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Abstract

Background: Heart failure (HF) is highly prevalent in the United States. Approximately one-third to one-half of HF cases are
categorized as HF with reduced ejection fraction (HFrEF). Patients with HFrEF are at risk of worsening HF, have a high risk of
adverse outcomes, and experience higher health care use and costs. Therefore, it is crucial to identify patients with HFrEF who
are at high risk of subsequent events after HF hospitalization.

Objective: Machine learning (ML) has been used to predict HF-related outcomes. The objective of this study was to compare
different ML prediction models and feature construction methods to predict 30-, 90-, and 365-day hospital readmissions and
worsening HF events (WHFEs).

Methods: We used the Veradigm PINNACLE outpatient registry linked to Symphony Health’s Integrated Dataverse data from
July 1, 2013, to September 30, 2017. Adults with a confirmed diagnosis of HFrEF and HF-related hospitalization were included.
WHFEs were defined as HF-related hospitalizations or outpatient intravenous diuretic use within 1 year of the first HF
hospitalization. We used different approaches to construct ML features from clinical codes, including frequencies of clinical
classification software (CCS) categories, Bidirectional Encoder Representations From Transformers (BERT) trained with CCS
sequences (BERT + CCS), BERT trained on raw clinical codes (BERT + raw), and prespecified features based on clinical
knowledge. A multilayer perceptron neural network, extreme gradient boosting (XGBoost), random forest, and logistic regression
prediction models were applied and compared.

Results: A total of 30,687 adult patients with HFrEF were included in the analysis; 11.41% (3184/27,917) of adults experienced
a hospital readmission within 30 days of their first HF hospitalization, and nearly half (9231/21,562, 42.81%) of the patients
experienced at least 1 WHFE within 1 year after HF hospitalization. The prediction models and feature combinations with the
best area under the receiver operating characteristic curve (AUC) for each outcome were XGBoost with CCS frequency
(AUC=0.595) for 30-day readmission, random forest with CCS frequency (AUC=0.630) for 90-day readmission, XGBoost with
CCS frequency (AUC=0.649) for 365-day readmission, and XGBoost with CCS frequency (AUC=0.640) for WHFEs. Our ML
models could discriminate between readmission and WHFE among patients with HFrEF. Our model performance was mediocre,
especially for the 30-day readmission events, most likely owing to limitations of the data, including an imbalance between positive
and negative cases and high missing rates of many clinical variables and outcome definitions.
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Conclusions: We predicted readmissions and WHFEs after HF hospitalizations in patients with HFrEF. Features identified by
data-driven approaches may be comparable with those identified by clinical domain knowledge. Future work may be warranted
to validate and improve the models using more longitudinal electronic health records that are complete, are comprehensive, and
have a longer follow-up time.

(JMIR Form Res 2023;7:e41775) doi: 10.2196/41775
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Introduction

Heart failure (HF), defined by the US Centers for Disease
Control and Prevention as a condition when the heart cannot
pump enough blood and oxygen to support other organs in one’s
body [1], is highly prevalent in the United States, affecting
approximately 6 million Americans aged ≥20 years [2]. HF
represents a major and growing public health concern in the
United States. Between 2008 and 2018, hospitalizations owing
to HF increased by 20% from 1,060,540 to 1,270,360 [3]. A
systematic review of medical costs associated with HF in the
United States found that the annual median total medical costs
for HF were estimated at US $24,383 per patient between 2014
and 2020 [4] with total annual costs of US $43.6 billion in 2020
[5].

Approximately 31% to 56% of HF cases in the United States
are classified as HF with reduced ejection fraction (HFrEF)
[6-8], defined as a left ventricular ejection fraction of ≤40% [9].
Patients with HFrEF represent a subset of patients with HF with
substantial morbidity and mortality. Patients with HFrEF are
also at risk of worsening HF events (WHFEs, including
outpatient intravenous [IV] diuretic use or HF-related
hospitalization) [10,11]. Patients with a WHFE have a high risk
of adverse outcomes and substantially higher health care use
and costs than those without a WHFE [10,11].

The 30-day readmission rate has been used as an important
quality of care measure to evaluate hospital performance, and
through the Hospital Readmissions Reduction Program, the
Centers for Medicare & Medicaid Services have penalized
hospitals with higher 30-day readmission rates of >US $3 billion
[12]. A 2021 study using HF hospitalizations from 2010 to 2017
in the National Readmission database found that among patients
with HFrEF who had an HF hospitalization, approximately
18.1% had a 30-day all-cause readmission [13]. A 2011 to 2014
database analysis of patients with HFrEF found that 56% of
patients with HFrEF with WHFE were readmitted within 30
days of the WHFE [11].

It is crucial for providers and payers to identify patients with
HF who are at high risk of readmission and WHFEs and to
provide targeted interventions in an attempt to prevent these
adverse events from occurring. However, predictive model
performance for readmission after HF hospitalization remains
unsatisfactory, and it is substantially worse than that of models
that predict mortality [14].

