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Abstract

Background: There were an estimated 100,306 drug overdose deaths between April 2020 and April 2021, a three-quarter
increase from the prior 12-month period. There is an approximate 6-month reporting lag for provisional counts of drug overdose
deaths from the National Vital Statistics System, and the highest level of geospatial resolution is at the state level. By contrast,
public social media data are available close to real-time and are often accessible with precise coordinates.

Objective: The purpose of this study is to assess whether county-level overdose mortality burden could be estimated using
opioid-related Twitter data.

Methods: International Classification of Diseases (ICD) codes for poisoning or exposure to overdose at the county level were
obtained from CDC WONDER. Demographics were collected from the American Community Survey. The Twitter Application
Programming Interface was used to obtain tweets that contained any of the 36 terms with drug names. An unsupervised classification
approach was used for clustering tweets. Population-normalized variables and polynomial population-normalized variables were
produced. Furthermore, z scores of the Getis Ord Gi clustering statistic were produced, and both these scores and their polynomial
counterparts were explored in regression modeling of county-level overdose mortality burden. A series of linear regression models
were used for predictive modeling to explore the interpretability of the analytical output.

Results: Modeling overdose mortality with normalized demographic variables alone explained only 7.4% of the variability in
county-level overdose mortality, whereas this was approximately doubled by the use of specific demographic and Twitter data

covariates based on a backward selection approach. The highest adjusted R2 and lowest AIC (Akaike Info Criterion) were obtained
for the model with normalized demographic variables, normalized z scores from geospatial analyses, and normalized topic counts

(adjusted R2=0.133, AIC=8546.8). The z scores of the Getis Ord Gi statistic appeared to have improved utility over
population-normalization alone. In this model, median age, female population, and tweets about web-based drug sales were
positively associated with opioid mortality. Asian race and Hispanic ethnicity were significantly negatively associated with
county-level burdens of overdose mortality.

Conclusions: Social media data, when transformed using certain statistical approaches, may add utility to the goal of producing
closer to real-time county-level estimates of overdose mortality. Prediction of opioid-related outcomes can be advanced to inform
prevention and treatment decisions. This interdisciplinary approach can facilitate evidence-based funding decisions for various
substance use disorder prevention and treatment programs.
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Introduction

Overdose from substance misuse remains a serious threat to
public health in the United States. Concerns relating to
overdose-related mortality have risen since the World Health
Organization declared COVID-19 a global pandemic on March
11, 2020, given the negative effects of the pandemic on mental
health and its potential cooccurrence with substance use disorder
(SUD) [1]. In the United States, it is estimated that there were
100,306 drug overdose deaths from April 2020 to April 2021,
with 3 quarters due to opioid use, an increase of 35% from the
prior year [2]. While overdose deaths from prescription opioids
and heroin have largely leveled off and are decreasing, there
has been a substantial rise in overdose deaths from the use of
synthetic opioids, such as fentanyl and polysubstance use [3].
Other contributing factors include mental illness, intentional
and accidental poisoning from prescription medication (eg,
neuroleptics, antidepressants), and occupational exposures (eg,
cholinergic agents), which can result in serious injury or death
[4,5].

Evidencing the ongoing severity of the national opioid public
health crisis, a retrospective, multicenter study of emergency
departments in Alabama, Colorado, Connecticut, North Carolina,
Massachusetts, and Rhode Island from January 2018 to
December 2020 found that while there was a 14% decline in
all-cause emergency department visits, there was a 10.5%
increase in overdose-related visits and a 28.5% increase in
opioid overdose rates [6]. What was already a growing opioid
disease burden at the beginning of the pandemic was attributable
to factors such as social isolation, interrupted access to
prevention and treatment services, and economic hardship [7].
A disparity in impact was also prominent along racial and ethnic
lines, with Black Americans experiencing the largest percent
increase in overdose death rates from 2019 to 2020 and
American Indians and Alaska Natives experiencing the highest
overdose death rates compared to other racial and ethnic groups
[8-10].

