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Abstract

Background: Accurate measurement of daily physical activity (PA) is important as PA is linked to health outcomes in older
adults and people living with complex health conditions. Wrist-worn accelerometers are widely used to estimate PA intensity,
including walking, which composes much of daily PA. However, there is concern that wrist-derived PA data in these cohorts is
unreliable due to slow gait speed, mobility aid use, disease-related symptoms that impact arm movement, and transient activities
of daily living. Despite the potential for error in wrist-derived PA intensity estimates, their use has become ubiquitous in research
and clinical application.

Objective: The goals of this work were to (1) determine the accuracy of wrist-based estimates of PA intensity during known
walking periods in older adults and people living with cerebrovascular disease (CVD) or neurodegenerative disease (NDD) and
(2) explore factors that influence wrist-derived intensity estimates.

Methods: A total of 35 older adults (n=23 with CVD or NDD) wore an accelerometer on the dominant wrist and ankle for 7 to
10 days of continuous monitoring. Stepping was detected using the ankle accelerometer. Analyses were restricted to gait bouts
≥60 seconds long with a cadence ≥80 steps per minute (LONG walks) to identify periods of purposeful, continuous walking likely
to reflect moderate-intensity activity. Wrist accelerometer data were analyzed within LONG walks using 15-second epochs, and
published intensity thresholds were applied to classify epochs as sedentary, light, or moderate-to-vigorous physical activity
(MVPA). Participants were stratified into quartiles based on the percent of walking epochs classified as sedentary, and the data
were examined for differences in behavioral or demographic traits between the top and bottom quartiles. A case series was
performed to illustrate factors and behaviors that can affect wrist-derived intensity estimates during walking.

Results: Participants averaged 107.7 (SD 55.8) LONG walks with a median cadence of 107.3 (SD 10.8) steps per minute. Across
participants, wrist-derived intensity classification was 22.9% (SD 15.8) sedentary, 27.7% (SD 14.6) light, and 49.3% (SD 25.5)
MVPA during LONG walks. All participants measured a statistically lower proportion of wrist-derived activity during LONG
walks than expected (all P<.001), and 80% (n=28) of participants had at least 20 minutes of LONG walking time misclassified
as sedentary based on wrist-derived intensity estimates. Participants in the highest quartile of wrist-derived sedentary classification
during LONG walks were significantly older (t16=4.24, P<.001) and had more variable wrist movement (t16=2.13, P=.049)
compared to those in the lowest quartile.

Conclusions: The current best practice wrist accelerometer method is prone to misclassifying activity intensity during walking
in older adults and people living with complex health conditions. A multidevice approach may be warranted to advance methods
for accurately assessing PA in these groups.
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Introduction

Regular physical activity (PA) is important for minimizing the
risk of adverse health outcomes and premature mortality [1,2].
The many benefits of PA extend to older adults and those living
with complex health conditions such as cerebrovascular disease
(CVD) or neurodegenerative disease (NDD). For example,
routine PA over the lifespan may mitigate age-related cognitive
decline [3], and engagement in regular PA may positively impact
motor and nonmotor symptoms of NDDs [4-7]. Published
movement guidelines recommend participating in a minimum
of 150 minutes of moderate-to-vigorous physical activity
(MVPA) per week (≥ 3 metabolic equivalents of task) [2,8],
several hours of light PA (1.5-3.0 metabolic equivalents of task)
per week, and limiting sedentary time [8]. Walking is the most
commonly reported leisure time activity [9], and across the
lifespan, preferred pace walking is classified as a
moderate-intensity aerobic activity [10,11]. Thus, it is critically
important to accurately quantify walking behavior to describe
overall activity level and further understand the relationship
between PA and health outcomes in older adults and people
living with complex health conditions.

Accelerometry is commonly used to measure naturally occurring
activity [12] and its relationship with other health-related
behaviors such as sleep and sedentary behavior [8].
Accelerometry affords the opportunity to move beyond the
constraints of laboratory or clinical measures and overcome
challenges associated with self-report assessments of PA by
objectively measuring PA intensity in free-living, ecologically
valid settings [13]. Free-living activity assessment is typically
conducted using an accelerometer placed on the wrist, thigh, or
hip [14-20]. While wrist-worn devices are convenient and
well-tolerated due to comfort and ease of use [21-23], there are
several circumstances when the approach may be susceptible
to error in estimating activity volume and intensity, including
instances of walking. Specifically, isolated arm movement (eg,
gesticulation), absence of arm movement (eg, using a mobility
aid such as a walker), or activities of daily living (ADLs; eg,
pushing a shopping cart) may result in over- or underestimation
of activity intensity [24]. Disease- or age-related changes in
arm movement, including variable arm swing, limb asymmetry
or impaired limb coordination, and reduced arm swing during
slow gait [25-27], can also impact the relationship between arm
motion and walking, leading to a dissociation between
wrist-based estimates of intensity and the actual energy
requirements of the activity [28]. Given the potential
susceptibility to error and the ubiquitous use of wrist-worn
accelerometry for PA intensity classification in research and
clinical applications, there is an important need to confront the
limitations of wrist-derived PA intensity estimates during
periods of unconstrained, free-living walking.