Machine learning (ML) [15] has been applied to predict
HF-related outcomes, and most ML models (76%) have
outperformed conventional statistical models [16]. One major
advantage of ML models is that they do not require statistical
assumptions that are usually too strict for real-world data.
Because semantic relationships between medical codes can be
complicated (eg, is-a, synonym, equivalent, or overlapping),
they can void statistical assumptions regarding independence.
Furthermore, the granularity of medical codes often causes
extraordinarily high dimensionality of the search space, making
models more vulnerable to overfitting. Deep learning (DL), a
state-of-the-art ML method [15], has the additional advantage
of not requiring labor-intensive feature engineering and data
preprocessing. Owing to these advantages, ML methods,
including DL, have become popular in health outcome prediction
research [17-19].

Most current ML prediction models [16,20-23] are limited by
(1) being developed using single-center data and lacking external
validation or (2) focusing on general HF or other disease
indications in which the disease progression trajectory is
clinically different from HFrEF. Furthermore, limited evidence
is available on how DL works in the area of HF as a feature
extraction method and how traditional and neural network
models perform using different types of features. This study
aims to compare different ML models to predict 30-day, 90-day,
and 365-day hospital readmissions and WHFEs after HF
hospitalization among patients with HFrEF using a nationally
representative US-based HF registry linked to claims data.

Methods

Study Design and Data Sources
The study was conducted by analyzing a US database linking
the Veradigm PINNACLE outpatient registry with Symphony
Health’s Integrated Dataverse (IDV) pharmacy and medical
claims data from July 1, 2013, to September 30, 2017. The
PINNACLE registry is cardiology’s largest outpatient quality
improvement registry, which captures data on coronary artery
disease, hypertension, HF, and atrial fibrillation. PINNACLE
contains information on patient demographics, diagnoses and
comorbidities, cardiovascular events, vital signs, HF symptoms,
laboratory orders and results, medications, and death date [24].
The Symphony IDV data set includes physician office medical
claims, hospital claims, and pharmacy claims. These claims
were preadjudicated and submitted by providers to different
types of payers in the United States.
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The date of the first documentation of HF diagnosis was set as
the index date for each patient (Figure 1). The time interval
before the index date within the study period was considered
the preindex period. The admission date of the first HF
hospitalization was either on or after the index date. The period
after the discharge date of the first HF hospitalization was
considered the outcome assessment period. The period before
the discharge date of the first HF hospitalization was defined

as the predictor lookup period. We chose 6 months as the length
of the predictor lookup period. While 6 and 12 months are both
common selections in retrospective outcome research, we chose
the shorter period to increase the available number of patients
for model training and evaluation. Only the predictor variables
observed during the predictor lookup period were used in the
training and evaluation of the prediction models.

Figure 1. Study design. HF: heart failure. *Index date can be any date between January 1, 2014, and September 30, 2017. **The predictor look-up
period ended at the discharge date of the first HF hospitalization after the index date and started at 6 months before the end date. The start of the predictor
look-up period could be prior to, on, or after the index date. ***The outcome assessment period began at the end of the predictor look-up period. The
length varied (30, 90, and 365 days) by outcome type.

Ethical Considerations
As this study was a retrospective study on existing deidentified
data, it was exempt from institutional review board review as
determined by the WIRB-Copernicus Group, Inc (WCG)
Institutional Review Board (Work order # 1-1435573-1).

Study Population
Patients were included if they met the following criteria: (1)
had a diagnosis of HF in the registry, with HFrEF confirmed
by the presence of either an ejection fraction <45% or at least
2 claims of the HFrEF diagnosis using the International
Classification of Diseases, Tenth Revision (ICD-10) codes
I50.2X or I50.4X or ICD-9 code 428.2X; (2) had their first
diagnosis of HF (index date) between January 1, 2014, and
September 30, 2016; (3) were aged ≥18 years on the index date;
(4) had at least 1 medical claim and 1 pharmacy claim in the
preindex period and at least 1 medical claim and 1 pharmacy
claim after the index date; and (5) had an HF-related
hospitalization on or after the index date.

Patients with the following diagnoses or procedures in the
preindex period were excluded: clinical trial participation, heart
transplant, left ventricular assist device, adult congenital heart
disease (eg, single-ventricle disease), and amyloidosis.
Multimedia Appendix 1 presents a flowchart to obtain the final
sample.

For WHFEs, the discharge date of the first HF hospitalization
was between the index date and September 30, 2016 (to ensure
the availability of 1 year of follow-up time within the study
period). For 30-day readmission, the discharge date of the first
HF hospitalization was between the index date and August 31,
2017. For 90-day readmission, the discharge date of the first
HF hospitalization was between the index date and July 2, 2017.
For 365-day readmission, the discharge date of the first HF

hospitalization was between the index date and September 30,
2016.

