, and recovery of data
by third parties, and the Artificial Intelligence Act (European
Parliament, 2021) [16] establishes a European Artificial
Intelligence Committee to ensure compliance with the
implementation and enforcement of the regulations and
encourage the exchange of best practices. There are also several
strategies for implementing ethics into medical AI research.
One approach is to consider ethics at the design and requirement
capture stage by embedding ethical values into the application
using methodologies such as Value-Sensitive-Design [17] and
Values in Motion Design [18]. Others consist of coding ethics
in the operating system [19], embedding ethics principles in the
algorithm [20], and monitoring and evaluating the applications
[21].

Implementing ethics is essentially motivated by the need to gain
the trust of the patients, the implementor being the researcher
[22]. Successful ethics engagement requires the ethical
competence of stakeholders as well as the intention to comply
with corresponding values. The prerequisite is that the
researchers master relevant ethical knowledge, agree with ethical
values, and then behave as expected [23]. Currently published
ethics implementation evaluation mainly focuses on better
patient outcomes [22,24], reporting the safety, equity,
cost-effectiveness, privacy, clear professional responsibilities,
autonomy, justice, and fairness in AI development and
implementation [22,24-27], conducted through checklists,
questionnaires, or stakeholders' consultations to promote careful
design and execution of medical AI research, and to assess the
ethical and social implications of AI implementations [28-30].
We frequently fail to consider the perception of ethics
implementation among medical AI researchers, which serves
as the fundamental driving force for ensuring ethical practices.
To address this gap, it is crucial to develop tools that
comprehensively measure AI researchers' knowledge, attitudes,
and practices of ethics implementation.

The Knowledge-Attitude-Practice (KAP) model is widely used
in medical research as the most commonly used model [31-33],
proposed that knowledge was the basis of behavior change, and
attitude and practice are the driving force of behavior change.
This study aimed to develop a scale based on the KAP model
for measuring the perception of ethics implementation among
medical AI researchers and evaluate the reliability and structural
validity of the scale. Our hypothesis is that the scale is
well-designed and has good measurement properties.

Methods

Study Design
The study was conducted in 2 phases. Item generation,
expression refinement, and item analysis were involved in the
first phase through systematic literature reviews, qualitative
analysis, and item analysis based on a cross-sectional study. In
the second phase, another cross-sectional survey was conducted
to test the measurement properties of the developed scale.

Procedures and Participants

Phase 1-1: Item Generation and Cognitive Interview
The KAP model was used as the conceptual framework to define
the construct to be measured. Based on the model, knowledge
is composed of scientific knowledge, local knowledge, tacit
knowledge, and self-reflective knowledge [34]. Attitude referred
to a positive or negative option of objective evaluation [35].
Practice included regular activities influenced by widely shared
beliefs [36]. The initial step involved systematic literature
retrieval to gather guidelines, expert consensus, practice
standards, and norms referring to the implementation of ethics
in AI research. A librarian working in the hospital library
provided valuable assistance during this process (see Multimedia
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Appendix 1). Then, a focus group interview was conducted,
consisting of 10 experts (2 medical ethics professors, a sociology
professor, 3 AI professors, and 4 medical professors proficient
in medical AI implementation research). They expressed their
opinions on the following issues: (1) what is your understanding
of implementing ethics in medical AI research? (2) What
knowledge do you think medical AI researchers should master
to help implement ethics? (3) What are your perceptions of
implementing ethics in medical AI research? (4) How do you
implement ethics in medical AI research? Eventually, relevant
contents from various bodies of literature and interviews were
extracted and classified in accordance with the items.

