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Abstract

Background: Continuous glucose monitors have shown great promise in improving outpatient blood glucose (BG) control;
however, continuous glucose monitors are not routinely used in hospitals, and glucose management is driven by point-of-care
(finger stick) and serum glucose measurements in most patients.

Objective: This study aimed to evaluate times series approaches for prediction of inpatient BG using only point-of-care and
serum glucose observations.

Methods: Our data set included electronic health record data from 184,320 admissions, from patients who received at least one
unit of subcutaneous insulin, had at least 4 BG measurements, and were discharged between January 1, 2015, and May 31, 2019,
from 5 Johns Hopkins Health System hospitals. A total of 2,436,228 BG observations were included after excluding measurements
obtained in quick succession, from patients who received intravenous insulin, or from critically ill patients. After exclusion
criteria, 2.85% (3253/113,976), 32.5% (37,045/113,976), and 1.06% (1207/113,976) of admissions had a coded diagnosis of type
1, type 2, and other diabetes, respectively. The outcome of interest was the predicted value of the next BG measurement (mg/dL).
Multiple time series predictors were created and analyzed by comparing those predictors and the index BG measurement
(sample-and-hold technique) with next BG measurement. The population was classified by glycemic variability based on the

coefficient of variation. To compare the performance of different time series predictors among one another, R2, root mean squared
error, and Clarke Error Grid were calculated and compared with the next BG measurement. All these time series predictors were
then used together in Cubist, linear, random forest, partial least squares, and k-nearest neighbor methods.

Results: The median number of BG measurements from 113,976 admissions was 12 (IQR 5-24). The R2 values for the
sample-and-hold, 2-hour, 4-hour, 16-hour, and 24-hour moving average were 0.529, 0.504, 0.481, 0.467, and 0.459, respectively.

The R2 values for 4-hour moving average based on glycemic variability were 0.680, 0.480, 0.290, and 0.205 for low, medium,
high, and very high glucose variability, respectively. The proportion of BG predictions in zone A of the Clarke Error Grid analysis
was 61%, 59%, 27%, and 53% for 4-hour moving average, 24-hour moving average, 3 observation rolling regression, and recursive
regression predictors, respectively. In a fully adjusted Cubist, linear, random forest, partial least squares, and k-nearest neighbor

model, the R2 values were 0.563, 0.526, 0.538, and 0.472, respectively.

Conclusions: When analyzing time series predictors independently, increasing variability in a patient’s BG decreased predictive
accuracy. Similarly, inclusion of older BG measurements decreased predictive accuracy. These relationships become weaker as
glucose variability increases. Machine learning techniques marginally augmented the performance of time series predictors for
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predicting a patient’s next BG measurement. Further studies should determine the potential of using time series analyses for
prediction of inpatient dysglycemia.

(JMIR Form Res 2023;7:e41577) doi: 10.2196/41577
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Introduction

Background
Current practice guidelines recommend scheduled insulin
therapy for most hospitalized patients with diabetes or
hyperglycemia [1]. Insulin is a narrow therapeutic index
medication and has been linked to hypoglycemia in up to 28%
of patients [2]. As inhospital hypoglycemia has been associated
with increased patient mortality and poor admission outcomes,
improving glycemic control remains of utmost importance to
minimize the burden of hypoglycemia [3-6]. Safely and
effectively prescribing insulin in the hospital can be challenging
owing to the presence of dynamic factors, such as steroid doses,
infection, renal status, and diet, that can influence glucose
homeostasis in ways that may be difficult to predict [7-10].

In an attempt to combat hypoglycemia, continuous glucose
monitors (CGMs) were developed to measure the glucose
concentration on the time scale of minutes [11-13]. Sparacino
et al [14] determined that a hypoglycemic event could be
predicted with a prediction horizon of 30 minutes using a
first-order autoregressive model with CGM data. Using more
advanced machine learning methods in addition to the time
series data provided by CGMs led to improved 5-minute and
30-minute blood glucose (BG) predictions [15,16]. A recent
review suggests that deep learning and artificial neural network
models perform better for glucose prediction than probabilistic
and static models [17]. Notably, though, the addition of
physiological parameters, such as insulin dosing, only
marginally improved the prediction of hypoglycemia in certain
predictions [18]. Despite the promise that CGMs have offered
to improve inhospital glucose control [1], CGMs are not widely
used in the hospital setting and are not currently the standard
of care for inpatient glucose management [19-21]. As
point-of-care (POC) finger-stick BG testing (typically 4-6 times
daily) is the standard in hospitalized patients, we aimed to
understand whether the tools used for CGM prediction could
be applied for prediction using less frequent glucose data points
[22].