The National Poison Data System (NPDS) currently collects
and monitors self-reported accidental and intentional poison
exposures for use by epidemiologists, state and federal agencies,
and health practitioners. However, only a small amount (<5%)
of NPDS-generated alerts represent incidents of public health
significance [11], as many of these alerts take the form of routine
automated emails derived from minor random anomalies in data
received from local Poison Centers [12]. Hence, there is a clear
need for alternative, big data-driven toxicosurveillance systems
that can accurately use a wider breadth of covariates, including
potentially analyzing self-reported incidents by the public, in
order to characterize changes in burden from an overdose,
especially among localities with marginalized populations
[13,14]. Furthermore, examining data from a geospatial
perspective has the potential to elucidate specific communities
that are at higher risk for overdose-related burden.

Importantly, the lag time for reporting SUD burden may be
decreased by using natural language processing applied to
high-sample social media data in infodemiology and
infoveillance approaches (ie, the science of distribution and
determinants of information in an electronic medium) and using
these covariates to build predictive models of extant SUD burden
data [15]. Evidencing this potential, social media data is now
widely used to conduct public health surveillance for a number
of different human behaviors and health issues (eg, mental
health, tobacco use, nutrition, infectious diseases), including
substance use, misuse, and disorder [16,17]. For example,
unsupervised machine learning has been used to identify tweets
describing substance misuse and injection drug use associated
with the 2015 HIV outbreak in Scott County, Indiana, and
statistical approaches were used to fit demographic covariates
to these tweets [18]. Infodemiology-driven approaches may also
have the potential to characterize variations in predicted
incidents of public health significance closer to real-time,
including, but not limited to, identifying existing and new trends
in the misuse of prescription drugs, polysubstance use, and risk
of fentanyl exposure with high temporospatial resolution
[15,18-20]. Conceptually, web-based conversations relating to
a SUD-related topic are likely to represent temporally proximal
phenomena to substance use and its consequent disease burden
events, as discussions about these occurrences, are more likely
to occur soon after, rather than long after, the occurrences
themselves [21-23]. However, modeling the spatial distribution
of overdose mortality has not been done via a multistep method
incorporating objective text clustering, spatial aggregation,
mathematical transformations of spatial covariates, and statistical
modeling. An algorithm based upon these steps has the potential
to be replicated efficiently, thereby allowing for estimates of
public health burden with a reduced lag time when compared
to official estimates.

With the overdose burden growing during the COVID-19
pandemic, there is a pressing need to assess the utility of novel
public health surveillance approaches that can help identify
individual and community-level variations in SUD burden,
specifically mortality from an overdose. Here, the objective of
this retrospective infodemiology study was to incorporate
demographic data with geospatially tagged social media data
from Twitter to conduct an experimental modeling exercise for
generating predictions of county-level overdose death rates.

Methods

To carry out the study objective, this interdisciplinary
infodemiology study was conducted in five phases: (1) data
collection of tweets associated with SUD-related keywords and
slang terms, (2) characterization of tweet themes using
unsupervised machine learning, (3) geospatial aggregation, (4)
mathematical transformations of spatial patterns, and (5)
statistical modeling to assess potential predictive value for
overdose mortality. A visual summary of the methodology is
provided in Figure S1 in Multimedia Appendix 1.
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Data Collection
Publicly available social media posts were retrospectively
collected from Twitter in October 2021 using the Twitter
Academic Application Programming Interface (API). The
Twitter Academic API is a product track that includes access
to all API v2 endpoints to help academic researchers use Twitter
data. Compared to other APIs made available by Twitter, the
Academic API can obtain larger volumes of posts in a
retrospective query, though the output remains a subsample of
posts that are randomly selected from the larger population of
posts with user-defined specifications (eg, keywords and time
frames). Based on prior studies that have identified and
characterized self-reported SUD behavior by users on Twitter
and an unclassified Drug Enforcement Administration
intelligence report on drug slang code words, a group of

keywords specific to opioid and other controlled substance drug
names and slang terms were used for data collection (see Table
1) [24]. Tweets without geospatial information or that did not
have at least county-level resolution (eg, tweets geotagged to
the “United States” or “California, USA”) were removed prior
to topic modeling. Specifically, 28,400 tweets with latitude and
longitude coordinates were available from 1,266,479 tweets
containing the keywords specified. Demographic data at the
county level to compare to Twitter posts were available from
the American Community Survey. Crude death rates due to
drug overdose by county for the years 2017-2019 were obtained
from the Underlying Cause of Death database on the US Center
for Disease Control and Prevention Wonder data set [25]. The
ICD-10 codes used to obtain crude death rates due to drug
overdose are included in Multimedia Appendix 2.