All the generated items were sent to another 10 experts
(including medical ethics professors, sociology professors, AI
professors, and medical professors) for consultation. Item
deletion and revision were applied in accordance with the
findings from 3 rounds of expert consultation. After that, the
first draft was formed. Eight people (including AI researchers,
health care workers, and health information managers) were
invited to complete the first draft scale and then interviewed
with the following questions: (1) was each item clearly
expressed without ambiguity? If no, please identify the unclear
or ambiguous expressions. (2) Were there any items difficult
to understand? If yes, please identify the difficulties and if not,
please try to explain each item in your own words. (3) What
were your reasons for each of your answers? (4) What else is
needed to be added? Language readability of each point was
modified in accordance with the comments. The time that each
person spent completing the questionnaire was also recorded.
The final draft was a 5-point Likert scale with 3 dimensions.
The responses for the dimension of knowledge ranged from
“not familiar at all (1 point)” to “extremely familiar (5 points),”
that for attitudes ranged from “strongly disagree (1 point)” to
“strongly agree (5 points),” and that for practice ranged from
“never (1 point)” to “always (5 points).” Reverse scoring was
performed for the items running in the opposite direction. Face
validity was calculated by scoring with a 4-point scale [37]
(1=not relevant, 2=unable to assess or need much revision,
3=relevant but need minor revision, and 4=very relevant and
succinct) with the other 52 participants. The inclusion criteria
were AI developers, AI algorithm engineers, or AI
implementation researchers with relevant experiences of more
than 5 years.

Phase 1-2: Item Analysis
A cross-sectional survey was conducted on June 25, 2022, and
ended on July 31, 2022. Considering that the amount of medical
AI researchers is relatively small, snowball sampling [38-40]
was used to enrich survey samples in the cross-sectional study.
Researchers of medical AI development or medical AI
application were eligible to serve as participants if they had
taken part in more than 1 medical AI research project. Potential
participants were excluded if none of the projects they were
involved in had been finished; if the time they spent completing
the survey was too short or too long (time<mean-SD or
time>mean+SD), if their answers to demographic questions
were illogical, and if their answers to all items were the same.
At first, 6 medical AI researchers who had previously worked
on medical AI research projects with our hospital were

identified. They were from hospitals, the department of
computer science at a certain university, and 3 computer
programming companies across the regions of North China,
East China, and Northeast China. Initially, they were invited to
complete the questionnaire, and then they were asked to send
the QR code or link of the blank questionnaire to their colleagues
or research partners who were eligible and might be willing to
be recruited. Subsequent participants repeated the
abovementioned procedure to recruit other potential participants
until the required sample size was achieved. Ideally, each
participant was asked to invite 3-5 eligible individuals to join
the study.

We distributed an electronic questionnaire including participants'
demographics and the final draft by Wenjuanxing [41], a
professional and widely used website for conducting surveys
in China. Participants could scan the QR code using their cell
phones or log in on their computers to access and complete the
questionnaire. The purpose of the survey and answering
instructions were described on the first page of the web-based
questionnaire. The participants were suggested to complete the
questionnaire within 5 to 10 minutes. The time limit was set on
the basis of the actual time spent on the questionnaire recorded
in the first phase of the study. There is also a limit on
respondents’ IP addresses to avoid multiple enrollments. A
reminder for checking blank answers was set to block the
submission of unfinished questionnaires.

Phase 2: Testing Reliability and Structural Validity
Another cross-sectional survey was conducted on February 20,
2023, and ended on April 26, 2023, for testing the reliability
and structural validity of the scale, following the
COnsensus-based Standards for the selection of health status
Measurement INstruments (COSMIN) reporting guideline [42].
Snowball sampling was adopted again. The inclusion and
exclusion criteria were the same as those in the first
cross-sectional study. The sample-to-item ratio is used to decide
the sample size. The sample size was estimated at 15 to 20
participants per item in the first survey [43]. As there were 23
items in the developed scale, a sample size of 345 to 460
participants was required. Paper questionnaires were distributed
by trained investigators employed at each survey site.

Statistical Analysis
Excel 365 for Windows (Microsoft Corp) was used to establish
a database. Data were analyzed using SPSS (version 25.0; IBM
Corp) and AMOS (version 24.0; IBM Corp) for Windows.