Objectives
The objective of this study was to compare different regression
windows and machine learning approaches for prediction of the
next BG measurement in hospitalized patients using only POC
and serum glucose data. As previous research has suggested
that self-monitoring BG underpredicts low and high BG indices
owing to the sparser data points compared with CGM, there is
a compelling need to improve on predictive accuracy using POC
BG measurements [23]. Most published machine learning
prediction models in the inpatient setting have been developed
for binary [24-34] (ie, hypoglycemia vs not) or categorical

[35,36] glucose outcomes (ie, controlled, hyperglycemic, and
hypoglycemia) rather than a continuous glucose outcome [37]
(ie, glucose value) [38]. We have previously published models
that seek to predict hypoglycemia by considering BG as a
categorical variable [24,35]. Although those models showed
promising early results, we are seeking to develop an algorithm
that quantitatively predicts a patient’s next BG reading by
beginning to consider BG as a quantitative variable, similar to
the methodology used in CGMs, with the caveat that inpatient
BG measurements occur less frequently and with more
variability than those of CGMs. For prediction of glucose as a
continuous outcome, previous studies have highlighted that
moving average (MA) and other time series models are effective
when using CGM data [39-41]. Thus, we sought to use time
series analytic tools to quantitatively predict a patient’s next
BG measurement in the hospital.

Methods

Data Set
This was a retrospective cohort study derived from electronic
health record data obtained from 5 hospitals within the Johns
Hopkins Health System. Admissions were included if patients
received at least one unit of either subcutaneous or intravenous
insulin and had at least 4 BG measurements during the
admission. Among 118,734 hospitalized patients discharged
between January 1, 2015, and May 31, 2019, there were a total
of 4,538,510 serum or POC BG measurements. Data extraction
and processing methodology for this data set has been previously
described [28]. As previously reported, the characteristics of
patients included from the 5 hospitals differed with respect to
age (median 59-74 years), sex (45.7%-51.2% male), and race
(53.3%-64.5% White). The percentage of patients who were
prescribed insulin at home in each of the 5 hospitals ranged
from 7.6% to 14.5% [35].

As our interest was to learn about prediction in noncritical care
settings where glucose measurements are typically obtained 4-6
times daily, we excluded admissions in which the patient
received intravenous insulin or was admitted to the intensive
care unit (typically hourly glucose checks), or had a BG
measurement in which both the preceding and succeeding BG
measurements were within ≤90 minutes. The rationale for this
last exclusion criterion was 2-fold: first, the typical shortest
interval between BG checks for most patients in a nonintensive
care unit setting is 3-4 hours (between meals and at bedtime,
or every 4-6 hours for select patients), and second, successive
BG measurements correlate with one another, which would
overestimate model performance. Furthermore, because the
longest interval between 2 finger-stick BG measurements in
hospitalized patients is typically 10 hours (window between 10
PM bedtime and 8 AM finger stick), we excluded any BG
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reading in which the succeeding BG reading occurred >10 hours
after that BG reading. These exclusions decreased our data set
from 184,320 admissions to 113,976 admissions.

For this time series analysis, each BG value was ordered
sequentially in 5-minute intervals (Figure 1). For example, a
BG measured at 12:16 PM and 12:18 PM would both be grouped
in the 12:15 PM 5-minute window. In this case, the second BG
value was excluded. We chose the 5-minute window size for 2
reasons. First, a previous study suggested that excluding
repeated glucose measurements within a 5-minute interval
reduces the chances of overestimation of hypoglycemia owing
to repeated measurement of the same hypoglycemic episode
[42]. Second, as the statistical software used (Stata; StataCorp
LLC) will analyze up to 1000 windows in a time series analysis,

the 5-minute interval allows for MA analysis for over 3 days
of BG measurements. For the moving regression analyses, we
explored various lookback windows by combining 5-minute
windows; for example, a 30-minute MA was composed of six
5-minute intervals. In addition, to account for repetitive
measurements of the same BG episode, BG measurements that
were preceded and succeeded by BG measurements that
occurred within 90 minutes each were excluded. In Figure 1,
the BG measurement at 6:45 PM was excluded as it was
preceded (at 6:33 PM) and succeeded (at 6:52 PM) by BG
measurements that occurred within 90 minutes each. After the
described exclusions, we retained 2,436,228 BG measurements
for correlation analysis and testing with different machine
learning algorithms.