Table 1. List of keywords used to obtain Twitter data used in model building.

Slang termDrug nameDrug class

Pain killer, Morph, Demmies, Dillies, Oxy, Miss Emma, Vikes,
O bomb, Octagons, Captain Cody, Percs, Oxycet, Hibilly heroin,
Oxycotton, Oxy 80s, Sizzurp, Purple drank, Blue heaven, Doors
and floors, Rushbo, Waston-387

Morphine, Oxycodone, Vicodin, Oxymorphone,
Codeine

Opioid products

Xannax, Adderal, Happy pillsXanax, Adderall, Ecstasy, or MDMAaOther controlled substances

Goodfella, China white, Fetty, FettyShine, Murder 8, Tango, and
cash

FentanylSynthetic opioids

aMDMA: 3,4-methylenedioxy-methamphetamine.

Unsupervised Machine Learning for Content Detection
and Analysis
The Biterm Topic Model (BTM) was used for unsupervised
topic modeling of the corpus of tweets generated from our data
collection of specific opioid and drug-related keywords. We
used BTM for clustering keyword-containing tweets and
omitting irrelevant topics, as well as the backward selection
approach used for model building for eliminating clusters of
tweets with no statistical association to county-level variation
in overdose mortality. Topics outputted by BTM are based upon
the cooccurrence of words (ie, “biterms”) within a corpus of
tweets and are particularly useful when exploring new topics,
identifying new trends, and characterizing user-generated
content in the absence of training data used for supervised
machine learning approaches.

BTM is based on the Dirichlet distribution, with equivalent
shape parameters and a prespecified k to denote the number of
topics modeled. BTM has been demonstrated to generate
improved coherence scores and intercluster distance for
short-form texts when compared to other topic modeling
approaches such as latent Dirichlet allocation, and hence was
chosen for topic exploration of tweets associated with SUD
behavior. BTM was set to output k=20 topic clusters, but topic
saturation was reached with 10 clusters. To understand the types
of content within each cluster, we reviewed the top 10 tweets
within each cluster, with some clusters having word clusters
common to drug-related topics and others consisting of “noise”
(ie, topics likely not explicitly related to drugs or SUD though
containing study keywords; see Table 2). The UMass coherence
score, a logarithmic measure of co-occurring word frequency
when adjusted for the frequency of 1 word in the biterm, was
used to describe the cohesiveness of the topics generated in this
study [26].
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Table 2. Description and example keywords obtained from the first round Biterm Topic Model (BTM).

Example tweetExample keywordsTopic descriptionCorpus
percent

BTM topic
number

“Devo prendere lo Xanax.”“drugs”; “Xanax”; “online”;
“amidon”; “pour”

Common Spanish terms; drug
related keywords

4.0%Topic 1

“no vean how to sell drugs online, es una trampa”“que”; “de”; “mas”; “como”;
“con”

Common Spanish terms; unclear
topic

11.9%Topic 2

“tough choice. I‚Äôd do a Xanax-infused coq au vin. A
total win-win.”

“vikes”; “Vikings”; “season”;
“captain”; “team”

Terms relating to Viking Nation-
al Football League team

9.1%Topic 3

“Y‚Äôall be letting ppl who can‚Äôt start their day
without popping 4 Xanax, 2 percs, and pouring up a 4
of lean tell y‚Äôall what‚Äôs cool. Y‚Äôall some losers
too”

“perc”; “drank”; “hydros”;
“Xanax”; “sizzurp”

Drug and drug slang terms8.8%Topic 4

“anksiyete krizi garantili. b√∂yle kahvaltilarda yanim-
dan xanax‚Äôƒ± eksik etmem”

“bhi”; “ko”; “pedido”; “ka”;
“hai”

Common Turkish terms1.8%Topic 5

“Pota nakaapat na transaction ako sa shopee ah drugs
talaga online shopping fak la na q pera”

“di”; “sa”; “kalo”; “tapi” “ju-
ga”; “jadi”

Common Indonesian terms4.0%Topic 6

“Monkish Monday and da üêª Bears....thnx Nella.. -
Drinking a Blue Heaven On Earth by @monkishbrewing
@ FireSky Hop Farm ‚Äî “

“drinking”; “blue”; “butler”;
“cash”; “commons”

Drug and alcohol-related slang
terms

15.2%Topic 7

“I‚Äôm going to buy a dozen Xanax tablets the size of
an Ivory soap bar and just use them starting on Tuesday
morning.”