A viable candidate for advancing PA intensity estimation is the
concurrent use of an ankle-worn device. The ankle provides an
alternative wear location that robustly detects walking and other

lower limb or whole-body activities such as cycling [29,30] and
accurately measures the spatiotemporal characteristics used to
evaluate gait control [31-33]. Compared to wrist- or hip-mounted
accelerometers, ankle-worn accelerometers provide more
accurate results at slower gait speeds, which are often exhibited
by older adults and people living with complex health conditions
[34]. Multidevice approaches (eg, combining wrist- and
ankle-worn devices) have the potential to improve PA estimates
by providing necessary context and the opportunity to resolve
discrepancies [35]. For example, obtaining a profile of daily
walking behavior from ankle accelerometer data provides
windows of known activity that can be compared against other
indices of activity, such as wrist-based estimates of intensity.
This approach has the potential to improve the accuracy of PA
estimates and can be a useful model to reveal the dissociation
in activity classification based on wear location.

This study examined the estimated activity intensity from a
wrist-worn accelerometer during walking as identified from
synchronous data captured at the ankle in an extended free-living
collection. The primary objective of this study was to determine
the accuracy of PA intensity measured from the wrist when
compared to known periods of walking (from the ankle) in older
adults and people living with CVD or a range of NDDs. It was
hypothesized that PA intensity derived from wrist accelerometry
will underestimate the intensity of walking within these cohorts,
including instances when known ankle-derived walking bouts
are misclassified as sedentary behavior. A secondary objective
was to explore demographic, behavioral, and disease-related
characteristics that contribute to variability in measured intensity
from wrist-worn accelerometers during known walking bouts
in free-living conditions.

Methods

Participants
Participants were drawn from 2 studies conducted by the Ontario
Neurodegenerative Disease Research Initiative (ONDRI): the
Remote Monitoring in Neurodegenerative Disease (ReMiNDD)
study [23] and the Health in Aging and Neurodegenerative
Diseases and DementiaS in Ontario (HANDDS-ONT) study.
Given the specific interest in aging and disease, this study
included participants who were 65 years of age or older.
Participants in the ReMiNDD study met standard clinical
diagnostic criteria for CVD or 1 of 4 NDDs, including
Alzheimer disease or amnestic mild cognitive impairment
(AD/MCI), frontotemporal dementia (FTD), Parkinson disease
(PD), and amyotrophic lateral sclerosis (ALS; all referred to as
older adults living with an NDD (“OA-NDD”)) [23,36].
Participants in the HANDDS-ONT study included adults who
self-reported meeting clinical criteria for possible or probable
CVD, AD/MCI, FTD, PD, or ALS (also referred to as
“OA-NDD”) or those who lived independently in the community
with no clinical diagnosis of an NDD (referred to as older adults
(“OA”) within this study).
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Ethics Approval
The ReMiNDD and HANDDS-ONT studies were both approved
by the Sunnybrook Health Sciences research ethics board (No:
1832 and CTO No: 3589, respectively), and all participants
provided written informed consent prior to data collection. All
study data were deidentified. Participants did not receive
compensation for their study participation.

Procedures

Overview
Data were collected between May 2019 and March 2020 for
the ReMiNDD study (see [23] for a detailed protocol), with
HANDDS-ONT study data collection ongoing since August
2021 [37]. Briefly, both studies began with a baseline visit that
involved the collection of medical history and instrumentation
with multiple wearable devices that participants wore over the
course of a 7-day (ReMiNDD) or up to 10-day (HANDDS-ONT)
collection period. Participants also completed a cognitive
assessment and questionnaires about their health and disease
status (see section “Demographics and Clinical Measures”). At
the end of the collection period, wearable devices were returned
to the study team for data offloading, processing, and analysis.

Data Collection

Demographic and Clinical Measures

Participants self-reported demographic, health history, gait aid
use, and hand dominance information for both studies. A trained
member of the study team administered the Montreal Cognitive
Assessment (MoCA) [38] and the modified Rankin Scale (mRS)
[39], with the latter only being administered as a part of the
ReMiNDD study and for HANDDS participants living with
CVD. This information was collected and stored using REDCap
electronic case report forms [40] and hosted on Brain-CODE
[41-43].