Figure 1. Example of data preprocessing to develop a data set suitable for time series analysis. Preprocessing of the time data required going from
standard time (left) to blocks of 5 minutes. Only the first blood glucose (BG) measurement in each block of 5 minutes was included, causing the 51
mg/dL reading at 2:48 to be excluded as a repeat measure of the same hypoglycemic event. In addition, the BG measurement of 68 at 6:45 PM was
excluded since the preceding and succeeding BG measurements (at 6:33 PM and 6:52 PM) were both within 90 minutes. In the final data set (right),
neither the 6:33 PM nor the 6:45 PM BG measurement were excluded as each of them had at least one adjacent BG measurement separated in time by
at least 90 minutes. *Repeat measurement in the same 5-minute block is dropped. **BG measurements in which previous and next reading are both
within 90 minutes of index observation is dropped.

Outcome
The outcome of interest was the predicted value of a patient’s
next BG measurement in mg/dL.

Predictors
The primary predictor of interest was previous BG
measurements. All approaches to predicting next BG used some
subset of prior BG measurements based either on a prespecified
window of time or a prespecified number of such measurements.
Secondary predictors considered included sex; age; race;
diabetes diagnosis; nil per os status; home insulin; home
antihyperglycemic medication; glomerular filtration rate;
hydrocortisone equivalents on board; and units of insulin on
board for basal insulin, combination insulin, concentrated
insulin, intermediate acting insulin, rapid-acting insulin, regular
insulin, and ultra–long-acting insulin (model B). The data
sources and definitions of these variables have been previously
described [28].

Statistical Analysis
All statistical analyses were performed using R statistical
software (version 3.6.2; R Foundation for Statistical Computing)

and Stata software (version 15.1; StataCorp LLC). Stata software
was used for its preloaded functions in time series analysis that
allowed for the generation of different time series variables. R
statistical software was used to analyze these time series
variables via machine learning algorithms. The Caret package
in R includes functions for data splitting, model tuning via
resampling, and summarizing model performance measures.
Descriptive statistics were used to summarize the patient
population at the index BG observation. Continuous variables
were all nonnormally distributed and summarized with medians
and IQRs. Categorical variables were summarized with counts
and frequencies.

The first predictive approach was based on simple MA models.
MA models predict the next glucose value as a simple average
of all readings within a specified time window, including the
index reading. These analyses were performed with windows
of 30 minutes, 1 hour, 1.5 hours, 2 hours, 4 hours, 8 hours, 12
hours, 16 hours, 20 hours, 24 hours, 36 hours, 48 hours, 60
hours, and 72 hours. If there was no additional reading in the
MA lookback window, the predicted next BG measurement is
the index BG. We created MA values with windows as short
as 30 minutes because despite excluding BG readings that had
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a preceding and succeeding reading within 90 minutes, it was
still feasible to have 2 readings within 30 minutes of one another
(Figure 1). As the time window used to compute MA increases,
the likelihood that any patient has at least one additional BG
reading in that window increases, which makes the resulting
prediction less correlated to the current BG measurement. MA
values were generated in Stata using the base time series analysis
functions. These values were stored and used as predictors in
machine learning models detailed later in this section.

Rolling regression (RR) was used to predict the next BG
measurement from a simple linear regression model estimated
from the previous n BG measurements. The outcome (y) for
these regressions is BG measurement, and the predictor (x) is
observation number (1,...,n). Recursive regression, an RR
approach where n is set to equal the maximum observations (ie,
all available BG measurements from admission to index BG
value), was also used for next BG prediction. Figure 2 depicts
how a patient’s BG measurements are used to calculate a
prediction from MA or RR.

Figure 2. Example calculation of rolling regression and moving average calculation. Top: A patient’s blood glucose (BG) reading is graphically
presented with BG value on the y-axis and time of BG reading on the x-axis. Bottom left: Rolling regression removes the temporal component of BG
reading. The BG reading number is plotted on the x-axis as a discrete variable, and the BG observation number is plotted on the y-axis. A best-fit line
is plotted based on the n BG readings included in the rolling regression, and a prediction (black drop) is made based on where the best-fit line intersects
the next discrete BG reading. Bottom right: Moving averages allow for as many BG readings to be included in a given period. All BG readings are
equally weighted, and the prediction (black drop) is made based on an unweighted average of all the BG readings in that period.