“floors”; “jodhpur”; “kitchen”;
“use”; “walls”

Real estate terms; Hindi terms7.7%Topic 8

“eddie that was caught up in the 80s selling drugs and
pimpin‚Äô then started smoking a little crack &gt; white
nyc gentrifiers on oxy askin”

“buy”; “drugs”; “online”;
“money”; “think”

General online drug selling terms32.9%Topic 9

“Police were called to Larchmont Road, Leicester, at
8.15pm today (Saturday 26 September) after a collision
involving 3 vehicles. A 32-year-old man was arrested
on suspicion of drink driving and driving whilst disqual-
ified.”

'police', ‘murder’, 'hospital',
'blood', 'justice', 'donate'

Crime-related terms4.7%Topic 10

Geospatial, Statistical, and Predictive Model Building
Tweets from topics featuring drug-related terms (ie, topics 1,
4, 7, and 9) were used for further geospatial and statistical
analyses (although modeling conducted with all 10 topics is
presented in Table S1 in Multimedia Appendix 1 for
comparison). Tweets corresponding to each selected topic were
geolocated, aggregated to the county level, and normalized to
the county-level population. The Getis Ord Gi statistic was used
to calculate z scores for the geospatial clustering of tweets for
each selected BTM topic. In simple terms, for a given value
(eg, number of tweets), the Getis Ord Gi statistic determines
whether a county is part of a high-value cluster (ie, hot spot) or
low-value cluster (ie, cold spot) by determining whether the
observed values for that county and nearby counties significantly
deviate from expected values, which are based off the entire
(ie, national) set of values [27]. The z scores produced from this
statistic provide a quantifiable gradient of high-to-low value
clustering for a given county in the context of neighboring
counties. Polynomial terms were computed for normalized
counts and normalized z scores of the Getis Ord Gi statistic,
thereby producing 4 mathematical representations of geospatial
distributions for each of the 9 BTM topic clusters. These 4
statistics were also computed for each of the following 22
demographic variables: (1) race and ethnicity: Caucasian,
African American, American Indian or Alaska Native, Asian,

Native Hawaiian or Pacific Islander, Hispanic, other race,
multiracial; (2) sex: male or female; and (3) age: under 5 years,
5-9 years, 10-14 years, 15-19 years, 20-24 years, 25-34 years,
35-44 years, 45-54 years, 55-64 years, 65-74 years, 75-84 years,
and over 85 years.

The estimated actual rates of death were missing for 44.6%
(1403/3143) of US counties. In order to create an estimate of
the death data for these counties, the values of neighboring
spatial features were used to impute values for the counties with
missing data. Using the space-time pattern mining toolbox in
ArcGIS (Esri), the estimated actual rates of death due to drug
overdose were imputed for counties with missing data [28]. The
spatial relationships were conceptualized using the continuity
edges corner option, in which neighboring counties that share
a boundary, share a node, or overlap will influence the
computations. The actual rates of death due to drug overdose
(including imputed values for missing data) were used for further
geospatial visualizations and analyses. Geospatial analysis was
conducted in ArcGIS Pro 2.9.

While Twitter data included posts from 2012-2021, the estimated
actual death rates due to drug overdose (including imputed data)
used in the model were from 2017-2019, inclusive. Linear
regression was used for predictive modeling to facilitate the
interpretability of the analytical output. Specifically, a series of
initial models that included normalized demographic variables,
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normalized BTM topic counts, and normalized z scores from
geospatial analyses were followed by polynomial normalized
demographic variables, polynomial normalized BTM topic
counts, and polynomial normalized z scores from geospatial
analyses that were used separately and in combination to select
final models with a minimum prediction criterion that could
significantly predict the spatial distribution of mortality rates
from a drug overdose. Normalized z scores and counts for all
topics were made available to a backward selection algorithm
in order to enable higher prediction and also to illustrate the
generation of models using an automated approach. The function
step Akaike information criterion (AIC) in the MASS library
on R was used to select at each step the model that minimizes

the prediction criterion AIC [29]. The adjusted R2 and AIC
values for each of the final models were calculated. The effect
estimates and model statistics were computed for the selected

models with the highest adjusted R2 values. Using the model

with the highest adjusted R2, the predicted rates of death due to
drug overdose were calculated for each county. Statistical
analyses were performed using R (version 3.6.1; R Foundation
for Statistical Computing).