Descriptive statistics are used to show the characteristics of the
participants involved in the cross-sectional studies. Item analysis
was conducted as described previously [44] by calculating the
following: (1) item discrimination: after ranking the participants
by their total score on items, we selected those from the top
27% and the bottom 27% and ran an independent t test to
determine whether each item could significantly distinguish the
2 groups. The item that failed to do so or whose t value was <3
would be removed. (2) Item correlation: we inspected the
correlation matrix between items and scale and removed the
item whose correlation coefficient was less than 0.40. (3) Item
homogeneity: we measured the Cronbach α coefficient of the
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scale first and inspected the change in value by deleting 1 item
at a time. The item would be removed if the changeable value
was significantly higher than the original one, the absolute value
of factor loading was less than 0.4, or the value of community
was less than 0.6.

A test of structural validity was performed using exploratory
factor analysis (EFA) and confirmatory factor analysis (CFA).
The Kaiser-Meyer-Olkin (KMO) and Bartlett tests were used
to determine whether our data were suitable for EFA. A Bartlett
score of <0.05 and a KMO score of ≥0.7 were considered
appropriate. The Varimax oblique rotation method was applied
to extract the factor loadings [45]. As the KAP model is
composed of 3 dimensions, the third-order CFA model was
used to establish the scale’s construct validity. To assess the
model’s fitness, the following absolute and incremental fit
indices were used: (1) root-mean-square error of approximation
(RMSEA), with 0.08 as a cutoff for poor-fitting models; (2)
standardized root-mean-square residual (SRMR), where a value
of less than 0.08 is generally considered a good fit; (3)
comparative fit index (CFI) ranging between 0.0 and 1.0, where
values closer to 1.0 indicate good fit (CFI≥0.90); and (4) Tucker
Lewis Index (TLI), also ranging between 0.0 and 1.0, where
TLI≥0.9 indicates a good fit [45-48].

For face validity, the item-level content validity index (I-CVI)
was computed as the number of experts assigning a scoring of
4 or 3 for each item divided by the total number of experts.
Similarly, the average scale–level CVI (S-CVI/Ave) was

calculated using the number of items that achieved a scoring of
4 or 3 divided by the total number of items. Interrater reliability
(IRR) was calculated using the total number of items scoring
in agreement divided by the total number of items. An I-CVI
of ≥0.8, S-CVI/Ave of ≥0.9, and IRR of >0.7 were considered
acceptable [49,50].

For the reliability of the scale, a Cronbach α of ≥.7 was used
as the reference. Both values for split-half reliability and
test-retest reliability of ≥0.7 were considered acceptable.

Ethical Considerations
The study was conducted in accordance with the guidelines of
the Declaration of Helsinki and approved by the Research Ethics
Board of the Children's Hospital of Fudan University (2022-52).

Results

Sample Characteristics
A total of 306 responses were received in the first survey and
48 questionnaires were excluded (5 with illogical answers about
date of birth, 23 with an answering time of <8.21 (SD 4.18)
minutes, and 9 had the same answers to all items). Finally, 269
questionnaires were included in the analysis of the first survey.
Similarly, 481 responses were received in the second survey
with 11 questionnaires excluded for having the same answers
to all items. The characteristics of the participants are shown
in Table 1.

Table 1. Characteristics of participants in the first and second surveys.

Participants in the second survey, n (%)Participants in the first survey, n (%)Characteristic

Gender

368(78.3)196 (72.9)Male

102 (21.7)73 (27.1)Female

Related working experience

231 (49.1)137 (50.9)<3 MAIa research projects

179 (38.1)102 (37.9)3-5 MAI research projects

43 (9.1)22 (8.2)6-10 MAI research projects

17 (3.6)8 (3.0)>10 MAI research projects

Education level

185 (39.3)108 (40.2)Bachelor's degree

171 (36.3)101 (37.5)Master's degree

114 (24.3)60 (22.3)Doctoral degree

Occupation

134 (28.5)60 (22.3)Medical staff

148 (31.5)65 (24.2)Health information manager

117 (24.8)68 (25.3)AI research and development Engineer or algorithm engineer

0 (0)11 (4.1)Medical student

71 (15.1)65 (24.2)Computer science student

aMAI: medical artificial intelligence.