R2 estimates were used to quantify the degree of association
between the predicted next BG values from the MA and RR
analyses and the actual next BG measurement. On the basis of

the previous research and descriptions of R2, we classified R2

values as good if >0.75, acceptable if between 0.50 and 0.75,
and inadequate if <0.50 [43]. For this analysis, the data set was
further divided into categories of coefficient of variation (CV)
to determine if BG measurement lability affected predictive
accuracy of different time series predictors: low glycemic
variability if over the past 24 hours the CV was ≤0.15, medium
glycemic variability if over the past 24 hours the CV was >0.15
and ≤0.30, high glycemic variability if over the past 24 hours
the CV was >0.30 and ≤0.45, and very high glycemic variability
if over the past 24 hours the CV was >0.45. We used this
classification system based on previous research, which
demonstrated that threshold for high glycemic variability in
patients with diabetes is >30%. We chose to further divide the
sample to analyze for a dose-response relationship [44-46]. To
compare the treatment recommendations in a general hospital
population and populations at higher risk of dysglycemia

(patients with known diagnosis of type 1 diabetes mellitus
[T1DM] or known diagnosis of type 2 diabetes mellitus with
basal insulin on board), predictions from the MA and RR
analyses were analyzed using Clarke Error Grid analysis. In a
Clarke Error Grid, the prediction is plotted on the y-axis and
the true measure of the next BG measurement is plotted on the
x-axis [47]. Region A represents predictions within 20% of the
true values or in the hypoglycemic range when the reference is
also <70 mg/dL. Region B contains predictions outside of 20%
of the true value but would not lead to inappropriate treatment.
Region C contains predictions that lead to unnecessary treatment
(predicting hypoglycemia or hyperglycemia when a patient’s
BG is controlled). Region D contains predictions that lead to a
dangerous failure to detect hypoglycemia or hyperglycemia.
Region E contains predictions that misclassify hypoglycemia
as hyperglycemia and vice versa.

RR and recursive regression values were generated in Stata
using the asreg package [48]. The ega package in R was used
to complete the Clarke Error Grid analysis. The following
machine learning methods were also used to estimate the next
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BG reading: linear regression, partial least squares, Cubist,
k-nearest neighbors, and random forest algorithms. The
predictors used in each of these models were 30-minute MA,
1-hour MA, 1.5-hour MA, 2-hour MA, 4-hour MA, 8-hour MA,
12-hour MA, 16-hour MA, 20-hour MA, 24-hour MA, 36-hour
MA, 48-hour MA, 60-hour MA, 72-hour MA, 3-observation
RR, 4-observation RR, 5-observation RR, 10-observation RR,
25-observation RR, 100-observation RR, 500-observation RR,
recursive regression, index BG measurement, and previous BG
measurements.

To understand the predictive benefit of having non-BG
predictors in the machine learning models, we reran the same
models listed above including all other patient-level and
time-specific predictors in addition to the BG time series
measures.

To compare the performance of different machine learning
algorithms, a random sample of 10,000 observations was
selected for 5-fold cross-validation for each of the 5 methods.
Owing to concerns regarding reporting model predictive

accuracy with R2 alone, we also report the median average error
and root mean squared error (RMSE) of 5 machine learning
models [49]. Machine learning algorithms were developed using
the Caret R package [50].

Ethics Approval
The study protocol was approved by the institutional review
board of the Johns Hopkins School of Medicine with a waiver
of informed consent (IRB00117098).

Results

Cohort Characteristics
Our cohort includes 2,436,228 BG measurements from 113,976
admissions. Table 1 shows the baseline characteristics of the
study population by admission. The population had a median
age of 65 (IQR 54-75) years and BMI of 27.8 (IQR 23.6-33.2)

kg/m2. There was an even sex distribution (57,720/113,976,
50.64% male), and a majority of patients were White
(64,517/113,976, 56.61%). The median length of stay for an
admission was 5.0 (IQR 3.0-8.9) days. The median average BG
admission across an admission was 141 (IQR 117-179) mg/dL;
2.85% (3253/113,976) of the patients had a diagnosis of type
1 diabetes, and 32.5% (37,045/113,976) of the patients had a
diagnosis of type 2 diabetes. Figure 3 depicts the distribution
of time to next BG reading in hours. The 5th, 25th, 50th, 75th,
and 95th percentiles for time to next BG reading were 0.58,
2.48, 3.88, 4.88, and 8.23 hours, respectively. The median
number of BG measurements per admission and per hospital
day were 12 (IQR 5-24) and 4 (IQR 2-5), respectively.