The ratio of predicted to actual rates of death due to drug
overdose was calculated for each county using the model with
the highest R-squared produced by this study (see Table S2 in
Multimedia Appendix 1), to provide an illustration of predictive
power using the full breadth of geospatial and statistical
covariates generated with the techniques discussed in this study.
Descriptive statistics were computed for the actual and predicted
rates of death due to drug overdose as well as the ratio between
the two. Heatmaps were created for (1) actual rates of death due
to drug overdose, (2) predicted rates of death due to drug
overdose, and (3) the ratio of predicted to actual rates. The
heatmaps were color-coded based on the natural breaks
algorithm for actual rates of death due to drug overdose, and
the same intervals were used for the heatmap on predicted rates
of death due to drug overdose. The average ratio of predicted
to actual rates was calculated for each state based on
county-level data. Heatmaps were created using ArcGIS Desktop
10.7.1.

Ethical Considerations
As this study did not involve people, medical records, human
tissues, or any other personally identifiable information,
institutional review board approval was not required.

Results

There were 28,400 geospatially identifiable Twitter posts
containing the designated keywords, published between
December 2012 and September 2021. This corpus was divided
into 10 topics using the BTM algorithm. The overall UMass
coherence score was –1505, within a typical range for coherence
for topic modeling of short-form texts. The BTM coherence
score was –1281 for topic 1, –1318 for topic 2, –1447 for topic
3, –1643 for topic 4, –1599 for topic 5, –1389 for topic 6, –1722
for topic 7, –1618 for topic 8, –1593 for topic 9, and –1505 for
topic 10; indicating scores consistent with those for high-term
corpuses in seminal work used to relay the cohesiveness of

output from BTM [30]. Topics 1, 4, 7, and 9 were chosen for
further modeling as their themes conveyed associations with
drug-related activity. Mathematical transformations of spatial
patterns were used to generate 14 initial models (see Table 3).

Based on the stepwise AIC method, the highest adjusted R2 and
lowest AIC were obtained for the model with normalized
demographic variables, normalized z scores from geospatial

analyses, and normalized topic counts (adjusted R2=0.133,
AIC=8546.8), followed by the model with normalized
demographic variables and normalized z scores from geospatial

analyses (adjusted R2=0.131, AIC=8548.6). In the final model

with the highest adjusted R2, the transformation of Twitter data
covariates to z scores of the clustering statistic was common,
except for topic 4, which was represented as a count (see Table

4). The difference in the adjusted R2 between the model with
demographic variables, geospatial z scores, and topic counts
and the model with only demographic variables was 0.059.
Hence, an additional 5.9% variability in the rate of death due
to drug overdose was able to be predicted by using normalized
geospatial z scores of SUD-related Twitter posts, when
compared to a model with demographic covariates alone.

The average actual rate of death due to drug overdose (21.62
per 100,000) was comparable with the average predicted rate
of death due to drug overdose (22.00 per 100,000). In addition,
the average ratio of predicted overdose to actual overdose was
1.14. Carver County in Minnesota had the highest ratio of
predicted to actual rates (4.16). While the highest actual rate of
death due to drug overdose was in Cabell County in West
Virginia (126.73 per 100,000), the highest predicted rate of
death due to drug overdose was in Queen Anne's County in
Maryland (37 per 100,000), indicating a regression toward the
mean for modeled output. The highest difference of 25.3 per
100,000 between predicted and actual rates was observed in
Charlotte County, Florida. The actual and predicted rates of
death due to drug overdose, and the ratio between the two for
each county, are visualized in Figure 1. At the state level,
Alabama had the highest average ratio of predicted to actual
rates of death due to drug overdose (1.58) and the highest
average difference between predicted and actual rates of death
due to drug overdose (5.94 per 100,000). The average predicted
rate of death due to drug overdose fell within 20% accuracy for
15 states: Connecticut, Delaware, Hawaii, Illinois, Kansas, New
Hampshire, New Mexico, New York, North Dakota, Oklahoma,
Rhode Island, Utah, Vermont, Virginia, and Wyoming.