Wearables Data

For the ReMiNDD study, GENEActiv Original accelerometers
(ActivInsights) were worn on both wrists and ankles, sampling
at a frequency of 75 Hz. For the HANDDS-ONT study, Axivity
6 inertial measurement units (AX6, Axivity Ltd) containing an
accelerometer were worn on the participants’ self-reported
dominant or least impaired wrist and an ankle (ipsilateral for
all but n=1), sampling at a frequency of 50 Hz. Both devices
output raw triaxial acceleration, which allows data processing
consistent with that of other works without concern for the use
of proprietary preprocessing or different device types or
sampling rates [44]. Following collection, data were offloaded
to a secure network drive and processed using custom analytics
implemented in Python, as described in the Data Processing
and Analysis section below. Only data from the self-reported
dominant or least impaired side were used in this study.

Data Processing and Analysis
Custom Python software was used for all data processing and
analysis. GENEActiv and Axivity files were converted to a
standardized data format (European Data Format). Wrist and
ankle data were synchronized using either the clock drift
calculation (GENEActiv) or synchronization events performed

manually during the collection period (AX6). During stationary
periods, accelerometer calibration was evaluated using gravity
as a constant, known acceleration value, and corrected as
necessary [45]. Analytics were run to detect device nonwear
[46], periods of sleep (wrist device; [47]), steps (ankle device;
unpublished), and activity using thresholds for intensity (“cut
points”) developed in a sample of older adults (mean 77, SD 5
years; wrist device; [44]). These cut points use average vector
magnitude (AVM) data, which are derived using low-pass
filtered triaxial accelerometer data and are independent of
sampling rates, and therefore can be applied to both processed
GENEActiv and Axivity data. To classify total free-living
wrist-derived activity volumes, only full calendar days with at
least 10 hours of device wear during waking hours were included
(considered “valid days”), consistent with many studies of PA
[48].

Using the steps detected by the ankle accelerometer, the data
set was annotated with bouts of walking that served to anchor
wrist-based activity estimates. Walking bouts had a maximum
resting period of 5 seconds [49], a median cadence above 80
steps per minute (spm), and a minimum duration of 60 seconds
(referred to as LONG walks) [50]. These criteria were selected
to identify bouts of purposeful, continuous walking assumed to
reflect moderate-intensity activity [28].

To derive PA estimates from the wrist during known periods
of walking, wrist data were first checked for periods of nonwear
[46]. One-second epochs were generated using the AVMs of
the calibrated, gravity-subtracted triaxial accelerometer wrist
data. Epoched wrist data were then reaveraged into 15-second
epochs, and epochs that ended after the end of their associated
LONG walk were not included in the analysis of PA intensity.
The wrist-derived intensity was calculated for all 15-second
epochs during LONG walks using published activity cut points
for older adults [44]. These cut points differentiate between
sedentary, light, and moderate intensity. With no cut-point to
differentiate moderate from vigorous intensity, epochs above
the moderate-intensity threshold were classified as MVPA. For
each intensity category, activity volume is expressed as a
percentage of LONG walk epochs.

To examine the clinical implications of misclassifying
wrist-derived activity intensity, wrist-derived sedentary minutes
during LONG walks were totaled per participant, and 20 minutes
of sedentary time was set as a clinically important threshold
based on published movement guidelines [8]. These guidelines
recommend 150 minutes of MVPA per week, which equates to
approximately 20 minutes of MVPA per day. As the collection
periods were approximately 7 days long, the misclassification
of 20 minutes of MVPA as sedentary time represents
approximately one day’s worth of recommended MVPA.

Statistical Analyses
Participant demographic and clinical profiles, as well as device
data volume and daily gait bout characteristics, were
summarized using descriptive statistics (mean, SD; range). To
address the primary objective of determining the accuracy of
wrist-based activity estimates during walking, epochs were
dichotomized into sedentary or active classifications (light and
MVPA intensities grouped). Combining light and MVPA into
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1 “active” category was done to provide a conservative analysis
of how often wrist-based methods underestimate PA intensity
by requiring walking bouts to be labeled “sedentary” to be
considered misclassified. A Fisher exact test (conducted using
scipy.stats [51]) was conducted for each participant to determine
if the proportion of walking epochs classified as active (light
or MVPA) during LONG walks, based on wrist-derived intensity
estimates, was different than the expected proportion that all
LONG walking epochs (walking bouts defined using step
detection from the ankle accelerometer) should be classified as
active. A Bonferroni correction was applied to account for
multiple comparisons.

To address the secondary objective of examining potential
demographic or behavioral characteristics that affect
wrist-derived activity estimates, participants were stratified into
quartiles based on the percent of epochs during LONG walks
classified as sedentary. The first and fourth quartiles were used
to compare those with the lowest percent of sedentary epochs
during LONG walks (SED_Q1) to those with the highest
(SED_Q4), yielding 2 groups of 9 participants. Two-tailed
independent t tests (conducted using Pingouin [52]) were used
to test the between-group differences in age, number of long
walks, length of time spent walking, cadence, and wrist AVM
variability. The statistical significance was set at α=.05.