Table 1. Cohort characteristics by admission (N=113,976).

ValueFactor

65 (54-75)Age (years), median (IQR)

176 (145-213)Weight (lbs), median (IQR)

27.8 (23.6-33.2)BMI (kg/m2), median (IQR)

Sex, n (%)

56,256 (49.36)Female

57,720 (50.64)Male

Race, n (%)

36,371 (31.91)Black

13,088 (11.48)Other

64,517 (56.61)White

5.03 (3.01-8.86)Length of stay (days), median (IQR)

141 (117-179)Average admission BGa, median (IQR)

Diabetes diagnosis, n (%)

72,471 (63.58)None

3253 (2.85)T1Db

37,045 (32.5)T2Dc

1207 (1.06)Other

aBG: blood glucose.
bT1D: type 1 diabetes.
cT2D: type 2 diabetes.
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Figure 3. Distribution of time to next blood glucose (BG) reading in hours.

Correlation of Next BG Measurement Predictions
The data set was further divided into categories of CV to
determine if BG measurement lability affected predictive
accuracy of different time series predictors: low glycemic
variability if over the past 24 hours the CV was ≤0.15 (404,840
observations), medium glycemic variability if over the past 24
hours the CV was >0.15 and ≤0.30 (1,442,328 observations),
high glycemic variability if over the past 24 hours the CV was
>0.30 and ≤0.45 (456,584 observations), and very high glycemic
variability if over the past 24 hours the CV was >0.45 (132,476
observations). Table 2 shows the Pearson correlation coefficient
between the predicted BG value and next BG value of various
MA and RR intervals. There was an inverse relationship noted

between R2 and time away from index BG value in the moving

regression analyses; for example, the R2 value of the relationship

between the next BG measurement and 2-hour MA predictor
was 0.504 and between the next BG measurement and the
36-hour MA predictor was 0.440. The sample-and-hold
technique, which is the correlation coefficient between the

current and next BG measurement, had the highest R2 value

(R2=0.529; RMSE=47.16). Furthermore, the R2 value drops as
the category of glycemic variability increases. A comparison
between different time series predictors and the next BG
measurement for a representative admission is included (Figure
4). Different time series predictors (ie, 2-hour MA, 4-hour MA,
etc) that would be calculated with each new BG measurement
are plotted with the true value of the next BG measurement.
Predictors with longer time horizons (such as the 48-hour MA
or 25 measurement recursive regression) have a smoother curve
as they represent the overall average of a patient’s BG
measurements rather than the most recent BG measurements.
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Table 2. Pearson correlation coefficient of time series predictors plotted with next blood glucose (BG) measurement.

R2Model

Glycemic variability categoryaAll observations

Very highHighMediumLow

Moving average

0.3680.3800.5130.6840.52730 minutes

0.3480.3700.5080.6830.5191 hour

0.3220.3560.5020.6820.5121.5 hours

0.2900.3360.4980.6820.5042 hours

0.2050.2900.4800.6800.4814 hours

0.1620.2960.4950.6820.4898 hours

0.1570.2920.4860.6750.48312 hours

0.1440.2730.4690.6640.46716 hours

0.1480.2770.4660.6560.46520 hours

0.1430.2660.4530.6460.45424 hours

0.1400.2560.4380.6280.44036 hours

0.1390.2510.4290.6170.43248 hours

0.1390.2480.4230.6100.42760 hours

0.1380.2450.4180.6050.42372 hours

Rolling regression

0.3700.3980.5400.6790.5293 observations

0.3210.3410.4990.6720.4954 observations

0.2980.3210.4880.6700.4845 observations

0.2570.3340.5010.6670.49110 observations

0.1990.3040.4780.6470.46525 observations

0.1770.2760.4440.6090.433100 observations

0.1750.2720.4370.6010.427500 observations

0.1750.2720.4370.6010.427Recursive regression

0.3730.3810.5150.6850.529Current BG (sample-and-hold)

aGlycemic variability defined based on coefficient of variation (CV) over the previous 24 hours including the index BG measurement: low (CV≤0.15),

medium (0.15<CV≤0.30), high (0.30<CV≤0.45), and very high (0.45>CV). A good R2 value is >0.75, an acceptable R2 value is between 0.50 and 0.75,

and an inadequate R2 value is <0.50.
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Figure 4. Next blood glucose (BG) measurement and predicted BG measurement throughout an example patient’s admission. A patient’s next BG
value (blue line) compared with what would be predicted based on a time series predictor (red line). The time series predictors that were compared with
the true next BG value were (A) 2-hour moving average (MA), (B) 4-hour MA, (C) 8-hour MA, (D) 24-hour MA, (E) 48-hour MA, (F) 4-BG rolling
regression (RR), (G) 25-BG RR, and (H) recursive regression.

