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Abstract

Background: Unplanned patient readmissions within 30 days of discharge pose a substantial challenge in Canadian health care
economics. To address this issue, risk stratification, machine learning, and linear regression paradigms have been proposed as
potential predictive solutions. Ensemble machine learning methods, such as stacked ensemble models with boosted tree algorithms,
have shown promise for early risk identification in specific patient groups.

Objective: This study aims to implement an ensemble model with submodels for structured data, compare metrics, evaluate
the impact of optimized data manipulation with principal component analysis on shorter readmissions, and quantitatively verify
the causal relationship between expected length of stay (ELOS) and resource intensity weight (RIW) value for a comprehensive
economic perspective.

Methods: This retrospective study used Python 3.9 and streamlined libraries to analyze data obtained from the Discharge
Abstract Database covering 2016 to 2021. The study used 2 sub–data sets, clinical and geographical data sets, to predict patient
readmission and analyze its economic implications, respectively. A stacking classifier ensemble model was used after principal
component analysis to predict patient readmission. Linear regression was performed to determine the relationship between RIW
and ELOS.

Results: The ensemble model achieved precision and slightly higher recall (0.49 and 0.68), indicating a higher instance of false
positives. The model was able to predict cases better than other models in the literature. Per the ensemble model, readmitted
women and men aged 40 to 44 and 35 to 39 years, respectively, were more likely to use resources. The regression tables verified
the causality of the model and confirmed the trend that patient readmission is much more costly than continued hospital stay
without discharge for both the patient and health care system.

Conclusions: This study validates the use of hybrid ensemble models for predicting economic cost models in health care with
the goal of reducing the bureaucratic and utility costs associated with hospital readmissions. The availability of robust and efficient
predictive models, as demonstrated in this study, can help hospitals focus more on patient care while maintaining low economic
costs. This study predicts the relationship between ELOS and RIW, which can indirectly impact patient outcomes by reducing
administrative tasks and physicians’burden, thereby reducing the cost burdens placed on patients. It is recommended that changes
to the general ensemble model and linear regressions be made to analyze new numerical data for predicting hospital costs.
Ultimately, the proposed work hopes to emphasize the advantages of implementing hybrid ensemble models in forecasting health
care economic cost models, empowering hospitals to prioritize patient care while simultaneously decreasing administrative and
bureaucratic expenses.
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Introduction

Background
An open problem that has arisen in Canadian health care
economics is the detrimental cost caused by unplanned patient
readmissions in hospitals. North American Hospitals have
defined patient readmissions as the admittance of patients within
30 days after discharge [1]. In Canada, 1 in 11 patients
experience readmittance, resulting in expenses of >2.3 billion
Canadian dollars per year [1,2]. Consequently, this enormous
expense exemplifies the bidirectional consequences of patient
readmission by placing strain on individualized patient care
while creating additional expenses for hospitals [1,2].
Furthermore, the COVID-19 pandemic has exacerbated many
inequities that revolved around patient readmission owing to
inflation. For example, patients with lower income residing in
less wealthy neighborhoods were at a higher risk of being
readmitted after treatment [3]. Reducing these high readmission
rates would prove useful in improving patient outcomes while
alleviating financial concerns, for patients and hospitals alike
[4,5].

One of the ways to help reduce patient readmissions is to adopt
a preventive approach [6]. Risk stratification provides a
standardized criterion for assigning a risk status to patients for
direct care and to improve overall health outcomes. Machine
learning (ML) paradigms have been used to guide clinicians in
their efforts to enhance diagnosis and risk stratification [6,7].
Using ML, clinicians can be guided to make accurate diagnoses,
improve patient outcomes, and even identify patients at risk of
developing certain conditions that can be translatable to
readmission and its economic cost. A study by Baruah [8]
adopted a detailed approach by analyzing electronic health
records using a word convolutional neural network using a
“Bag-of-Words.” Although using discharge summaries can
allow for the personalization of patient prediction, a
work-around for the number of resources required to train a
high-throughput model such as word convolutional neural
network is of high concern [8]. Furthermore, Baruah’s [8] model
was limited in addressing the high class imbalance in shorter
time frame readmission tasks in contrast to longer time frame
readmission tasks [8]. Solving this short time frame readmission
problem can allow for a faster prevention of unplanned patient
readmission [8,9].