In addition to quantifying and characterizing the dissociation
between ankle- and wrist-based intensity at the group level, the
data were explored for factors that could impact variability in

wrist-derived intensity estimates observed within and across
participants, including functional capacity, arm-dominant
behaviors, and symptoms of the disease. Representative data
from 3 participants were extracted as a series of case examples
based on their percent of wrist-derived sedentary classification
during LONG walks and included: a participant near the 50th
percentile of all OA participants (OA6), the participant with the
highest percent of sedentary classification among gait aid users
(FTD1), and a participant from the NDD cohort who presented
with the highest level of functional disability as measured via
the mRS score (PD1). Illustrative data segments were chosen
for each case example based on a visual inspection of the
walking bouts included in the primary analysis (LONG walks).

Results

Participant Characteristics
A total of 35 participants were included in this study (n=20 from
ReMiNDD and n=15 from HANDDS-ONT), represented as
follows: 12 OA and 6 PD, 9 AD/MCI, 6 CVD, 1 FTD, and 1
ALS (n=23 OA-NDD). Participants were 65 to 87 (mean 73.1,
SD 5.8) years of age, and 43% (15/35) of the participants were
female. The average MoCA score was 25.0 (SD 2.6; range
17-30; n=31), and the mRS was 1.7 (SD 1.0; range 0-3; n=20).
Two participants used a gait aid, including a walker (n=1; 1
FTD) and a cane (n=1; 1 PD). Table 1 summarizes the
demographic and clinical characteristics of participants overall
and when separated into the OA and OA-NDD cohorts.

Table 1. Participant characteristics.

Overall cohort (n=35)OA-NDDb cohort (n=23)OAa cohort (n=12)

73.1 (5.8)72.6 (4.8)74.1 (7.5)Age (years), mean (SD)

15 (43)7 (30)8 (67)Sex: female, n (%)

33 (94)22 (96)11 (92)Right-handed, n (%)

2 (6)2 (9)0 (0)Use of a gait aid, n (%)

25.0 (2.6)25.2 (2.9)e24.8 (2.1)MoCAc (0-30)d (n=31), mean (SD)

1.7 (1.0)1.7 (1.0)N/AhmRSf (0-5)g (n=20), mean (SD)

aOA: older adults without a neurodegenerative disease diagnosis.
bOA-NDD: older adults living with a neurodegenerative disease.
cMoCA: Montreal Cognitive Assessment.
dHigher score indicates greater functioning.
eMissing n=4 responses (n=1 missing; participant unable to complete MoCA due to cognitive impairment).
fmRS: modified Rankin Scale.
gLower score indicates greater functioning.
hN/A: not applicable.

Summary of Overall Daily Activity (Wrist-Derived)
and Daily Walking (Ankle-Derived)
After accounting for device nonwear, sleep, and partial
collection days, participants produced 7.1 (SD 1.2; range 3-9)
valid days with 15.0 (SD 1.3; range 11.9-17.7) hours of data
during waking hours on these days. On average, participants
were sedentary for 776 (SD 70; range 598-938) minutes per
day, performed 67 (SD 25; range 25-116) minutes of light

activity per day, and performed 58 (SD 36; range 7-151) minutes
of MVPA per day based on wrist intensity estimates. When
normalized to the amount of valid data, participants spent 86%
(SD 4; range 75-95) of their time sedentary, 7% (SD 3; range
3-13) of their time in light activity, and 6% (SD 4; range 1-15)
of their time in MVPA. Participants accumulated an average of
8864 (SD 3261; range 3792-15154) total steps per day, inclusive
of all walking bouts measured using ankle accelerometry (a
minimum of 5 steps; ALL walks; unpublished data).
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There were a total of 3768 walking bouts that met the criteria
for inclusion (≥60 seconds with a median cadence above 80
spm) in the primary analysis (LONG walks). On average,
participants had 107.7 (SD 55.6; range 10-250) LONG walks.
Participants accumulated a total of 258.9 (SD 145.1; range
29.3-518.8) walking minutes in LONG walks. As a percentage
of ALL walks, 28.2% (SD 13.5; range 4.1-57.3) of the total
walking time was included in the LONG walks. Median cadence
during LONG walks was 107.3 (SD 10.9; range 89.4-135.1)
spm.