Performance of BG Predictions With Clinical
Covariates
The performance of 4-hour and 24-hour MA, 3-observation and
25-observation RR, and recursive regression BG predictions
are compared in the full population, patients with T1DM, and
patients with type 2 diabetes mellitus with basal insulin on board

(Table 3). In the general patient population, the 4-hour and
24-hour MA performed similarly on Clarke Error Grid analysis,
with 94.4% and 94.3% of predictions in zones A and B,
respectively. The 3-observation RR had 97.9% of predictions
in zones A and B, but only 27.3% of all predictions were in
zone A. In the population with type 1 diabetes, <85% of
predictions for all models except the 3-observation RR were in
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zones A and B. In the population with type 2 diabetes, all models
had at least 90% of predictions in zones A and B except for the
3-observation RR. When comparing observation-level
characteristics of the entire patient cohort with the observations
that occurred in Clarke Error Grid zones C to E, we found a
higher proportion of misclassifications occurred in patients who
were on home insulin (eg, 33.8%, 34.1%, and 31.8% in the
3-observation RR, recursive regression, and 30-minute MA,
respectively, vs 20.3% in the entire cohort), patients who were
on home steroids (eg, 8.1%, 7.8%, and 7.6% in the 3-observation
RR, recursive regression, and 30-minute MA, respectively, vs
6.3% in the entire cohort), and patients who were African
American (eg, 37.8%, 39.2%, and 37.6% in the 3-observation

RR, recursive regression, and 30-minute MA, respectively, vs
33.8% in the entire cohort).

Table 4 compares the performance of different machine learning
models when all time series predictors were used in these
algorithms. The Cubist model performed the best (RMSE=44.9,
95% CI 42.8-47.0), and k-nearest neighbors model performed
the worst (RMSE=49.4, 95% CI 46.7-50.8), although these
differences were not statistically significant. Including non-BG
predictors in these machine learning algorithms did not
meaningfully improve predictive performance. The best

performing unadjusted model was the linear model (R2=0.561,
95% CI 0.536-0.586), which was statistically significantly
greater than the correlation between the 30-minute MA and next

BG measurement (R2=0.527).

Table 3. Clarke Error Grid analysis results for different time series analyses by diabetes diagnosis.

Type 2 diabetesa (n=351,252)Type 1 diabetes (n=104,115)Full population (n=2,436,228)Clarke Error Grid zone

EDCBAEDCBAEfDeCdBcAb

Moving average

0.000.050.040.400.510.010.070.090.400.430.000.030.020.330.614 hours

0.010.040.040.420.500.020.060.100.430.390.000.030.020.350.5924 hours

Rolling regression

0.000.020.020.710.250.010.030.020.690.260.000.010.010.710.273 observations

0.010.050.030.420.490.010.070.050.470.390.000.030.020.410.5525 observations

0.010.060.040.440.470.020.080.050.490.370.000.030.020.420.53Recursive regression

aWith basal insulin on board at time of blood glucose reading.
bA: Values indicate proportion of predicted glucose values that are within 20% of true value.
cB: Values indicate proportion of predicted glucose values that are outside of 20% but would not lead to inappropriate treatment.
dC: Values indicate proportion of predicted glucose values that are within a range that would lead to unnecessary treatment.
eD: Values indicate proportion of predicted glucose values that are within a range that indicates potentially dangerous failure to detect hypoglycemia
or hyperglycemia.
fE: Values indicate proportion of predicted glucose values that are within a range that would confuse treatment of hypoglycemia for hyperglycemia and
vice versa.
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Table 4. The 5-fold cross-validation statistics of time series predictors used to predict next blood glucose (BG) value in various machine learning
models.