Outcome Measures
The outcomes included 30-day, 90-day, and 365-day hospital
readmission as well as WHFEs. Recent clinical studies [25-27]
on HF, specifically the HFrEF subtype, have been performed
in a population of patients with worsening HF who are at
increased risk for subsequent all-cause and HF-related
hospitalization and death.

WHFEs were defined as HF-related hospitalizations or
outpatient IV diuretic use in the year after the first HF
hospitalization. Any hospital claims with a primary diagnosis
of HF using ICD-10 codes I50.1, I50.2x, I50.3x, I50.4x, I50.8x,
I50.9, or I11.0; ICD-9 codes 402.01, 402.11, 402.91, or 428.XX;
or a record of hospital admission with a primary reason for HF
in the registry was considered an HF-related hospitalization. IV
diuretic use was identified using either the registry records or
procedure codes in claims (J1205, J1940, J3265, S0171, or
S9361). Sensitivity analyses were conducted to study the
composite outcome of a WHFE or death.

An individual would be categorized as “yes” or “positive” for
30-day readmission if the first hospital claim of a subsequent
hospitalization was within 30 days of the discharge date of the
previous HF-related hospitalization. We excluded patients who
neither belonged to the positive class nor had any records on or
beyond 30 days after the previously mentioned discharge date.
Then, we categorized the response of remaining patients as “no”
or “negative.” Similar definitions were applied to 90- and
365-day readmissions, using the 90- and 365-day periods to
measure readmission. For the analyses of 30-day and 90-day
readmission, we excluded those who died within 30 days or 90
days after the discharge date. For the analysis of 365-day
readmission, we conducted sensitivity analyses to study the
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composite outcome of readmission or death. Additional
sensitivity analyses were conducted to exclude planned
readmissions.

Predictors and Feature Engineering
Demographics and health care use included sociodemographic
factors (age as a continuous variable, gender, race, ethnicity,
and health insurance) and health care use in the preindex period
(the number of all-cause hospitalizations, number of all-cause
emergency room visits, and number of all-cause outpatient
visits).

Medical diagnoses and procedures and drugs were identified
using the ICD-9 and ICD-10 codes, procedure codes, and
national drug codes (NDCs).

Clinical attributes included (as available in the Veradigm
PINNACLE outpatient registry): alcohol use, tobacco use, HF
education completed or documented, HF plan of care (yes/no),
New York Heart Association functional classification for HF,
left ventricular ejection fraction, HF symptoms, physical
assessment, quality of life measures, height, weight, BMI, heart
rate, sodium, potassium, B-type natriuretic peptide, N-terminal
pro B–type natriuretic peptide, Hemoglobin A1c, low-density
lipoprotein cholesterol, high-density lipoprotein cholesterol,
triglycerides, total cholesterol, systolic blood pressure, diastolic
blood pressure, serum creatinine, creatinine clearance, estimated
glomerular filtration rate, international normalized ratio, amylase
levels, alanine transaminase, aspartate transaminase, direct
bilirubin, total bilirubin, cystatin-C, high-sensitivity C-reactive
protein, thyroid-stimulating hormone, hemoglobin, hematocrit,
platelet count, and white blood cell count.

Feature Engineering for Medical Diagnoses,
Procedures, and Drugs
We investigated 4 approaches for building ML features from
medical diagnoses, procedures, and drug records.

1. Clinical classification software (CCS) frequency: first, we
reduced the dimensionality of the predictors and aggregated
the medical codes at different granularities. We converted
diagnosis and procedure codes into the Agency for
Healthcare Research and Quality’s CCS categories [28]
and mapped NDC codes onto the top-level anatomical
components of the body, as defined by the World Health
Organization Anatomic Therapeutic Chemical (ATC)
classification system [29]. Approaches similar to ours have
been used in recent studies. For example, Chen et al [30]
aggregated diagnosis and procedure codes into CCS
categories and generic drug names into ATC therapeutic
subclasses [31,32]. Denny et al [33] transformed the ICD
diagnosis codes to PheCodes for phenotype groups specified
in the PheWAS project [30-32]. Specifically, we made
modifications to the NDC-ATC mapping table based on
the study by Kury et al [34] by assigning drugs with
multiple therapeutic target areas to a new category that
combines all target areas (eg, if drug A treats both blood
forming organs [ATC category B] and the cardiovascular
system [ATC category C], it was categorized as “BC”). We
then built a frequency table with CCS and ATC categories
as columns, where the values in the rows represent the

number of times a CCS- or ATC-relevant event had
happened to the patient in the predictor lookup period. This
is a traditional feature engineering approach often used in
data mining competitions and industrial projects and has
been criticized for not preserving sequential patterns and
causing high sparsity.