PA Intensity Classification (Wrist-Derived) During
LONG Walks
Each participant’s volume of wrist-derived activity intensity
during LONG walks is illustrated in Figure 1. Across all walking

epochs during LONG walks (n=36,248), 20.54% (n=7446) were
classified as sedentary, 24.44% (n=8861) were classified as
light activity, and 55.01% (n=19,941) were classified as MVPA.
Across participants, wrist-derived activity intensity classification
during LONG walks was 22.9% (SD 15.8; range 1.7-56.4)
sedentary, 27.7% (SD 14.6; range 4.8-63.7) light activity, and
49.3% (SD 25.5; range 6.4-91.3) MVPA. For all participants,
OA and OA-NDD, the proportion of measured wrist activity
intensities during LONG walks differed significantly from the
expected distribution of only active epochs (all P<.001).
Furthermore, 80% of the participants (28/35) had at least 20
minutes of walking time misclassified as sedentary based on
wrist intensity estimates, which exceeded the established
threshold for clinically meaningful impact on measured daily
PA.
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Figure 1. Wrist-derived intensity classification during LONG walks for each participant. Distribution of wrist-derived sedentary (white), light (light
gray), and moderate-to-vigorous physical activity (dark gray) intensity epochs. LONG walks were detected from ankle sensor data. Each row is a single
participant, with wrist-derived activity volumes totaling 100%. AD/MCI: Alzheimer disease or amnestic mild cognitive impairment; ALS: amyotrophic
lateral sclerosis; CVD: cerebrovascular disease; FTD: frontotemporal dementia; MVPA: moderate-to-vigorous physical activity; OA: older adults
without a neurodegenerative disease diagnosis; PD: Parkinson’s disease.

Identification of Factors Related to Variability in
Wrist-Derived Activity Intensity Estimates

Group Level Comparison
Differences in demographics, walking behavior, and activity
volumes between groups with the lowest percent wrist-derived
sedentary classification during LONG walks (SED_Q1) and
the highest (SED_Q4) are summarized in Table 2. On average,
the participants in SED_Q4 were significantly older (t16=4.24,

P<.001) and had a higher wrist AVM coefficient of variation
(CoV; t16=2.13, P=.049) than the participants in SED_Q1. There
were no significant differences in the number of LONG walks
(t16=0.03, P=.98), time accumulated in LONG walks (t16=2.01,
P=.06), or median cadence (t16=1.26, P=.23). There were 8
people living with NDD and 1 gait aid user (FTD) in SED_Q4
compared to 4 people living with NDD and no gait aid users in
SED_Q1.

Data are presented as mean (SD) unless otherwise noted.
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Table 2. Comparing demographic characteristics, walking behavior, and daily mean activity levels of the group with the lowest (SED_Q1) to the group
with the highest (SED_Q4) percent of wrist-derived sedentary classification detected during LONG walks. P values from unpaired t tests between
quartile groups (all df=16).

P valueSED_Q4SED_Q1Characteristics

N/Aa10Gait aid use, n

<.00176 (4.5)69.0 (2.8)Age (years)

Cohorts

N/A15OAb, n

N/A40AD/MCIc, n

N/A21PDd, n

N/A12CVDe, n

N/A01ALSf, n

N/A10FTDg, n

Walking behavior

.06218.9 (86.0)338.5 (156.1)Total time in LONG walks (min)

<.00145.2 (7.0)5.8 (2.6)Percent LONG walk epochs classified as
sedentary (% sedentary)

.04951.2 (9.4)37.5 (16.9)AVM CoVh (%)

.23105.8 (12.7)112.8 (10.7)Median cadence (steps/min)

Daily mean activity levels

.8912.7 (1.3)12.6 (1.9)Sedentary (hours)

.01589.5 (3.5)82.4 (7.0)Sedentary (% valid time)

.2159.5 (23.1)75.1 (27.3)Light (min)

.00233.7 (19.6)85.4 (37.3)MVPAi (min)

.107974 (1882)10355 (3615)Step count

.217.9 (1.7)7.0 (1.2)Detected sleep (hours)

aN/A: not applicable.
bOA: older adults without a neurodegenerative disease diagnosis.
cAD/MCI: Alzheimer disease or amnestic mild cognitive impairment.
dPD: Parkinson disease.
eCVD: cerebrovascular disease.
fALS: amyotrophic lateral sclerosis.
gFTD: frontotemporal dementia.
hAVM CoV: average vector magnitude coefficient of variation.
iMVPA: moderate-to-vigorous physical activity.

Case Examples

Overview

The 3 participants chosen to illustrate instances that can lead to
dissociation between wrist and ankle activity during free-living
walking are highlighted in Figures 2 and 3, with cases detailed
below.