A model with normalized demographic covariates alone
explained only 7.4% of the spatial variability in overdose
mortality, which was not improved by the use of polynomial
terms. However, the model with the highest coefficient of
determination did include several demographic terms. These
included 2 racial covariates, suggesting that modeling spatial
patterns for overdose mortality would optimally take into
account race-based disparities at the community level.
Specifically, in this final model, Asian race and Hispanic
ethnicity were significantly negatively associated with
county-level burdens of overdose mortality, indicating that areas
with a relatively greater burden of overdose mortality do not
include high concentrations of these racial and ethnic groups.
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Table 3. Model prediction of drug overdose death rates using stepwise Akaike information criterion (AIC).

Model

P value

Model adjusted

R2
Model AICFinal model variablesInitial modelNumber

<.0010.0748658.01 •• Median ageNormalized demographic variables
• Female population
• Asian population
• Hispanic population

<.0010.0488706.02 •• Topic 1 z scoresNormalized geospatial z scores (topics 1, 4, 7,
and 9) • Topic 4 z scores

• Topic 9 z scores

.120.0018787.23 •• Topic 7 countNormalized BTM topic counts
• Topic 9 count

(topics 1, 4, 7, and 9)

<.0010.1318548.64 •• Median ageNormalized demographic variables
• Normalized geospatial z scores (topics 1, 4, 7,

and 9)
• Female population
• Asian population
• Hispanic population
• Topic 1 z scores
• Topic 9 z scores

<.0010.0798651.15 •• Median ageNormalized demographic variables
• Normalized BTM topic counts (topics 1, 4, 7,

and 9)
• Female population
• Asian population
• Hispanic population
• Topic 1 count
• Topic 9 count

<.0010.0498705.16 •• Topic 1 z scoresNormalized geospatial z scores
• Normalized BTM topic counts (topics 1, 4, 7,

and 9)
• Topic 4 z scores
• Topic 7 z scores
• Topic 9 z scores
• Topic 1 count

<.0010.1338546.87 •• Median ageNormalized demographic variables
• Normalized geospatial z scores • Female population

• Asian population• Normalized BTM topic counts (topics 1, 4, 7,
and 9) • Hispanic population

• Topic 1 z scores
• Topic 4 z scores
• Topic 9 z scores
• Topic 4 count

<.0010.0718668.28 •• Median agePolynomial normalized demographic variables
• Female population
• Male population
• Hispanic population
• Black population
• White population
• American Indian population
• Other race population

<.0010.0298739.19 •• Topic 1 z scoresPolynomial normalized geospatial z scores
(topics 1, 4, 7, and 9) • Topic 4 z scores

• Topic 9 z scores

.040.0038784.910 •• Topic 1 countPolynomial normalized BTM topic counts
(topics 1, 4, 7, and 9) • Topic 9 count
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Model

P value

Model adjusted

R2
Model AICFinal model variablesInitial modelNumber

<.0010.1108596.2• Median age
• Female population
• Male population
• Hispanic population
• Black population
• White population
• American Indian population
• Native Hawaiian or Pacific Is-

lander population
• Other race population
• Multiple race population
• Topic 1 z scores
• Topic 9 z scores

• Polynomial normalized demographic variables
• Polynomial normalized geospatial z scores

(topics 1, 4, 7, and 9)

11

<.0010.0758662.4• Median age
• Female population
• Male population
• Hispanic population
• Black population
• White population
• American Indian population
• Other race population
• Topic 1 count
• Topic 9 count

• Polynomial normalized demographic variables
• Polynomial normalized BTM topic counts

(topics 1, 4, 7, and 9)

12

<.0010.0318737.2• Topic 1 z scores
• Topic 4 z scores
• Topic 9 z scores
• Topic 9 count

• Polynomial normalized geospatial z scores
• Polynomial normalized BTM topic counts

(topics 1, 4, 7, and 9)

13

<.0010.1128593.7• Median age
• Female population
• Male population
• Hispanic population
• Black population
• White population
• American Indian population
• Native Hawaiian or Pacific Is-

lander population
• Other race population
• Multiple race population
• Topic 1 z scores
• Topic 9 z scores
• Topic 9 count

• Polynomial normalized demographic variables
• Polynomial normalized geospatial z scores
• Polynomial normalized BTM topic counts

(topics 1, 4, 7, and 9)

14

Table 4. Model prediction of drug overdose death rates using normalized demographic variables, normalized z scores from geospatial analyses, and

normalized Biterm Topic Model topic counts (topics 1, 4, 7, and 9; model adjusted R2=0.133, Akaike information criterion [AIC]=8546.8).