JMIR Form Res 2023 | vol. 7 | e42202 | p. 4https://formative.jmir.org/2023/1/e42202
(page number not for citation purposes)

Zhang et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Development of the Knowledge-Attitude-Practice in
Ethics Implementation Scale
In total, 25 items and 3 dimensions (9 for knowledge, 7 for
attitude, and 9 for practice) were generated first. Two identical
items were combined, 1 miscellaneous item was split, 8 items
were revised for obscure expression, and 3 items were added
as suggested by the experts during expert consultation. The
experts for content validity assessment also proposed wording
amendments in the practice dimension, such that the same
content is expressed in 2 ways from the perspective of both

research leaders or primary researchers and research participants.
The final draft (see Multimedia Appendix 2) had 28 items (F1-
F28). According to the results of item analysis, 5 items (F14,
F17, F19, F20, and F21) were removed for the suboptimal
absolute value of the critical ratio (CR), factor loading,
correlation coefficient, and Cronbach α coefficient (after the
change), as shown in Table 2. The final version of the
Knowledge-Attitude-Practice in Ethics Implementation
(KAP-EI) scale is presented in Multimedia Appendix 3 with 23
items.
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Table 2. Results of item analysis (N=28; Cronbach α=.904).

CommentsSubstandard
items, n

Item homogeneityItem correlation,
r (P value)

Item discrimination,
critical ratio (P value)

Item

Value of factor
loading

Value of commu-
nity

Cronbach α (after
the change)

Reserved00.6120.5070.9010.553 (<.001)8.567 (<.001)F1

Reserved00.7740.7130.8980.697 (<.001)11.741 (<.001)F2

Reserved00.7900.7640.8980.716 (<.001)12.84 (<.001)F3

Reserved00.8200.7920.8970.738 (<.001)13.995 (<.001)F4

Reserved00.8680.8470.8960.792 (<.001)16.119 (<.001)F5

Reserved00.8460.8090.8970.759 (<.001)13.874 (<.001)F6

Reserved00.8560.8480.8960.782 (<.001)16.168 (<.001)F7

Reserved00.8310.8170.8970.754 (<.001)15.388 (<.001)F8

Reserved00.8430.8240.8960.767 (<.001)14.848 (<.001)F9

Reserved00.8130.7260.8970.755 (<.001)14.326 (<.001)F10

Reserved00.7240.6900.9030.403 (<.001)6.078 (<.001)F11

Reserved10.8380.7840.9040.332a (<.001)3.896 (<.001)F12

Reserved00.7640.8130.9030.423 (<.001)5.792 (<.001)F13

Removed40.475a0.5740.909a0.141a (.02)2.366a (.02)F14

Reserved00.7960.7760.9030.417 (<.001)5.106 (<.001)F15

Reserved00.7360.6840.9030.401 (<.001)5.151 (<.001)F16

Removed4–0.505a0.3610.914a–0.142a (.02)–1.517a (.13)F17

Reserved10.7950.7550.9040.359a (<.001)4.938 (<.001)F18

Removed30.6690.5300.906a0.248a (<.001)2.705a (.008)F19

Removed4–0.297a0.6370.911a–0.029a (.63)–0.128a (.90)F20

Removed40.035a0.7230.909a0.124a (.04)1.536a (.13)F21

Reserved00.7110.6690.8960.739 (<.001)18.411 (<.001)F22

Reserved00.6850.7720.8970.718 (<.001)15.496 (<.001)F23

Reserved00.6120.7920.8990.641 (<.001)11.675 (<.001)F24

Reserved00.7180.7960.8960.749 (<.001)16.826 (<.001)F25

Reserved00.6150.8210.8990.639 (<.001)11.327 (<.001)F26

Reserved00.6850.8340.8970.710 (<.001)14.129 (<.001)F27

Reserved00.6680.8140.8980.677 (<.001)13.209 (<.001)F28

N/AN/A≥0.600≥0.200≤0.904≥0.400 (N/A)≥3.000 (N/Ab)Criteria

aSubstandard values.
bN/A: not applicable.