Although deep learning models were used for risk stratification
in health care, they had limited success because of the large
amount of data required for training [7,8]. In addition,
incorporating comorbidities and their time periods in models
could lead to the confounding of other variables [9-12].
However, Ben-Assuli et al [13] found that using multiple time
periods and ensemble ML methods on large-scale data enabled
early risk identification in specific patient groups [13]. Stacked
ensemble models, including those with boosted tree algorithms,

demonstrated strong performance in predicting unplanned
patient readmissions by reducing bias from individual models
and sensitivities to rare classes [9,10]. These models also offered
better interpretability for health care workers and nonexperts
in ML, thanks to their transparent results [9-11].

After determining whether the patients will be readmitted within
the next few days, the economic consequences to both the
hospital and the patient will be estimated [14,15]. This involves
finding the causal relationship between patients’expected length
of stay (ELOS) and their resource use, which are both
continuous variables for determining the economic aftermath
of hospital readmission [14,15]. However, if given a time period,
linear regressions may prove useful in predicting and comparing
the trends behind the relationships between variables such as
ELOS and readmission in real time [14,15].

Goal of This Study
The objectives of the proposed work were 3-fold. The first,
main goal of the project was to implement an ensemble model
with individual submodels on the structured data and compare
the resulting metrics to metrics resulting from other models that
have also explored patient readmission in a heart-disease
context. The second goal was to determine the contribution of
optimized data manipulation through principal component
analysis (PCA) to solving the problem of shorter time frame
readmissions. The study also aimed to verify the causal
relationship between the ELOS and resource intensity weight
(RIW) value. Providing an understanding of this relationship
in a quantitative and causal manner can allow for an in-depth
economic perspective, as opposed to only readmittance within
30 days.

Ultimately, the economic and predictive aspects of this model
are intended to provide a view on resource allocation for health
institutes to better predict readmittance and improve
patient-clinician outcomes [5].

Methods

Resources Used

Population Study
The study used a systematic methodology with Python 3.9 and
streamlined libraries to analyze the data obtained from the
Discharge Abstract Database (DAD) covering 2016 to 2021
[16]. Access to the database was facilitated through the Abacus
Data Network, a collaborative effort between several universities
[17]. The study used 2 sub–data sets, clinical and geographical
data sets, to predict patient readmission and analyze economic
implications, respectively. The comprehensive documentation
provided by Statistics Canada allowed for a robust analysis of
the data set. The workflow, illustrated in Figure 1, shows the
process of data analysis and visualization using the matplotlib
and seaborn libraries.
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Figure 1. Study workflow: data collection (blue), data preparation and machine learning implementation (orange), and outputs (green). DAD: Discharge
Abstract Database; PCA: principal component analysis.

Design
Similar to the study by Baruah [8], during clinical and
geographical preprocessing, individuals were screened for
specific criteria. Using the International Classification of
Diseases, 10th revision (ICD-10) and major complication or
comorbidity (MCC) codes similar to the models by Baruah [8]
and Liu et al [18], the examination of adult patients and
exclusion of individuals aged <18 years were performed to
prevent any confounding variables “spilling” onto both models.
The ICD-10 PCA codes for the diseases included I092, I098,
I099, I100, I101, I11, I13, I500, I501, I509, I516, I518, I519,
I520, I521, and I528 [16,17]. As for MCC codes, only code 5
corresponded to cardiovascular diseases [16,17]. Factors that
were not considered were clinical gestation of delivery
(“GES_AGRP”) along with weight group (“WGT_GRP”), as

they were only a direct consequence of the age group that was
eliminated [16,17].

Clinical Data Set

Clinical Preprocessing

Figure 2 shows the manipulation done and models trained on
the clinical data set of DAD. Isolating for a group of patients
who share similar clinical characteristics or medical conditions
can be useful for identifying trends and patterns in patient care
and outcomes, as well as for conducting research on specific
medical conditions such as heart disease.

A clinical preprocessing step was performed to isolate for
specific criteria and remove any potential confounding variables.
Arbitrary admission and discharge dates were chosen based on
previous calculations to avoid errors or inconsistencies in the
data set. To ensure that the minimum number of relative
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admission dates was ≥0, dates were shifted to a minimum of
January 5 of the corresponding data set year. This adjustment
enabled the creation of the “LTORET30Days” columns. For

feature selection and dimensionality reduction, PCA was used,
as it was a common methodology used for high-dimensionality
data sets.

Figure 2. Clinical workflow: data collection (blue), data preparation and machine learning implementation (orange), implementations (purple), and
outputs (green). LGBM: LightGBM; PCA: principal component analysis.