Effect of Cadence and ADLs on Arm Swing

Figure 2 features a participant near the 50th percentile of the
percent of wrist-derived sedentary classification during LONG

walks in the OA cohort (OA6). The participant is a 65-year-old
female who walked with a median cadence of 115 spm and had
12.3% (253/2054) of the LONG walking epochs classified as
sedentary. Segments (columns) shown have cadences of 121,
111, and 113 spm with decreasing arm swing amplitudes,
leading to wrist-derived MVPA, light, and sedentary
classifications, respectively. While the columns on the left and
middle show typical arm swing kinematics, the column on the
right contains a horizontal forearm position with the palm facing
down. This position, which may be indicative of an activity
such as pushing a shopping cart, eliminates arm swing and leads
to a wrist-derived classification of sedentary.
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Figure 2. Transient changes in wrist acceleration profiles during a period of walking in a single older adult without a neurodegenerative disease diagnosis
(OA) participant. Each column reflects 1 of 3 different segments of walking detected using the ankle accelerometer. The column shading represents the
wrist-derived intensity classification for that walking segment (orange=moderate-to-vigorous physical activity (MVPA); green=light; gray=sedentary).
The rows show data from the wrist or ankle accelerometers at various stages of data processing. The y-axis scales are consistent within all rows.
Acceleration values have been normalized to values between -1 and 1 in the second and final rows (raw anteroposterior axis ankle acceleration). In the
fifth row, green and red dashed lines represent the light and moderate intensity cut points, respectively, and the solid black lines are the average vector
magnitudes (AVM) in 5-second epochs. Note that 5-second epochs were used in this figure for illustrative purposes due to the short duration of data
segments in contrast to the 15-second epochs used in the analyses. AP: anteroposterior axis acceleration.

Effect of Gait Aid Use

Figure 3A features the participant with the highest percent of
wrist-derived sedentary classification during LONG walks of
gait aid users (FTD1). The participant is a 74-year-old male
who uses a walker when walking outside, walked with a median
cadence of 105 spm, and had 49.3% (277/562) of the LONG
walking epochs classified as sedentary. Data from this
participant show walking at a cadence of 104 spm. Despite this
cadence, which is above the estimated threshold for MVPA
[10], using the walker eliminated arm swing and resulted in a
wrist-derived classification of sedentary behavior. Notably, the
stepping pattern seen with the ankle-worn accelerometer remains
similar to what is seen in Figure 2, highlighting the consistency
of ankle accelerometry during gait despite behavioral changes
that affect wrist-derived activity.

Disease Features That Impact Arm Swing

Figure 3B features a participant living with PD who had the
highest measured mRS score, indicating the greatest degree of
disability or dependence in ADLs within the study cohort. This
participant is a 71-year-old male who walked with a median
cadence of 135 spm and had 56% (867/1547) of the LONG
walking epochs classified as sedentary (the most of all
participants). Both the data segments are shown with very fast
cadences (158 spm and 142 spm, respectively). The first segment
(green) shows reduced arm swing, which leads to a wrist-derived
light intensity classification despite a cadence of 158 spm. The
second segment (orange) shows a cadence of 142 spm and
evidence of a 4.5 Hz pronation-supination tremor within the
raw wrist accelerometry data, leading to a wrist-derived
classification of MVPA.
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Figure 3. Transient changes in wrist acceleration profiles during a period of walking with a gait aid (A) and with tremor (B). Each column reflects 1
of 3 segments of walking detected using the ankle accelerometer for the 2 participants (left FTD1; right PD1). The column shading represents the
wrist-derived intensity classification for that walking segment (orange=moderate-to-vigorous physical activity (MVPA); green=light; gray=sedentary).
The rows show data from the wrist or ankle accelerometers at various stages of data processing. The y-axis scales are consistent within all rows.
Acceleration values have been normalized to values between -1 and 1 in the second and final rows (raw anteroposterior axis ankle acceleration). In the
fifth row, green and red dashed lines represent the light and moderate intensity cut points, respectively, and the solid black lines are the average vector
magnitudes (AVM) in 5-second epochs. Note that 5-second epochs were used in this figure for illustrative purposes due to the short duration of data
segments in contrast to the 15-second epochs used in the analyses. AP: anteroposterior axis acceleration.

Discussion

Principal Findings
This study challenges current best practice wrist accelerometer
methods, with evidence that the wrist does not consistently
measure the intensity of known walking bouts within older
adults and people living with NDD. Specifically, results showed
that wrist-derived activity intensity estimates measured during
known periods of free-living walking that were captured using
ankle accelerometry are highly variable and frequently
underestimated within these cohorts. All participants measured
a statistically lower proportion of wrist-derived activity than
expected, with 80% (28/35) of participants showing clinically
meaningful misclassification of walking as sedentary behavior
from wrist-derived intensity estimates. Results also demonstrate
that transient, behavioral, or individual factors causing reduced
or altered arm swing can contribute to variability in
wrist-derived activity intensity classification during walking.
These findings have important implications for free-living PA
intensity classification and provide evidence for the value of a

multidevice model for accurate measurement of daily PA in
older adults and people living with complex health conditions.