Face Validity of the KAP-EI Scale
The corrected I-CVI was 0.851, S-CVI/Ave was 0.901, and IRR
was 0.882.

EFA of the KAP-EI Scale

The Bartlett test was sensitive(χ2/df ratio=6583.040; P<.001),
and the KMO measure of sampling adequacy for the scale was
0.930, indicating that factor analysis was applied to the scale

sample. In the preliminary results, 3 factors were extracted and
explained 76.76% of the variance. EFA resulted in 3 factors
with a total of 23 items. The eigenvalue of factor 1, which
explained 44.25% of the variance, was 10.177. Based on the
scale items’ content, factor 1 was “knowledge” and comprised
10 items. The eigenvalue of factor 2, which explained 19.952%
of the variance, was 4.589. Based on the scale items’ content,
factor 2 was “attitude” and comprised 6 items. The eigenvalue
of factor 3, which explained 12.562% of the variance, was 2.889.
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Based on the scale items’ content, factor 3 was “practice” and comprised 7 items (Table 3).

Table 3. Exploratory factor analysis of the Knowledge-Attitude-Practice in Ethics Implementation scale.

Value of communityValue of factor loading after rotationItem

AttitudePracticeKnowledge

0.848N/AN/Aa0.884F7

0.846N/AN/A0.873F5

0.824N/AN/A0.873F9

0.816N/AN/A0.872F8

0.791N/AN/A0.857F4

0.809N/AN/A0.851F6

0.762N/AN/A0.850F3

0.712N/AN/A0.817F2

0.726N/AN/A0.799F10

0.507N/AN/A0.677F1

0.809N/A0.882N/AF26

0.834N/A0.879N/AF27

0.789N/A0.875N/AF24

0.810N/A0.864N/AF28

0.795N/A0.841N/AF25

0.771N/A0.839N/AF23

0.657N/A0.723N/AF22

0.7980.889N/AN/AF13

0.7990.883N/AN/AF15

0.8020.878N/AN/AF12

0.7540.867N/AN/AF18

0.7040.833N/AN/AF11

0.6900.825N/AN/AF16

N/A12.56219.95244.246Percentage of vari-
ance, %

N/A76.75964.19844.246Percentage of the cu-
mulative, %

aN/A: not applicable.

CFA of the KAP-EI Scale
Fit indices with a revised parameter specification yielded better

and reasonably good fit (χ2/df ratio=2.338, CFI=0.949,
TLI=0.941, RMSEA=0.064, and SRMR=0.052), which supports

the KAP-EI scale's 3D structure. Figure 1 shows the
standardized estimates of CFA. The standardized factor loadings
(λ) of all the items ranged from 0.62 to 0.92. The CR of the 3
dimensions of knowledge, attitude, and practice was 0.963,
0.935, and 0.948, and the average variance extracted was 0.725,
0.706, and 0.724, respectively.
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Figure 1. Standardized estimates of confirmatory factor analysis for the validation sample.

Reliability of the KAP-EI Scale
Each of the 3 dimensions demonstrated satisfactory internal
consistency with Cronbach α values in the range of .935-.964.

The Cronbach α for the whole scale approached .934 (Table
4).

Table 4. Internal consistency of the Knowledge-Attitude-Practice in Ethics Implementation (KAP-EI) scale.

Cronbach αScore, mean (SD)Items, nDimensions

.96429.85 (7.412)10Knowledge

.93523.98 (4.321)6Attitude

.95018.36 (7.362)7Practice

.93472.18 (1)4.13223KAP-EI scale

Discussion

Principal Findings
The purpose of this study was to develop a KAP model–based
scale for researchers to measure the implementation of ethics
into medical AI research and explore its validity and reliability.
The Cronbach α, the value for split-half reliability and test-retest
reliability of the whole scale, was higher than .7, which indicated