PCA Process

According to the PCA criterion, the components to use were
described by the minimum number of features required to obtain
a cumulative variance of at least 80% [19,20]. The aim was to
reduce the dimensionality of the feature space while retaining
as much of the original variance as possible [19-21]. After
obtaining an encoded vector in the form of an array, the data
were run through several ensemble algorithms. The ensemble
algorithm consisted of several submodels, including random
forest classifiers, XGBoost (XGB), and LightGBM (LGBM).
Each subclassifier’s output was stacked, allowing for a logistic
regression to learn the weighted distribution of the subclassifiers

to ensure high predictive accuracy. After dimensionality
reduction and splitting into training and testing data sets, the
final sample size was n=83,083 for nonreadmitted patients and
n=10,271 for readmitted patients.

Submodels: LGBM and XGB

LGBM and XGB presented a relative advantage with regard to
efficient computation and high accuracy on a wide range of data
sets, including those with high dimensionality and categorical
features [22-25]. Both methods required sequential decision
tree generation via error combination or level-wise tree growth.
Having dimensionality reduced data would have decreased the
maximum function, δloss, for LGBM, allowing for lower error
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and lower changes in ∇prediction [26,27]. Similarly, it was
extrapolated that a higher maximum depth for XGB would be
achieved, as the number of features was lower [26,27]. An
in-depth analysis about LGBM and XGB can be found in
Figures S1-S11 in Multimedia Appendix 1.

Random Forest

Random forest was chosen to improve the interpretability of
the model when used in conjunction with PCA [21]. As the data
set had a large number of features, random forest’s
computational cost was high. However, after performing
dimensionality reduction using PCA, the computational cost of
random forest was substantially reduced, making it a practical
option for large data sets [21]. During the testing phase, the
random forest classifier predicted the final decision of a new

data point, noted by CBrf(x), by aggregating the prediction results
of all decision trees using a majority vote. The classifier selected
the class with the highest number of votes as the final prediction,
resulting in an accurate and interpretable model. The algorithm
design for random forest is formulated in Multimedia Appendix
1.

Ensemble Models: Logistic Regression

The ensemble model used in this study was a stacking classifier
model with a metamodel (final estimator), which was a logistic

regression model [26]. The metamodel took the outputs of the
base models as inputs and optimally combined their predictions
to ensure high predictive performance [26]. The ensemble model
consisted of 4 base models and was defined, trained, and tested
using the scikit-learn's ensemble module, which was the default.
This produced an optimal workflow, which is presented in
Figure 2. Detailed formalisms are provided in Multimedia
Appendix 1.

Hyperparameter Tuning

To optimize the performance of each base model,
hyperparameter tuning was done using a range of values for
each parameter [27]. The models were evaluated based on their
F1-score or recall, and scikit-learn's GridSearchCV and
RandomizedSearchCV were used to fine-tune the parameters
[27].

In addition, a custom function was used to optimize the final
estimator of the stacking model, specifically for the logistic
regression component [21]. Table 1 lists the parameters used
for all the models. By tuning the hyperparameters of the base
models and customizing the final estimator for the stacking
model, we aimed to improve the overall performance and
accuracy of the ML model [27-30].

Table 1. Tuned parameters organized according to submodels and estimators.

ParametersModel

max_depth, n_estimators, and learning_rateXGBa

bootstrap and max_depthRandom forest

learning_rate, n_estimators, num_leaves, min_child_samples, subsample, max_depth, colsam-
ple_bytree, reg_alpha, reg_lambda, and min_data_in_leaf

LGBMb

solver, penalty, and CLogistic regression (stacking ensemble)

aXGB: XGBoost.
bLGBM: LightGBM.

Evaluation of the Ensemble Model Outcomes

Evaluation Metrics
Statistical analysis was performed to ensure that the model was
robust in and valid for improving the patient outcomes. Three
evaluation metrics were used to evaluate the robustness of the
model.

1. Precision is the ratio between the true positive observations
and total positive observations obtained from the confusion
matrix [31]. In other words, it provides the number of
retrieved items that are relevant. This was a crucial quantity,
especially given that there was high class imbalance:

2. Recall is the ratio between the number of true positives and
the sum of the number of true positives and number of false
negatives [31]. The recall score provides the number of
relevant items retrieved [31]. The recall score was useful
in determining the model validity regardless of class
imbalance owing to the measurement of false negatives:

3. Balancing the 2 quantities required the use of F1-score,
which serves as the harmonic mean of the precision score
and recall score [31]:

All the scores for the hyperparameter-tuned data were plotted
on a bar graph to ensure a clear presentation of the data [31].