Walking is a ubiquitous, whole-body activity that occurs
throughout the day. As such, accurately capturing and
classifying the amount of time spent walking in free-living is
critical to understanding daily PA and the impact of disease or
disability on its volume and distribution. This includes whether
an individual achieves important thresholds for a healthy
lifestyle, such as meeting the 24-Hour Movement Guidelines
[8]. These guidelines include recommendations for time spent
in MVPA, light activity, and sedentary behavior, based on
evidence that each intensity has independent impacts on
morbidity and mortality [17,18,53]. Walking at one’s preferred
pace represents moderate-intensity activity throughout the adult
lifespan and for various health conditions [11,28,54,55]. As the
energy cost and expenditure at a given speed increase with age,
preferred gait speed slows to maintain a constant energy
expenditure [54-56]. While participants’ preferred paces were
not explicitly measured in the current study, it was reasoned
that constraining data analysis to longer periods of purposeful
walking (ie, ≥60-second bout duration, ≤5-second break in
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between steps, termed “LONG” walks) increased the likelihood
that participants were walking at their usual pace. Indeed, the
median cadence of 107.3 (SD 10.9) spm across LONG walks
included in this study is comparable to cadences at preferred
walking speeds reported by others [54,57]. Importantly, this
cadence aligns with the 100 spm threshold that has been shown
to represent a moderate intensity in adults aged 21-85 years [10]
and exceeds the 80 spm threshold that has been shown to
represent a moderate intensity in people living with an NDD,
specifically PD [28].

Despite confining the present analyses to continuous, long
walking periods likely to reflect moderate-intensity activity,
wrist-derived intensity estimates resulted in an average across
participants of 22.9% of all LONG walking epochs being
classified as sedentary (up to 56% (867/1,547) within
participants) and an additional 27.7% being classified as light
intensity (up to 63.7% (422/663) within participants). Even after
stratifying sedentary behavior from light or MVPA, statistically
and clinically meaningful underestimations of wrist-derived PA
intensity were found in all participants. Free-living behavior
has been shown to be dominated by short, fragmented, or
sporadic bursts of walking [58,59] that are shorter than
commonly used intensity classification epoch lengths. Including
“short” bouts of walking when assessing activity intensity is
likely to result in the total underestimation of activity intensity
being greater than the underestimation found in this study when
reliant on a single wrist-worn accelerometer. For example, if a
5-second walking bout occurs in a 15-second epoch used to
classify activity intensity, the wrist-derived AVM for that epoch
will be more representative of the longer period of inactivity
(10 seconds) than activity (5 seconds). In this sample, “short”
bouts of walking were substantial, making up an average of
72% of a person’s total walking time. Misclassification of
continuous walking periods as sedentary behavior has important
implications for clinical interpretation, PA prescription and
monitoring at the individual level, and when looking within
larger cohort studies, to further elucidate the impacts of engaging
in activities of specific intensities on various health outcomes
in older adults and people living with complex health conditions.

Although wrist-derived intensity estimates resulted in half of
the walking time being misclassified as sedentary behavior or
light activity, large variability between participants was evident
during LONG walks (eg, 1.7% [31/1805 epochs] to 56%
[867/1547 epochs] of walking time classified as sedentary).
When grouped according to the percentage of sedentary time
classified during LONG walks, statistically significant
differences in demographics and behavior emerged between the
upper and lower quartiles, including age and variability in the
overall amount of arm acceleration during walking (AVM CoV).
Notably, the upper quartile was older compared to the lower
quartile (a mean difference of 7.4 years), which may have
resulted in slower gait speeds [60] and reduced arm swing [61],
leading to lower absolute wrist accelerometer output for a given
energy expenditure and an underestimated activity intensity.
Furthermore, the increased wrist AVM CoV in the upper quartile
for sedentary time may be impacted by the composition of the
group being predominantly people living with NDD (8/9, 89%)
and including a participant who used a gait aid (compared to

44% (4/9) of the participants living with NDD and no gait aid
users in the lower quartile). The use of some gait aids effectively
immobilizes the wrist during walking (eg, walkers) or reduces
arm swing (eg, canes), and motor symptoms or impairments
common to NDD populations can impact arm motion (eg, upper
limb hypokinesia in PD or weakness in ALS, muted arm swing
in CVD) [62,63]. Wrist-based activity estimates become
increasingly variable if motor symptoms fluctuate throughout
the day or if gait aids are required only in certain situations or
environments. All things considered, age differences, symptoms
or features of the disease, and gait aid use may be considered
key factors explaining the observed wrist-derived intensity
differences during walking between and within people.