P valueSEEstimateCoefficients

.0479.26–18.39Intercept

<.0010.070.57Median age

.0317.7338.96Female population

<.00110.01–49.75Asian population

<.0012.60–8.73Hispanic population

<.0010.48–3.63Topic 1 z scores

.110.27–0.43Topic 4 z scores

<.0010.333.39Topic 9 z scores

.042.04×1044.19×104Topic 4 count
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Figure 1. Rates of death due to drug overdose by county, United States. (A) Actual rates of death due to drug overdose (2017-2019; imputed values
for counties with missing data); (B) Predicted rates of death due to drug overdose using geocoded Twitter data; (C) Ratio of predicted to actual rates of
death due to drug overdose.

Discussion

Principal Findings
This study computed models for rates of overdose mortality by
incorporating mathematically transformed spatial distributions
based on geotagged social media posts from Twitter with
SUD-related keywords. In our final model, the average predicted
county-level overdose mortality was similar to the actual
county-level rate of overdose mortality, 23.29 per 100,000
residents and 22.00 per 100,000 residents, respectively, and the
average ratio of predicted to actual mortality was 1.22
(compared to 1.14 for modeling with the full range of topics;
Table S2 in Multimedia Appendix 1). At the state level, the
average predicted to actual mortality ratio for 26 states fell
within 20% accuracy, with a range between 0.78 and 1.58. The
z scores of the Getis Ord Gi statistic appeared to have improved

utility over population-normalization alone. In this model,
median age, female population, and tweets about web-based
drug sales were positively associated with opioid mortality.
Asian race and Hispanic ethnicity were significantly negatively
associated with county-level burdens of overdose mortality.

Regression-based model-fitting enables the generation of beta
coefficients such that prediction follows predetermined patterns
using a priori inputs and therefore may be preferable to
epidemiologists when compared to black-box approaches such
as neural networks or ensemble methods. This is to say that the
output generated by this approach enables a set of disease burden
estimates, and therefore, despite threats to accuracy, this
approach permits the generation of a baseline for which
increases and decreases can be recorded, especially from social
media covariates that can be updated in frequent temporal
cross-sections. Previous studies have used similar techniques

JMIR Form Res 2023 | vol. 7 | e42162 | p. 8https://formative.jmir.org/2023/1/e42162
(page number not for citation purposes)

Cuomo et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


to predict opioid-related outcomes, including the use of
demographic variables and medications dispensed to predict
2-year overdose risk for individuals on chronic opioid therapy
[31], multivariate regression modeling to predict opioid-induced
respiratory depression using clinical characteristics [31], and
modeling unintentional drug overdose using law enforcement
drug seizure data [32]. Additionally, past studies have used
similar methodologies to leverage novel data for the prediction
of various other public health outcomes, such as the use of
lifestyle and metabolic covariates on global pancreatic cancer
incidence and mortality [33], smoking’s effect on
patient-reported outcomes following orthopedic surgery [34],
and alcohol and hypertension’s effect on kidney cancer
incidence and mortality [35]. This study’s methodology builds
upon past research by adding Twitter, a popular social media
data source, alongside readily available demographic data to
demonstrate how these approaches could have utility in
estimating variations in overdose and SUD burden.

Generally, results demonstrate the potential benefit of using
social media data as a supplement to demographic data for
enabling earlier detection of overdose mortality, potentially as
granular as the census tract level, which includes the benefit of
a boost to the goodness of fit. Specifically, we observed that an
approach involving social media data, geospatial statistics, and
mathematical transformations produced about double the model
coefficient of determination when compared to an approach
without these data and methods. Though a backward selection
approach using user-generated Twitter data covariates to model
real-world public health statistics of overdose mortality may
have its limitations (discussed below), there nevertheless appears
to be added utility to the incorporation of these data for analyses
that endeavor toward resolute, short-term prediction. The utility
of this approach may also be strengthened with the integration
of statistical approaches to detect aberrations, such as the Early
Aberration Reporting System, though public reports suggest
that these have thus far only been applied to observe, rather than
modeled, data [36,37]. Further, the use of larger and more
representative data sets from social media platforms (eg, data
from the full Twitter firehose limited to geocoded data or other
popular social media platforms that allow for geotagging)
filtered for a greater number of SUD-related keywords may
yield greater power and improve predictability.