Geographical Data Set

Feature Selections

To determine the relationship between ELOS and RIW, 2
continuous variables that have been shown to be positively
correlated with improved patient outcomes, a linear regression
analysis was conducted [32-34]. RIW is a weighted measure of
the anticipated use of resources associated with various
demographic, diagnostic, and surgical procedure characteristics
of an individual [29,30]. Multimedia Appendix 1 discusses the
requirements for the calculation and formulation of RIW [35].
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Therefore, linear regression analysis has the potential to provide
a quantifiable measure of the correlation between these
variables, thereby meeting the third objective of the research
paper, which is to conduct an in-depth economic analysis [29].

To ensure that the results were not biased by confounding
factors, the linear regression analyses were conducted separately
for each age group, gender, and readmission column class [33].
This approach ensured that any potential effects of these
variables were taken into account. Figure 3 demonstrates the
approach used for the geographical data sets.

Figure 3. Geographic workflow: data collection (blue), data preparation and regression implementation (orange), and outputs (green). MCC: major
complication or comorbidity.

Main and Controlled Geographic Data Set Variables

After the data were isolated for individuals aged >18 years and
the MCC codes, Python pandas were used to condition the data
set onto covariates. The entire data set was then placed into
specific clusters based on this condition. First, individuals were
clustered according to whether they had the same patient
readmission column value, and then they were split by gender.
Afterward, each data point was separated into age clusters. There
were 2 gender data clusters for each of the 2 readmitted clusters

and 15 age clusters for each of the 4 resulting clusters, resulting
in 60 linear regressions being performed. To clarify, the main
independent variable was ELOS, and the dependent variable
was RIW. The data were split to verify the hypothesis that there
was indeed an economic benefit to extending a patient’s length
of stay rather than being readmitted.

Ethical Considerations
This study was exempt from research ethics review, as it was
a secondary analysis of research data. As data were received
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directly from acute care facilities or from their respective health
or regional authority or ministry or department of health,
facilities in all provinces and territories except Quebec were
required to report. The authors do not claim any right to the
data, as they are the property of Statistics Canada along with
the Abacus Student Network [16,17].

Results

The results of the main study are presented in this section. The
results for the PCA, feature selection stages, and more data can
be found in section B in Multimedia Appendix 1.

Classification Reports
The evaluation metrics for the ensemble model were presented
using classification reports (Table 2). In this context, class 0
represented the model’s performance for the negative class (ie,
patients who did not return within 30 days), and class 1
represented the model’s performance for the positive class (ie,
patients who did return within 30 days). The support column
indicated how many examples of each class were there in the
test set.

Table 2. Classification reports for different models.a

F1-scoreRecallPrecisionModel type and class

XGBoost

0.950.990.920b

0.440.310.791c

Random forest

0.950.970.930

0.480.390.651

LightGBM

0.930.910.960

0.570.680.491

Ensemble modeld

0.930.910.960

0.570.680.491

aAll of these models have been hyperparameter tuned.
bFor all models, class 0 contains n=16,592.
cFor all models, class 1 contains n=2079.
dTuned submodels and tuned ensemble models.

Correlation Between Inpatient RIW and ELOS
A least squares linear regression model was fitted to the ELOS
and RIW value columns of a geographical data set, and a
summary of the best-fitted lines was obtained (Tables 3-5). The
corresponding plots (Figures S6 and S7 in Multimedia Appendix
1) and tables (Tables 6-8) produced by the least squares linear
regression was also obtained, and the data were stratified by

readmission status, age group, and gender. The coefficient of

determination (R2) was included, and it took a value between 0
and 1, providing a sense of how correlated the 2 variables were,
with a value of 1 indicating perfect correlation. Note that all
age groups had a P<.001. The threshold was chosen as it was
expected highly correlated and the root mean square error was
used to measure the distance between predicted and actual
values.
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Table 3. Regression lines fitted for women who were readmitted within 30 days, separated by age groups.

Sample size, nF statisticsRMSEaR2 adjustedIntercept
Slope (expected length of
stay)Age group (years)

7667.3396411.2227080.469363–0.0384960.19666118-24

138128.6532352.0672900.482341–0.0324510.23685525-29

15469.2996192.5072480.3086300.0096960.19558230-34

150213.4021693.3562370.587717–1.4317800.45532635-39

212284.3857046.4744910.573208–3.0145870.77640740-44

341572.1327632.2861410.626838–0.6811880.35591245-49

519990.0719511.2467350.656287–0.3506360.33837550-54

775776.5898381.6317540.5005130.0216630.26904255-59

1124755.8721641.5076520.4019830.0233550.26645160-64

14151821.0455411.8130540.562777–0.4331170.36155865-69

16681393.8579332.1119740.455203–0.3739870.34621570-74

17971795.0951181.3883780.499735–0.0885120.28014375-79

41731975.1407271.6001270.321200–0.1405230.280403>80

aRMSE: root mean squared error.