2. Bidirectional Encoder Representations from Transformers
(BERT) + CCS: BERT is a deep neural network model that
achieves state-of-the-art performance in multiple natural
language processing (NLP) tasks [35]. Considering that
both human written texts (eg, novels and news) and patient
clinical records are recorded in the form of sequential
events, recent research has explored the use of BERT to
represent patient medical records [36,37]. In this study, we
adopted the BERT model and the Hugging-Face
Transformer Python package [38] to process the sequences
of medical code records into vectors during the predictor
look-up period. The BERT+CCS models were first
pretrained on claims of 298,284 patients with HF in the
Merative MarketScan 2011 to 2020 Commercial and
Medicare Databases, with medical codes converted to the
CCS and ATC categories found in approach 1. The models
were then fine-tuned on sequences of the CCS and ATC
categories from the PINNACLE+IDV data. To avoid
information leakage, data for patients used in the validation
and testing were not used to fine-tune the BERT model.
We configured the hidden size of BERT to 64, hidden layers
to 4, attention heads to 4, and intermediate size to 256 to
control the total number of model parameters. We used the
output of the pooling layer of the fine-tuned BERT model
to map patient sequences of medical codes to a fixed-length
feature vector, which was 64 dimensions per sequence and
256 dimensions per patient (for a total of 4 sequences, each
covering 1.5 months of the predictor look-up period).

3. BERT + raw: Similarly, we pretrained and fine-tuned
another type of BERT model using the sequence of medical
codes obtained from the original (also known as the raw
format of) ICD-9/ICD-10 codes, procedure codes, and ATC
categories (derived from NDC codes).

4. Prespecified features: we built features from groups of
diagnoses, procedures, and drug codes recognized by
clinical science experts as risk factors of the WHFE based
on clinical knowledge and previous literature [39].

Feature Engineering for Clinical Attributes
We converted numerical clinical attribute measurements
available in the Veradigm PINNACLE outpatient registry into
a frequency table, in which the values in the rows represented
the number of times a laboratory test was taken in the predictor
look-up period. We did not use the measurement results directly
for the following reasons: (1) missing information on normal
range, assay type, collection route, and many other details
prevented the accurate normalization of results from different
laboratory facilities; (2) high sparsity in many variables; and
(3) orders of nonroutine laboratory tests suggest that physicians
were suspicious of certain disease conditions, and simply using
the frequency can preserve such insight. We used the latest
value in each predictor look-up period for nominal clinical
attribute measures.
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Prediction Models
We used a multilayer perceptron neural network model [40]
with 3 fully connected layers (256, 128, and 64 neurons), 2
dropout and batch normalization layers, and a sigmoid function
for prediction as well as extreme gradient boosting (XGBoost)
[41], random forest [42], and logistic regression [43] models.
For each type, we trained 4 models corresponding to the 4
feature engineering approaches mentioned above.

Patients with each outcome were randomly divided into the
training (70%), validation (15%), and testing (15%) data sets.
We used the training and validation data to maximize the area
under the receiver operating characteristic curve (AUC) to select
the optimal value for the following hyperparameters: learning
rate and dropout rate for multilayer perceptron neural network;
number of trees, eta, max depth, colsample by tree, and
minimum child weight for XGBoost; number of trees, maximum
features, and maximum depth for random forest; and C (penalty
strength) for logistic regression. To address the class imbalance
issue in the data, we adopt a cost-sensitive learning approach
by setting the weight of the negative class to the prevalence of
the positive class in the training data set. We also investigated
assigning different class weights and synthetic oversampling
methods using the adaptive synthetic sampling approach for
imbalanced learning (ADASYN) [44], but these methods were
not superior to our original approach.

We evaluated the prediction models and feature engineering
approaches in terms of AUC and area under the precision-recall

curve (AUPR) using the testing data set. Although AUC was
more commonly reported in recent research, we listed both
because some studies argued that AUPR was more informative
on imbalanced data sets [45]. We also included the precision
and recall scores of each model after converting the predicted
probability >0.5 to a positive prediction. Precision and recall
were derived from the proportions of true positive (TP), false
positive, true negative, and false negative predictions, by
definitions of precision as TP / (TP + false positive) and recall
as TP / (TP – false negative).

Results

A total of 30,687 adults with HFrEF were included in the
analysis (Table 1; Multimedia Appendix 1). The average age
was 70.1 years, and most patients (18,206/30,687, 59.32%)
were male (Table 1). The rates of 30-, 90-, and 365-day
readmission rates were 11.41% (3186/27,917), 21.09%
(5792/27,455), and 38.93% (8394/21,562), respectively
(Multimedia Appendix 2). In all, 42.81% (9231/21,562) of
patients experienced at least one WHFE within 1 year after HF
hospitalization (Multimedia Appendix 2). Note that 99.22%
(2770/27,917) of patients were excluded from the 30-day
readmission calculations because of a lack of follow-up on or
beyond 30 days (see the Methods section, Outcome Measures).
For the same reason, 11.77% (3232/27,455) of patients were
excluded from the 90-day readmission outcome analyses, and
42.31% (9125/21,562) of patients were excluded from the
365-day readmission and WHFE analyses.
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Table 1. Descriptive results of patient characteristics and outcome measures (N=30,687)a.