Additionally, this study illustrated that other transient behaviors
associated with reduced arm swing during walking, such as
concurrent engagement in ADLs, can contribute to the variability
in wrist-derived activity intensity classification during walking
within and between participants. As these variables can change
on short timescales or occur unpredictably throughout the day,
they cannot be accounted for systematically within the
measurement approach. Applicable to participants of all health
statuses, the simultaneous performance of other ADLs with
walking, such as pushing a shopping cart or holding a grocery
bag, will reduce arm swing and therefore acceleration
amplitudes. As seen in Figure 3A, changes in wrist posture or
reductions in arm movement can cause dissociation between
movement measured at other body segments (eg, the ankle) and
the wrist, leading to inaccurate wrist-derived activity intensity
estimates. While the dynamic nature of these behaviors does
not cause a substantial change in the ankle-derived
accelerometer output, they are a primary limitation when using
wrist-based accelerometry.

Beyond the person-specific factors that affect variability in
wrist-derived activity intensity estimates during walking, it is
also useful to examine the limitations inherent to the wrist
accelerometry method. This study used cut points to estimate
activity intensity from the wrist. While there is no consensus
on best practices [64], this method is among the most common.
Cut points facilitate the classification of wrist movement into
activity intensity categories based on predefined activity count
(AVM) thresholds. Although there is value in the ease of use
and application to large population studies as a quick,
low-burden way to track free-living activity, cut points are
specific to the age, fitness, and health status (among other
variables) of the sample in which they were developed [65,66].
Applications to dissimilar populations or confounding factors
such as the presence of disease affect the validity of this
approach. This study’s inclusion criteria of participants aged
65 years or older limited the effect of age on the selected cut
points [44]. However, without individual calibration, the
heterogeneous nature of the sample highlights the inherent
limitations of using cut points to quantify PA.

The dissociation between wrist-derived activity intensity
estimates during periods of moderate-intensity walking detected
using ankle accelerometry supports the need for improved
activity intensity classification, which may be addressed using
a multidevice approach that considers the use of multiple wear
locations (multinodal) and specific sensor types (multimodal)
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[23]. Adopting a multinodal setup, where devices are worn on
different body segments (eg, wrist and ankle devices), accounts
for periods of whole-body activity when the arm movement
may not reflect overall energy expenditure (eg, using a gait aid),
and allows for additional activities to be captured that may
otherwise be missed when relying solely on a wrist-worn device
(eg, cycling). Using both upper and lower limb devices may be
particularly important in older adults and people living with
NDD because the ankle accelerometer is a more sensitive
measurement tool for gait assessment in people with slower
gaits [67] or reduced arm swing. It may also be valuable to
include multiple, specific sensor types that can measure different
physiological signals. For example, continuous
electrocardiography can be added to a setup that already includes
an upper and lower limb accelerometer and has been shown to
outperform proxy measures of heart rate obtained via
photoplethysmography [68]. Including continuous
electrocardiography in a multidevice approach can improve
free-living activity intensity estimates using the well-established
relationship between heart rate and energy expenditure [69],
with the added benefit of movement context from the limb-worn

accelerometers. Recent work has demonstrated that such a
multimodal and multinodal approach is well-tolerated in older
adults and a cohort of people living with CVD and NDD over
a week-long wear period [23].

Conclusions
In conclusion, this work has shown that a single, wrist-worn
accelerometer produces highly variable activity intensity
estimates during walking. This finding suggests that wrist-based
accelerometry may be an unreliable tool for classifying activity
intensity, specifically of walking, in older adults and people
living with NDD. Ongoing work focuses on the use of multiple
devices and sensors to better account for behaviors or
disease-related features that may transiently or chronically
reduce arm activity during walking and other activities. A
multisensor approach has the potential to better characterize
intra- and interindividual variance and more robustly quantify
and classify free-living PA intensity. Improvements in activity
intensity classification have implications for activity prescription
and treatment monitoring for interventions designed to
counteract age- or disease-related declines in function and
quality of life.
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AD/MCI: Alzheimer disease or amnestic mild cognitive impairment
ADL: activity of daily living
ALS: amyotrophic lateral sclerosis
AVM: average vector magnitude
CoV: coefficient of variation
CVD: cerebrovascular disease
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FTD: frontotemporal dementia
HANDDS-ONT: Health in Aging and Neurodegenerative Diseases and DementiaS in Ontario
MoCA: Montreal Cognitive Assessment
mRS: modified Rankin Scale
MVPA: moderate-to-vigorous physical activity
NDD: neurodegenerative disease
OA: older adults without a neurodegenerative disease diagnosis
OA-NDD: older adults living with a neurodegenerative disease
ONDRI: Ontario Neurodegenerative Disease Research Initiative
PA: physical activity
PD: Parkinson disease
ReMiNDD: Remote Monitoring in Neurodegenerative Disease
spm: steps per minute
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