Table 4. The 4 types of submodels.

Tuned LRc (Y or N)Tuned submodels (Ya or Nb)Ensemble model

NN1

YN2

NY3

YY4

aY: yes.
bN: no.
cLR: logistic regression.
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Table 5. Comparison of existing literature values.

Comparison to current literature values with precision, re-
call, and F1-score

Description of modelAuthor name or literature values

Sharma et al [36] used a precision-recall curve to evaluate
the performance of their model. The bias-variance trade-
off was observed to be high during the analysis. The prima-

ry evaluation metric used in the study was the AUCa, which
was not used for the proposed work here.

Sharma et al’s [36] implementation of XGBoost
created a precision-recall curve. Their precision
and recall balance for class 1 was significantly
lower than that of the ensemble model. However,
the ensemble model proposed in this work allows
for high balance.

Sharma et al [36]: “Predicting 30-Day
Readmissions in Patients With Heart
Failure Using Administrative Data: A
Machine Learning Approach”

The following scores were given for the 2-layer neural
network of Jamei et al [37], with the number of features
being high: precision=23%, recall=59%, and
F1-score=16.5%. This indicates that the proposed model
in this work has a significant advantage compared with an

ANNb.

Jamei et al [37] predicted patient readmission
using a neural network. Their precision and re-
call balance was skewed, as the precision for
their models was low, yet the recall was high.
This results in high variance but low bias.

Jamei et al [37]: “Predicting All-Cause
Risk of 30 Day Hospital Readmissions
Using Artificial Neural Networks
(ANN)”

The following scores were present in the readmission stage:
recall score of 80% and a precision score of 76%. Although
these scores may be higher overall due to the presence of
more personalized data such as specific laboratory results
for each patient. Furthermore, Ho et al [38], does not seem
to stratify based on specific diseases which could result in
bias effecting this score.

Ho et al [38] predicted a within a 24 month peri-
od. The model they used was an XGBoost
Model having access to specific laboratory data
in addition to the variables addressed in our
work.

Ho et al [38]: “Predicting Readmission
at Early Hospitalization Using Electron-
ic Health Data: A Customized Model
Development”

aAUC: area under the curve.
bANN: artificial neural networks.

Table 6. Regression lines fitted for men who were not readmitted within 30 days, separated by age groups.

Sample size, nF statisticsRMSEaR2 adjustedIntercept
Slope (expected length of
stay)Age group (years)

528228.3625231.1655770.3013970.6030210.13300418-24

452718.9901661.6092550.614197–0.2760380.33260625-29

6601521.1453712.2792280.697588–1.0699070.49242530-34

10101902.5043402.4073470.653325–0.8442920.44752535-39

16983118.8680542.0759030.647550–0.8401170.46651940-44

28283957.6668281.7702960.583264–0.3084390.38046045-49

47307922.9130062.0740920.626193–0.5579440.42095450-54

68669108.2723642.2237040.570193–0.4409370.41079955-59

85187587.0147262.7699790.471093–0.5027560.42137860-64

946710,030.8329152.1441530.514460–0.0539990.34137565-69

98468977.1407321.9927370.476918–0.0157190.32790970-74

86927031.8019362.1772620.447201–0.1142960.33157975-79

16,2756006.4832692.4149060.269552–0.0820610.296201>80

aRMSE: root mean squared error.
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Table 7. Regression lines fitted for men who were readmitted within 30 days, separated by age groups.

Sample size, nF statisticsRMSEaR2 adjustedIntercept
Slope (expected length of
stay)Age group (years)

83159.7569831.9364110.659408–0.1232510.1330418-24

96123.6638573.0099550.563547–1.4442960.43478025-29

154109.1087821.9637180.4140370.3382590.20504930-34

261387.2014893.5163150.597649–1.4344080.50307635-39

410708.0535501.5562340.633530–0.4267510.31963840-44

742883.3467122.2382060.543536–0.2512610.32152045-49

12811546.4371151.3295110.546973–0.1577820.30513150-54

18361963.0777721.8443210.516734–0.2916090.33632755-59

24842742.8754131.9783640.524773–0.5410030.38783060-64

27903103.9572201.9197890.526643–0.3341690.35620965-69

29512989.9081281.6869300.503276–0.1905390.31515070-74

25362699.8483551.9354200.515653–0.2423780.33098175-79

42662708.9799411.8641840.388353–0.2721160.320212>80

aRMSE: root mean squared error.