WHFEc30-day readmissionb
All patients
(N=30,687)

No (n=12,331)Yes (n=9231)No (n=24,731)Yes (n=3186)

Age (years)

70.4 (12.9)69.4 (13.3)70.1 (13.0)69.7 (13.2)70.1 (13.0)Value, mean (SD)

72 (62-80)71 (61-80)72 (62-80)71 (61-80)72 (62-80)Value, median (IQR)

Gender, n (%)

4895 (39.69)3927 (42.54)10,082 (40.77)1337 (41.96)12,481 (40.67)Female

7436 (60.30)5304 (57.46)14,649 (59.23)1849 (58.03)18,206 (59.33)Male

Race, n (%)

110 (0.89)70 (0.75)209 (0.84)20 (0.62)241 (0.78)Asian

1340 (10.86)1307 (14.16)3010 (12.17)401 (12.59)3705 (12.07)Black or African American

73 (0.6)37 (0.40)125 (0.51)11 (0.34)143 (0.47)Other

3811 (30.91)2866 (31.05)7590 (30.69)988 (31.01)9389 (30.59)Unknown

6997 (56.74)4951 (53.63)13,797 (55.79)1766 (55.43)17,209 (56.08)White

Ethnicity, n (%)

478 (3.87)427 (4.62)1009 (4.08)159 (4.9)1275 (4.15)Hispanic

333 (2.70)230 (2.49)564 (2.28)77 (2.42)677 (2.21)Non-Hispanic

11,520 (93.42)8574 (92.88)23,158 (93.64)2950 (92.59)28,735 (93.64)Unknown

Health insurance, n (%)

285 (2.3)281 (3.04)645 (2.61)89 (2.8)786 (2.56)Medicaid

1919 (15.56)1423 (15.42)3944 (15.95)474 (14.87)4894 (15.95)Medicare

1964 (15.92)1330 (14.41)3826 (15.47)482 (15.13)4666 (15.21)Private

52 (0.4)38 (0.4)107 (0.43)11 (0.34)133 (0.43)Other

3605 (29.23)2757 (29.86)7325 (29.62)981 (30.79)9243 (30.12)Multipled

55 (0.4)55 (0.6)125 (0.51)18 (0.56)156 (0.51)No insurance

3811 (30.91)3347 (36.25)8759 (35.42)1131 (35.49)10,809 (35.22)Unknown

aSome percentages may not add up to 100%, owing to rounding. Percentages were calculated using the number of available respondents as the denominator.
b90.27% (2770/30,687) of patients were not included in the yes and no categories of 30-day readmission outcomes owing to no follow-up on or beyond
30 days after the first hospitalization for heart failure.
cWHFE: worsening heart failure event.
dIf a patient had health insurance plans in at least 2 categories among Medicaid, Medicare, Private, and Other, the patient was classified in the “multiple”
category.

The prediction model and feature engineering approach
combinations with the best AUC for each outcome were
XGBoost with CCS frequency (0.595) for 30-day readmission,
random forest with CCS frequency (0.630) for 90-day

readmission, XGBoost with CCS frequency (0.649) for 365-day
readmission, and XGBoost with CCS frequency (0.640) for
WHFE (Table 2).
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Table 2. Primary analysis results of machine learning prediction models to predict 30-day, 90-day, and 365-day hospital readmission, as well as
worsening heart failure events (WHFEs) after heart failure hospitalizations.

RecallPrecisionAUPRbAUCaPrediction model and medical code processing method

30-day hospital readmission

Logistic regression

0.3810.154 d0.129 d0.580 dCCSc frequency

0.4480.1140.1140.491BERTe + CCS

0.490 d0.1330.1230.561BERT + rawf

0.4360.1410.1260.568Prespecified

MLP NNg

0.3850.1570.1310.583 dCCS frequency

0.4250.1300.1210.548BERT + CCS

0.445 d0.1350.1220.554BERT + raw

0.4070.161 h0.133 h0.565Prespecified

Random forest

0.400 d0.1420.1250.577 dCCS frequency

0.3910.1410.1250.576BERT + CCS

0.3770.148 d0.127 d0.565BERT + raw

0.3710.1460.1260.566Prespecified

XGBoosti

0.5130.145 d0.1300.595 hCCS frequency

0.525 h0.145 d0.131 d0.592BERT + CCS

0.4540.145 d0.1280.570BERT + raw

0.4320.1350.1230.570Prespecified

90-day hospital readmission

Logistic regression

0.4570.307 d0.2550.616 dCCS frequency

0.568 h0.2200.216d0.500BERT + CCS

0.5340.2720.243 d0.606BERT + raw

0.5240.2630.2380.588Prespecified

MLP NN

0.3650.301 d0.244 d0.593CCS frequency

0.3640.2610.2290.573BERT + CCS

0.544 d0.2690.2430.607 dBERT + raw

0.4330.2770.2400.590Prespecified

Random forest

0.4570.324 h0.263 h0.630 hCCS frequency

0.537 d0.2550.2350.594BERT + CCS

0.2090.2760.2250.572BERT + raw

0.4750.2890.2480.611Prespecified
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RecallPrecisionAUPRbAUCaPrediction model and medical code processing method