that the scale had excellent reliability. Additionally, the
corrected I-CVI was higher than 0.8, the S-CVI/Ave was more
than 0.9, and IRR was more than 0.7, which implied that it had
good content validity. The 3-factor model obtained after EFA
was tested by CFA. Based on the results, the model (23 items)
was a good fit for the data. For the item analysis, except for
F12, F14, and F17-F21, the correlation coefficient between the
items was greater than 0.4; the absolute value of the critical
ratio of F14, F17, F19, F20, and F21 was less than 3; the revised
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Cronbach α coefficient after deleting F14, F17, F20, and F21
was less than the original Cronbach α coefficient (.904); and
the absolute values of factor loading of F14, F17, F20, and F21
were less than 0.6. According to the experts' opinions from the
focus group interview at the stage of item generation, these
items were good questions because the response to either of
them was uncertain and the participants might freely express
their views. Notably, we intended to develop a scale to measure
medical AI researchers' knowledge, attitude, and practice in the
implementation of ethics, instead of investigating their views
about knowledge, attitude, and practice. The results also show
that questions about views were not suitable for a scale. F14,
F17, and F18-F21 were deleted in this procedure. To optimize
the questionnaire design, the content of items should have been
more specific and directional, but we failed to do that precisely
because China lacks the necessary mechanism guarantee for
ethics engagement and extensive research on the very subject.

Evaluation of the Implementation of Ethics in Medical
AI
While some strategies include ways of evaluating the
implementation of ethics [22,24-27], we could not find clear
measures on whether the implementations were successful in
medical AI research. The absence of clearly defined measures
of successful implementation of ethics might reveal a lack of
maturity in this emerging field. The complexity of implementing
ethics may reinforce the need for a common language among
different stakeholders [51].

The relationship between ethical values and behavior has
attracted the interest of social scientists for several decades
[52,53]. This is also reflected in correlation coefficients between
the dimensions of attitude and practice. Values (referring to
attitudes) are defined as desirable goals that act as guiding
principles in implementing ethics. They are then translated and
become visible through individual behaviors and concrete
actions (referring to practice). Values might be
incommensurable, and people may confer different significance
to the same value [54], which indicates a weak relationship
between attitude and practice in the implementation of ethics.
Similarly, correlation coefficients between the dimensions of
knowledge and practice also indicated a weak relationship.

Unsatisfactory performance of knowledge and practice in the
implementation of ethics [55,56] may be due to the unclear
ethics framework and the lack of a series of support such as
ethical training [23]. As far as ethical evaluation is concerned,
there are 2 important premises to decide whether the effect of
ethics implementation is good or not and whether it may be
reflected from medical AI researchers' KAP. One premise is
the supporting mechanism, and the other is a feasible ethics
framework. The supporting mechanism includes soft constraints
(such as ethical norms, specific requirements for ethical review,
etc), hard constraints (such as relevant laws and regulations),
and a series of conditions to guarantee them. The ethics
framework results from interdisciplinary cooperation of science,
engineering, and ethics to some extent, which requires joint
research and discussion with philosophers, medical AI
researchers, end users, and policy makers. Therefore, further
research to investigate the effectiveness of the framework is
needed, similar to this study, to serve as evidence for
decision-making. We hope that this scale serves as the first tool
to embark on further medical AI ethics implementation, which
still has a long way to go in China.

Limitations
Our results raise a number of issues, which could be best
explored in future research. First, the members of the expert
group who participated in the stage of item generation were
from the same university and the same tertiary hospital in
Shanghai; thus, the geographical limitation restricts the extent
of generalization of our findings. Second, the participants were
recruited through snowball sampling, which might have resulted
in a sample selection bias. In addition, with the rapid
development of medical AI, the approaches to implementing
ethics are also constantly changing. The usage of the scale
contents will be limited, and it needs to be revised regularly for
optimization.

Conclusions
Creating a comprehensive scale is of paramount importance in
investigating medical AI researchers' knowledge, attitudes, and
practices of ethics implementation. The KAP-EI scale appears
to be a reliable and valid instrument developed to advance the
measurement of the perception of implementing ethics among
medical AI researchers. To our knowledge, the KAP-EI scale
is the first instrument designed for this purpose.
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