Table 8. Regression lines fitted for women who were not readmitted within 30 days, separated by age groups.

Sample size, nF statisticsRMSEaR2 adjustedIntercept
Slope (expected length of
stay)Age group (years)

306733.1883721.8370200.650458–0.1683200.29098718-24

445589.1708722.7263890.570807–0.3787370.34077925-29

562789.0766322.0485680.584901–0.2843490.32482730-34

6441102.4740891.7251100.631981–0.5153990.36888935-39

9441070.3192611.5693190.5318830.1470740.25302340-44

14222394.2186471.4933200.627709–0.2328750.32463045-49

22002019.3265581.6554290.478817–0.0733650.30118650-54

32874468.1791141.8860880.576303–0.4840060.38995955-59

41213013.6384472.1111660.422514–0.1905790.33951760-64

53095405.5800631.6169910.504601–0.0294490.29705565-69

60435622.9586982.0164950.482080–0.2627530.33389670-74

65625139.6974712.0578150.439302–0.3587210.34828975-79

18,8354115.3687182.4897820.179332–0.0346270.266803>80

aRMSE: root mean squared error.

Discussion

The proposed work aimed to use ensemble models and linear
regressions for predicting patient readmissions and analyzing
their economic consequences [32,33]. The results of this study
demonstrate the potential of these models to accurately predict
readmissions with a balanced degree of recall and precision,
which could help health care providers identify patients who
are at risk of readmission and take proactive measures to prevent
it.

Notes About the Study
Although the study used cutting-edge algorithms for
classification and regression, there are several critical notes that
must be considered [39]. The primary evaluation metrics for
the models were recall and F1-scores, with a slight preference
for false positives over false negatives to decrease the likelihood
of unplanned readmissions [40]. However, it is crucial to note
that this approach may not be suitable for all health care
scenarios and should be evaluated on a case-by-case basis [41].

Another crucial consideration is the computational cost
associated with clinical and graphical data [41]. Although the
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analysis for this study only took 2 to 3 hours, it is essential to
consider the computational requirements for more substantial
studies, particularly those with larger data sets or more complex
models [42]. The computational cost may impact the feasibility
of the study, and efficient models may be necessary to ensure
valid and reliable results [42].

In addition, some features in the geographical data, such as the
case mix group diagnosis type, could not be split in the
geographical data sets because of their high computational cost.
This could lead to omitted variable bias and negatively affect
the models’ accuracy [43]. As the impact of not splitting these
features was not taken into account in this study, future research
should carefully evaluate the potential impact of not splitting
features and consider alternatives to reduce the computational
cost [43].

Clinical Data Set Result Analysis
In this section, the clinical data set results are analyzed and
compared with those of other existing models in the literature.

The Effect of PCA on the Study and the Bias-Variance
Trade-off
The use of PCA offered several advantages. The selection of
the components that describe the minimum number of features
required to achieve a cumulative variance of at least 80% proved
to be effective in preventing overfitting [31,44-46]. The data
set had high dimensionality and a substantial number of data
points, which would have led to high bias and low variance
without the use of PCA [39]. This, in turn, would have resulted
in a lower precision rate than recall rate. However, PCA
prevented this issue by reducing the number of features in the
model and substantially increasing computational efficiency
[47].

Moreover, PCA eliminated the potential for collinearity, which
can create unstable and unreliable estimates of the model
parameters [39]. Collinearity makes it difficult to determine the
unique contribution of each variable to the outcome [41]. Upon
computing the covariance matrix and performing an eigenvector
decomposition, the resulting eigenvectors were orthogonal to
each other, thereby eliminating the presence of collinearity.

Furthermore, the implementation of PCA in conjunction with
stacked classifiers enabled a higher interpretability of the models
[42]. Stacked models can be challenging to interpret in
high-dimensional data, as the layers can contribute to a high
level of complexity [43]. Moreover, the curse of dimensionality
and collinearity can make it difficult for models to isolate
specific features, thereby decreasing transparency [43].
However, the addition of PCA allowed for a more
comprehensive and explained model, as reflected in the
submodel and ensemble model analyses in the subsequent
sections.