XGBoost

0.498 d0.294 d0.252 d0.625 dCCS frequency

0.4930.2530.2320.587BERT + CCS

0.3640.2720.2330.571BERT + raw

0.4870.2770.2430.605Prespecified

365-day hospital readmission

Logistic regression

0.4450.500 d0.439 h0.611 dCCS frequency

0.5190.4440.4180.557BERT + CCS

0.542 d0.4710.4340.607BERT + raw

0.4750.4570.4210.591Prespecified

MLP NN

0.4880.4340.3800.616 dCCS frequency

0.4570.4700.4260.590BERT + CCS

0.3520.503 d0.429 d0.605BERT + raw

0.813 d0.4190.4140.589Prespecified

Random forest

0.3570.5190.436 d0.617 dCCS frequency

0.2250.5070.4160.588BERT + CCS

0.481 d0.4740.4300.597BERT + raw

0.2240.572 h0.4300.606Prespecified

XGBoost

0.561 d0.4480.3950.649 hCCS frequency

0.5040.480 d0.435 d0.615BERT + CCS

0.5140.4730.4320.600BERT + raw

0.4980.4750.4320.608Prespecified

WHFE

Logistic regression

0.4620.549 d0.484 d0.625 dCCS frequency

0.661 h0.4440.4390.509BERT + CCS

0.5600.5060.4720.606BERT + raw

0.4900.5170.4720.595Prespecified

MLP NN

0.4490.540 d0.478 d0.606 dCCS frequency

0.5120.5210.4760.605BERT + CCS

0.625 d0.4790.4600.596BERT + raw

0.4590.5200.4700.596Prespecified

Random forest

0.4190.5650.486 d0.633 dCCS frequency
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RecallPrecisionAUPRbAUCaPrediction model and medical code processing method

0.2640.592 h0.4710.619BERT + CCS

0.3380.5080.4550.573BERT + raw

0.542 d0.5140.4750.608Prespecified

XGBoost

0.5360.542 d0.489 h0.640 hCCS frequency

0.563 d0.5080.4730.615BERT + CCS

0.5380.4970.4650.596BERT + raw

0.5200.5140.4730.609Prespecified

aAUC: area under the receiver operating characteristic curve.
bAUPR: area under the precision-recall curve.
cCCS: clinical classification software.
dThe highest score among the 4 medical code processing methods for the specific model and outcome.
eBERT: Bidirectional Encoder Representations From Transformers.
fraw: original clinical codes in the data source.
gMLP NN: multilayer perceptron neural network.
hThe highest score among all models and medical code processing methods for a specific outcome.
iXGBoost: extreme gradient boosting.

Except when predicting 90-day readmission, the XGBoost
prediction models generally performed better than the other
models. Within a given prediction model, the tree-based
ensemble and boosting algorithms and logistic regression all
achieved a higher AUC with CCS frequency features than other
medical code processing methods. Features extracted by

data-driven medical code processing approaches (CCS
frequency, BERT + CCS, and BERT + raw) may be comparable
to features prespecified by clinical domain knowledge.

Similar findings were observed in the sensitivity analyses of
unplanned readmissions or outcomes including death (Table 3).
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Table 3. Sensitivity analysis results of machine learning prediction models patients with heart failure with reduced ejection fraction.

RecallPrecisionAUPRbAUCaPrediction model and medical code processing method

30-day unplanned readmission

Logistic regression

0.3760.1490.1250.579 dCCSc frequency

0.4410.1090.1100.490BERTe + CCS

0.490 d0.1300.1200.555BERT + rawf

0.4680.150 d0.129 d0.568Prespecified

MLP NNg

0.4970.1370.1240.564CCS frequency

0.5080.1250.1180.549BERT + CCS

0.596 h0.1240.1190.554BERT + raw

0.4030.158 h0.130 h0.574 dPrespecified

Random forest

0.396 d0.1370.1210.576 dCCS frequency

0.3760.1300.1180.558BERT + CCS

0.3830.145 d0.124 d0.571BERT + raw

0.3880.145 d0.124 d0.563Prespecified

XGBoosti

0.510 d0.140 d0.126 d0.591 hCCS frequency

0.5010.140 d0.126 d0.575BERT + CCS

0.4520.1380.1230.563BERT + raw

0.4550.1360.1220.568Prespecified

90-day unplanned readmission

Logistic regression

0.4620.300 d0.2510.615 dCCS frequency

0.562 d0.2160.2130.498BERT + CCS

0.5230.2640.237 d0.603BERT + raw

0.4320.2640.2320.592Prespecified

MLP NN

0.498 h0.2760.242 d0.600CCS frequency

0.4130.277 d0.2370.579BERT + CCS

0.4660.2750.2390.603 dBERT + raw

0.3790.2670.2310.586Prespecified

Random forest

0.4440.3160.256 d0.629 hCCS frequency

0.0010.333 h0.2090.577BERT + CCS

0.2130.3140.2310.597BERT + raw

0.472 d0.2880.2460.611Prespecified

XGBoost
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RecallPrecisionAUPRbAUCaPrediction model and medical code processing method