Model BbModel Aa

MAE (95% CI)
R

2 (95% CI)RMSE (95% CI)MAEd (95% CI)R
2 (95% CI)RMSEc (95% CI)

29.3 (29.0-29.6)0.563 (0.533-0.593)44.9 (43.2-46.6)29.3 (28.8-29.3)0.561 (0.536-0.586)44.9 (42.8-47.0)Cubist

29.9 (29.2-30.7)0.526 (0.461-0.591)46.9 (42.5-51.2)29.7 (29.1-30.2)0.562 (0.532-0.592)44.8 (42.9-46.6)Linear model

30.3 (29.7-30.8)0.554 (0.535-0.574)45.2 (42.9-47.4)30.4 (29.6-31.1)0.547 (0.521-0.575)45.4 (43.9-47.0)Random forest

30.7 (30.0-31.5)0.538 (0.502-0.574)46.0 (44.3-47.6)30.2 (29.5-30.9)0.548 (0.512-0.584)45.4 (43.8-47.0)Partial least squares

33.4 (32.6-34.1)0.472 (0.439-0.505)49.4 (46.8-51.9)32.8 (32.6-33.0)0.486 (0.469-0.503)48.7 (46.7-50.8)k-nearest neighbors

aModel A: predictor variables in all machine learning models above were 30-minute moving average (MA), 1-hour MA, 1.5-hour MA, 2-hour MA,
4-hour MA, 8-hour MA, 12-hour MA, 16-hour MA, 20-hour MA, 24-hour MA, 36-hour MA, 48-hour MA, 60-hour MA, 72-hour MA, 3-observation
rolling regression (RR), 4-observation RR, 5-observation RR, 10-observation RR, 25-observation RR, 100-observation RR, 500-observation RR,
recursive regression, index BG measurement, and previous BG measurement.
bModel B: all variables included in model A and sex, age, race, diabetes diagnosis, nil per os status, home insulin, home antihyperglycemic medication,
glomerular filtration rate, hydrocortisone equivalents on board, basal insulin units on board (units, U), combination insulin units on board (U), concentrated
insulin units on board (U), intermediate acting insulin units on board (U), rapid-acting insulin units on board (U), regular insulin units on board (U),
and ultra–long-acting insulin units on board (U).
cRMSE: root mean squared error.
dMAE: median average error.

Discussion

Principal Findings
In this retrospective cohort study using a large number of POC
and serum glucose observations, we identified the correlation
of different time-varying MA and RR predictors of a
hospitalized patient’s next BG reading. We found that the most
recent BG measurement provides the most predictive accuracy;
adjusting for trends or increasing the lookback window
negatively affects correlation. Interestingly, the addition of
variables associated with glycemic control did not greatly
modify the performance of machine learning algorithms that
included all the MA and RR predictors, although the machine
learning models performed marginally better compared with
any individual time series predictor. However, the best
performing algorithm in model A (time series predictors only)
was the simple linear regression, but the best performing
algorithm in model B (time series predictors with additional
nonglycemic data) was the Cubist model, suggesting that new
information differentially improved different algorithms.

In clinical practice, there is growing interest in developing
machine learning algorithms to predict hypoglycemia in the
inpatient setting. Although many of the published algorithms
use categorical variables [38], consideration should be given to
models that quantitatively predict BG, similar to CGM data.
Our findings suggest that smaller prediction horizons are
correlated more to the next BG measurement compared with
longer periods of data, which suggests that clinicians should
consider more recent BG measurements when attempting to
predict the next BG measurement. Future studies attempting to
quantitatively predict BG could create trend arrows based on
the current glucose variable to the predicted variable that could
be coupled with actionable insulin titration. Using trend arrows
to guide insulin dose adjustments in patients who use CGMs
has been previously discussed [51-53]. Trend arrows, which

would demonstrate the degree of a patient’s BG trajectory (ie,
increasing rapidly, increasing slowly, remaining level,
decreasing slowly, and decreasing rapidly), may guide titration
of correctional bolus insulin doses and daily basal-bolus insulin
dosing for hospitalized patients, although such an algorithm
would require validation.