Submodel Analyses
This study found that although the hyperparameter-tuned XGB
model outperformed its base model, it was still less accurate
than the other individual submodels. This result is consistent
with a previous study conducted in Alberta that also found that
XGB models did not provide substantial information on patient

readmissions [36]. However, the tuned XGB model performed
better than its base model and had a higher precision and recall
score, indicating a better balance between precision and recall
for both classes relative to the default XGB model.

By contrast, both the tuned random forest and LGBM models
(Tables 6 and 7, respectively) demonstrated superior
performance compared with their base models (Table S1 in
Multimedia Appendix 1) in predicting patient readmission for
class 1, as evidenced by their higher F1-score and precision.
The recall for class 1 was lower for the tuned random forest
model, whereas it was higher for the tuned LGBM model.
LGBM was shown to balance a slightly higher recall rate and
precision rate than its other decision tree counterparts, allowing
it to provide substantial information regarding the use of this
model.

Final Estimator Analysis
The ensemble model was created to ensure minimization and
offset bias and variance between each of the models in
discussion [44,45]. The 4 types of ensemble models and their
classification reports are listed in Table 4 and Table S2 in
Multimedia Appendix 1, respectively.

Upon analyzing the data, it was observed that the default model
configuration, which consisted of default submodels and a
default final estimator logistic regression, exhibited high
precision (0.92) and recall (0.98) for nonreadmitted patients
(class 0). However, its ability to predict readmissions (class 1)
was comparatively weaker, as evidenced by the lower F1-score
(0.46), precision (0.69), and recall (0.35) for class 1.

The second configuration, which used default submodels with
a tuned logistic regression final estimator, demonstrated an
improvement in the F1-score (0.56) for class 1. Nonetheless, its
precision (0.47) and recall (0.68) for class 1 remained lower
than those for class 0.

The third configuration, which used tuned submodels with a
default final estimator logistic regression, yielded high precision
(0.92) and recall (0.99) for class 0. However, its performance
in predicting readmissions (class 1) was weaker, with a precision
of 0.77 and recall of 0.30, leading to an F1-score of 0.43.

The fourth configuration, in which both submodels and final
estimator logistic regression were tuned, resulted in the highest
F1-score (0.57) for class 1, indicating a better performance in
predicting patient readmissions. Nevertheless, its precision
(0.49) and recall (0.68) for class 1 remained lower than those
for class 0.

The overall tuned ensemble model, when compared with the
submodels, is identical to the LGBM model, as although recall
is favored, the balance between precision and recall for class 1,
compared with the other models, is useful in preventing too
many false positives from occurring.

Comparison of Tuned Ensemble Models With Literature
Value Predictions
The results of this study are not comparable with Baruah’s [8]
values because of the presence of unstructured data types, which
cannot serve as a useful comparison to ordered data sets such
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as the DAD. However, other studies have used the DAD or
other similar structured data before. The existing literature
review comparisons with 30-day short-term studies are presented
in Table 5.

Note that this list is not exhaustive and that there may be other
studies that potentially use stacking classifier models and show
better results. The comparison with other studies shows that the
model has the potential to be viable and robust, but more tuning
and comparison between submodels need to be performed.

Limitations of the Clinical Data Set Analysis
One notable limitation of the clinical data set used in this study
was the high class imbalance problem. Specifically, there were
considerably more training points for class 0 than for class 1,
with n=83,083 for class 0 and n=10,271 for class 1. This issue
could have led to the trained model being more prone to
producing false negatives than to producing false positives, as
it was more familiar with class 0 instances and thus had a
tendency to classify more instances as class 0 [48,49].
Consequently, this limitation could have negatively impacted
the overall performance and accuracy of the model, as well as
the reliability of the predictions it produced [50].

Another limitation of the data set was the encoding of the data,
which could have influenced the interpretability and accuracy
of the model. Specifically, if the model interpreted the encoded
data as ordinal, it could have altered the ordinality of the
classifier, thereby influencing the classification results. This
limitation could have impacted the ability of the model to
identify the most relevant features for predicting patient
readmission, reducing its interpretability [49]. Moreover, this
limitation could have adversely impacted the accuracy of the
model, as the model may have learned from the encoded data
instead of the underlying features, resulting in a less accurate
prediction of patient readmission [50].

Finally, the data set’s lack of information about the specific
principal component that contributed to the accurate prediction
of the patient data set was another limitation. This limitation
could have constrained the model’s ability to explain how the
variables were associated with patient readmission, resulting in
a lack of transparency in the model’s predictions and reduced
ability to elucidate the rationale behind its decision-making
process. As such, identifying the principal components that
contribute to the accurate prediction of the patient data set is
critical to improving the interpretability and reliability of the
model.