During the COVID-19 pandemic, a rapid rise in opioid-related
overdose deaths was observed, but reporting on this data lagged
behind that of those experiencing SUD [38]. This indicates an
urgent need for improved public health surveillance to ensure
that interventions are more targeted and that federal, state, tribal,
and local governments have sufficient data and evidence to
appropriately invest in harm reduction resources [39]. Insights
into which populations and communities have been most
affected are crucial [40], particularly in the context of those
people disproportionately impacted by both COVID-19 and
SUD. Hence, interdisciplinary approaches such as those used
in this study warrant further exploration and validation to assess
their utility in generating multimodal data-driven predictions
of SUD risk and burden [40]. Similarly, public health
practitioners may benefit from these techniques to advance the
prediction of opioid-related outcomes to inform data-driven

prevention and treatment decisions targeted for specific
communities that may help with SUD prevention and treatment
funding. For example, despite seemingly successful statewide
policy implementation, a state-by-state analysis reveals that
naloxone funding remains a challenge, despite the clear benefits
of harm mitigation for opioid use disorder [39].

Limitations
Findings from this exploratory study are subject to a number
of limitations. First, this modeling exercise was used with
existing overdose mortality data, whereas the purported benefit
is to use future rounds of social media data for closer to real-time
prediction. For this reason, the utility of this study lies in the
linear equation generated by the final model, which does not
explain a high proportion of variability. Therefore, the value
added by this study is primarily in the approach demonstrated
(which can be iterated upon with more comprehensive or
explanatory coefficients) rather than the linear equation itself.
However, it should be noted that the authors intentionally
sacrificed the predictive power of the model for the
interpretability of covariate-specific beta coefficients, given the
utility of a linear model for inputting future cross-sections of
real-time data. Notably, we observed state-level heterogeneity
in model performance, indicating that surveillance efforts
leveraging a linear modeling approach should consider
computing sets of beta coefficients for states separately. Data
collection may have been limited due to the list of search terms
used in this study, which may not be complete due to the
continued addition and deletion of slang terms used among
those using these drugs, though the list used in this study was
based on existing literature and a Drug Enforcement
Administration intelligence report. Second, the outcome variable
used in this study represents 3 years of overdose deaths
(2017-2019), and the Twitter data predictors were collected
over 9 years (2012-2021) to enable sufficient sample sizes for
modeling algorithms. Though the 2 periods intersect, the
purported benefit of closer to real-time modeling is limited in
that Twitter data patterns do not immediately precede outcome
data. Optimal temporality was not feasible in this study due to
the sample size required to detect geospatial patterns after
aggregation to over 3000 county bins, which is why Twitter
data predictors were derived from a lengthy period of data
collection. Third, estimated actual death rates due to drug
overdose were imputed for counties with missing data using
space-time pattern mining tools. Imputation can lead to narrower
CIs with an underestimation of standard errors and an
overestimation of test statistics. Additionally, this study
normalized using the total county-level population rather than
the number of Twitter users, as the total number of users from
a given county is not made available by Twitter, and measures
of this variation from Twitter APIs are unreliable due to the
limitations of API calls, which produce a corpus that falls short
of the sample required to assess this variation. Finally, though
the model incorporates demographic predictors, the difficulties
in attributing demographic characteristics to near real-time data
(ie, social media posts) represent a challenge for discrepant
trends across demographic groups and, practically, for updating
a priori inputs that enable socioculturally sensitive prediction.
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Conclusions
The model described in this study uses a relatively novel
approach involving unsupervised topic modeling and geocoded
social media posts and shows the initial feasibility of the use of
infodemiology principles to generate a near-real-time prediction

of overdose mortality vis a vis keyword-based Twitter activity.
The results from this study, though exploratory, coupled with
additional data-driven research, can facilitate evidence-based
funding decisions for statewide programs that can positively
impact a wide array of SUD prevention approaches, including
naloxone availability to prescription drug monitoring programs.
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