0.5020.295 d0.252 h0.620 dCCS frequency

0.510 d0.2570.2330.588BERT + CCS

0.4400.2790.2400.605BERT + raw

0.4990.2810.2450.605Prespecified

365-day unplanned readmission

Logistic regression

0.4500.498 d0.436 d0.614 dCCS frequency

0.5310.4420.4150.560BERT + CCS

0.541 h0.4650.4280.606BERT + raw

0.4660.4610.4200.593Prespecified

MLP NN

0.3630.4800.4190.589CCS frequency

0.472 d0.4580.4190.589BERT + CCS

0.2380.5360.4210.601 dBERT + raw

0.3510.498 d0.425 d0.587Prespecified

Random forest

0.1850.612 h0.427 d0.614 dCCS frequency

0.1170.6060.4110.587BERT + CCS

0.1590.5350.4090.595BERT + raw

0.450 d0.4740.4250.608Prespecified

XGBoost

0.530 d0.482 d0.436 h0.620 hCCS frequency

0.5290.4500.4190.599BERT + CCS

0.5250.4630.4260.607BERT + raw

0.4940.4720.4280.607Prespecified

365-day readmission or death

Logistic regression

0.4470.526 d0.469 d0.611 dCCS frequency

0.3980.4770.4450.549BERT + CCS

0.551 d0.5030.4670.607BERT + raw

0.4930.4870.4540.586Prespecified

MLP NN

0.4620.513 d0.465 d0.590CCS frequency

0.4350.5040.4580.594BERT + CCS

0.6470.4840.4620.607 dBERT + raw

0.651 h0.4670.4520.589Prespecified

Random forest

0.3030.5700.468 d0.613 dCCS frequency

0.2060.5560.4500.593BERT + CCS
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RecallPrecisionAUPRbAUCaPrediction model and medical code processing method

0.2030.576 h0.4540.603BERT + raw

0.467 d0.5070.4620.607Prespecified

XGBoost

0.5300.520 d0.474 h0.623 hCCS frequency

0.540 d0.4990.4640.599BERT + CCS

0.5070.4950.4590.599BERT + raw

0.5040.5060.4650.606Prespecified

WHFEj or death

Logistic regression

0.4620.549 d0.484 d0.625 dCCS frequency

0.661 h0.4440.4390.509BERT + CCS

0.5600.5060.4720.606BERT + raw

0.4900.5170.4720.595Prespecified

MLP NN

0.4490.540 d0.478 d0.606 dCCS frequency

0.5120.5210.4760.605BERT + CCS

0.625 d0.4790.4600.596BERT + raw

0.4590.5200.4700.596Prespecified

Random forest

0.4190.5650.486 d0.633 dCCS frequency

0.2640.592 h0.4710.619BERT + CCS

0.3380.5080.4550.573BERT + raw

0.542 d0.5140.4750.608Prespecified

XGBoost

0.5360.542 d0.489 h0.640 hCCS frequency

0.563 d0.5080.4730.615BERT + CCS

0.5380.4970.4650.596BERT + raw

0.5200.5140.4730.609Prespecified

aAUC: area under the receiver operating characteristic curve.
bAUPR: area under the precision-recall curve.
cCCS: clinical classification software.
dThe highest score among the 4 medical code processing methods for the specific model and outcome.
eBERT: Bidirectional Encoder Representations From Transformers.
fraw: the original clinical codes from data source were used.
gMLP NN: multilayer perceptron neural network.
hThe highest score among all models and medical code processing methods for a specific outcome.
iXGBoost: Extreme Gradient Boosting.
jWHFE: worsening heart failure events.
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Discussion

Principal Findings
This study used one of the most commonly used outpatient
registries for HF, the Veradigm PINNACLE outpatient registry
linked to the Symphony IDV medical claims data set, to predict
readmissions and WHFEs after HF hospitalizations in patients
with HFrEF. This study is among the first to use DL/ML
approaches to help identify a population at high risk for HFrEF
by predicting an array of subsequent adverse events among
patients with HFrEF after HF hospitalization. Most importantly,
this study provided a comprehensive overview and comparison
of different feature engineering approaches for predicting these
HF outcomes, including their respective combinations: BERT,
CCS, and the use of raw codes (raw). In particular, it was
innovative to experiment with different combinations of feature
engineering approaches and ML prediction models. We found
that ML features constructed by data-driven approaches,
including CCS frequency, BERT+CCS, and BERT+raw,
performed on par with and, for some prediction algorithms and
outcomes, better than feature engineering plans specified by
clinical domain knowledge. Tree-based ensemble and boosting
prediction algorithms with raw diagnosis and procedure codes
converted to frequencies of CCS categories achieved higher
AUCs than other combinations of algorithms and features for
all tasks.