Geographical Data Set Result Analysis

Causality of the Linear Regression Model
The study results suggested that the model could potentially
establish a causal relationship (albeit with a proper regression
type) between ELOS and RIW. The anticipated hypothesis was
well supported by the tables presented earlier, indicating the
importance of the model. The analysis involved an explicit
model of a continuous outcome (RIW) that was affected by a
measured continuous variable (ELOS), and the results showed
a notable impact. This finding encourages the establishment of
causality in the relationship between ELOS and RIW.

ELOS Effects on RIW and Fit of the Linear Regression
The relationship between ELOS and RIW was investigated
through a linear regression analysis, which produced the
coefficient (slope) from the ELOS variables. The study findings
indicated that more resources were expended and more time
was spent among women aged 40 to 44 years who were
readmitted than among those who were not readmitted. In
addition, more resources were expended for men aged 35 to 39
years (Table 7) who were readmitted than for their
nonreadmitted counterparts. Surprisingly, most of the slopes
associated with ELOS are uniform in nature and are
approximately the same across ages. However, a comparison
between the results also suggested that ELOS had a significant
effect on RIW owing to the low P values.

The F test of overall significance was used to ascertain that the
model was better suited than a model with no independent
variables [51,52]. All the models had F statistic values
significantly greater than their critical F values, which suggested
that the linear regression model was a relatively accurate
estimate of the relationship between ELOS and RIW.

However, the root mean squared error and R2 values suggested
otherwise. There was a high degree of error compared with the

slope. The low R2 values across all the studies implied that linear
regression was not a good fit, which could imply that further
data clustering into groups was necessary or that further
manipulation of the data to perform a different regression was
needed. These results were reasonable, considering that the
function was not 1-to-1, as demonstrated by the graphs in
Figures S6 and S7 in Multimedia Appendix 1.

Future Directions
Many fundamental aspects of both the ensemble model and
linear regression remain unexplored.

Therefore, the suggested future implementations for the
ensemble model are as follows:

• Including unstructured data (such as clinical data and text
notes) in analysis by a deep neural network and performing
logistic regression on all the models to give individuality
to a specific patient [18].

• Using deep learning neural networks as a final estimator
for the ensemble model and outputting evaluation metrics
[53].

• Adding more submodels and optimizing for computational
resources such as space, time, and memory [53].

The suggested improvements for the linear regression include
are as follows:

• An instrumental variable that measures the relationship
between ELOS and a selection decision variable should be
implemented. The instrumental variables should only be
involved in the selection decision process. Afterward, the
relationship between RIW and the selection decision
variable should be measured to ensure low omitted variable
biases [54].

• Logistic regression (logistic by the coefficients) should be
performed to ensure that root mean squared error is
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minimized and a more accurate relationship between the
ELOS and RIW can be derived [55].

These applications can allow for a more in-depth analysis and
provide a multifaceted perspective in the fields of ML,
econometrics, and health care interventions.

Conclusions
The study’s implications are to validate the use of hybrid
ensemble models and attempt to predict economic cost
prediction models. The availability of robust and efficient
predictive models, such as the one presented in this study, can
enable hospitals to focus more on patients and less on the utility
and bureaucratic costs associated with their readmission. As
demonstrated by the evaluation metrics, the ensemble model
plays a critical role in ensuring more precise results overall. By
implementing a crowdsourcing approach, the model can also
estimate the resources required to control future epidemics in
an easier, time-sensitive manner while maintaining low
economic costs. This is particularly relevant in decentralized,

universal, publicly funded countries such as Canada, where high
inflation on medical equipment, technologies, and maintenance
has been observed in the aftermath of the COVID-19 pandemic.

Predicting the relationship between ELOS and RIW can also
indirectly predict patient outcomes by reducing bureaucratic
and utility costs, thereby reducing the cost burden placed on
patients to implement administrative tasks and on physicians
to ensure their execution. The ensemble model also considers
the specific disease type, and the encoding process has resulted
in the classification data being ordinal in nature, which takes
into account patient utility in addition to risk stratification.

The linear regression has considered the differences in
continuous variables while also allowing for a clear difference
in the clustered groups. Further exploration of the cost-benefit
economic model can enable hospitals to ensure more cost-free,
patient-friendly outcomes. It is recommended that after making
several changes to the general ensemble model and the linear
regressions, they be used to analyze new and incoming
numerical hospital cost data.
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