BERT is among the most contemporary NLP models for
embedding medical codes and representing patient temporal
clinical records in a matrix form for downstream analyses
[36,37]. Interest in its application in the medical field is surging
[17,46,47]. To feed this data-hungry model for this particular
study, we reduced the layers and dimensions of BERT and
pretrained the model on a large administrative claims data set
of the Merative MarketScan 2011 to 2020 Commercial and
Medicare Databases. We found that the prediction models using
BERT features were not superior to those using CCS frequency
features. This may be attributed to the differences between
medical codes and natural languages. BERT often outperforms
term-frequency methods in NLP tasks, where the sequence and
context of tokens carry important signals [35]. However, it may
not have been advantageous in this study because the order and
context of standardized code data (eg, diagnosis, procedure, and
drug code records) collected over a relatively short predictor
look-up period may not be relevant to readmission and WHFE
risks.

Despite the use of various prediction algorithms and feature
engineering combinations, the model performance in this study
was moderate across the primary analysis outcomes. The AUC
and AUPR differences in our various algorithms and feature
engineering combinations may be too close to draw deterministic
conclusions. In our previous study using administrative claims
data [39], we found that a bidirectional long short-term memory
model with medical embedding features from the NLP model
Word2Vec outperformed traditional ML models with
prespecified features in predicting 30 days (AUC 0.597 vs 0.510)
and 90-day readmission (AUC 0.614 vs 0.509) in patients with
HFrEF. Although in this study we attempted to use an HF

registry database with more detailed clinical information to
further improve the prediction model performance, the results
did not meet this expectation. Besides the data type and sources,
this study also differed from the previous study in terms of the
length of the predictor look-up period and the chosen prediction
models. The PINNACLE+IDV data provide more detailed
clinical information for patients with HFrEF; however, there
are some limitations regarding the data source that may have
prevented the models from achieving higher performance. The
PINNACLE registry data were voluntarily reported by
participating physicians in the outpatient setting, which may
not capture all current and historical clinical information and
health care events. In particular, the high missingness of
laboratory variables during the predictor look-up window
prevented our models from fully using these clinically known
risk factors. IDV data may not capture all payers and all
encounters for each patient either. For example, the readmission
rates shown in this study seem to be lower than previously
reported national averages [13], which may reflect a failure to
capture all readmissions and potentially lower-risk patients or
better care for those followed up at PINNACLE sites.

Challenges and Future Work
Similar to previous studies [18,39,48,49], we still found it
challenging to predict 30-day readmission following HF
hospitalization in patients with HFrEF, even using more
advanced DL models and a database with detailed clinical
information. Apart from the data limitations discussed above,
there are several plausible reasons for this. The first is the
imbalance between positive and negative cases, which causes
ML models to be insufficiently trained to learn generalizable
patterns related to the outcome of interest. We attempted to
resolve this by training the BERT models without using the
outcomes and using cost-sensitive learning by configuring the
class weight parameters of the models. We also failed to further
improve the model performance using ADASYN [44]. Another
issue is the definition of 30-day readmission, which currently
categorizes any patient readmitted on or after the 31st day after
discharge into the negative class. The 30-day readmission
measure may not be an ideal indicator of clinical risk for an
individual patient, as it may also be linked to factors that are
not well captured in this study, such as the social determinants
of health, hospital administration, provider practice, and other
unknown factors [50]. In addition, it seems that prediction
models performed better using single-center data because this
avoids the issue of interoperability challenges across different
health care systems and can also facilitate the collection of more
detailed patient-, provider-, and facility-level information [51].
Therefore, future research is warranted to validate and further
improve the model using longitudinal electronic health records,
which are more complete, comprehensive, and have longer
follow-up times. From a modeling perspective, graph and
network structure-based patient representation learning
algorithms have been reported in recent research [52,53], which
have the potential to surpass data insufficiency and injecting
medical knowledge into them can be another direction for further
investigation.
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Conclusions
These results demonstrate that ML models provide modest
discrimination of HF events in patients with HFrEF. This study
also suggests that features constructed by data-driven approaches
may be comparable to those specified by clinical domain

knowledge. Despite our modeling and feature construction
efforts, predicting readmission and WHFEs after HF
hospitalization remains a challenging task. Future work may
benefit from using more complete and comprehensive data as
well as adopting additional patient representation learning
methods.
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