Comparison With Prior Work
There has been interest in using CGM data to predict a patient’s
BG over a short horizon of 60 minutes. For example, Gani et
al [54] derived a linear autoregressive model that had a
60-minute average RMSE of 12.6 mg/dL, and Zhao et al [55]
created a latent variable-based statistical method with an average
RMSE of 29.2 mg/dL and 72.1% of BG readings in zone A of
the error grid. Recently, deep learning techniques such as a
semisupervised deep neural network [56], nonlinear
autoregressive neural network [57], and recurrent neural
networks [58] have demonstrated improved performance in BG
prediction over 30-, 60-, and 90-minute prediction horizons. A
recently published review that analyzed 63 studies found that
data-based models, which used artificial neural networks and
hybrid models, performed better in predicting hypoglycemia
and offered promise in applicability and performance [17].
However, most of these studies are limited to small sample sizes
of patients with T1DM in a nonhospitalized setting. Previously
published glucose prediction in hospitalized patients has focused
on predicting future hypoglycemia over the prediction horizon
of 24 hours [24,28] and a patient’s admission [32]. Recent
studies have predicted future hyperglycemia and hypoglycemia
as categorical outcomes [35,36]. Although several recent studies
have used machine learning to predict the next category of
glucose (ie, hypoglycemic, controlled, or hyperglycemic), there
are no studies that have tried to predict the next glucose value
as a continuous outcome using electronic health record data
alone.
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Our study found that the predictive accuracy of MA and RR
declined with increasing size of the lookback window. Although
BG is generally obtained either every 4 hours or 4 times daily,
the 30-minute MA had the highest predictive accuracy based

on the R2 value alone. This finding is likely because most
patients did not have 2 BG readings in any 30-minute interval,
so the 30-minute MA was equal to the most recent BG reading.
Similarly, predictive accuracy drastically declined with
increasing glycemic variability. Glycemic variability has been
shown to be significantly associated with clinically significant
hypoglycemia (BG<54 mg/dL) [59], suggesting that this
population warrants the highest need for accurate BG prediction.

A secondary objective was to evaluate how performance
accuracy differs when comparing a model using BG data alone
with one that includes a broader number of clinical variables
that can influence glucose homeostasis. A recent review of BG
prediction strategies in patients with T1DM using CGM data
found that most published models use CGM data, insulin dosing,
and carbohydrate consumption [60]. However, these models
have time horizons of up to 1 hour, so it is difficult to distinguish
the predictive performance of non-CGM data in models with

shorter prediction horizons. Of note, the R2 of the linear
regression model decreased with the addition of demographic
and insulin variables, suggesting that these variables worsened
predictive accuracy in a linear regression. However, the highest
performing model when demographic and insulin variables were
included was a Cubist model, which fits a regression model
based on a rule that is derived from a collapsed tree structure
that is pruned and combined [61]. Interestingly, adding
additional covariates, which we expected to explain some of
the variability for next BG, resulted in equal or worse fits for
the prediction of next BG measurement. Notably, our previous
work demonstrated that BG history had the most predictive
value in a random forest model [35], which corresponds to these
findings that time series variables provide significant predictive
value compared with other clinical predictors.

On the basis of the relatively similar performances of the MA
and RR, we were surprised how greatly the Clarke Error Grid
analysis differed between the MA and RR results. For example,
in the full patient population, 61% of the 4-hour MA predictions
but only 27% of the 3-observation RR predictions were in zone
A. These findings highlight limitations in deciding which
performance metrics to report. As described previously, mean
squared error and sum of squared errors are the most commonly
reported performance metrics in BG prediction [60]. Error-based
metrics are limited because they do not identify whether
misclassification is occurring during hypoglycemic, euglycemic,
or hyperglycemic events [62]. Furthermore, we were surprised
to see the difference in Clarke Error Grid performance based
on the diagnosis of diabetes.

Our study has several strengths. Notably, we determined the
correlation of different time series predictors with the next BG
measurement. We also evaluated the predictive performance
when all time series predictors were included in machine
learning models that included other demographic and clinical
parameters. Our analyses were based on a large, diverse sample.
Although BG prediction algorithms published in the literature
use CGM data, our analysis can be applied to hospitalized
patients who do not have access to CGMs.

Limitations
There are some limitations to our study. We did not have
information about insulin doses from total parenteral nutrition
formulations, amount of carbohydrates consumed with meals,
or designation of BG as either random or fasting. Similarly,
measures such as hemoglobin A1c were not included as not all
patients have this routinely measured during admission. As we
attempted to predict a patient’s next BG measurement based on
POC or serum BG readings, the time to next BG reading is not
defined like in CGMs. Thus, we were unable to define a discrete
prediction horizon as BG samples are not obtained at exact
intervals in every inpatient. In addition, much of our analysis
was based on the correlation between a BG reading’s next
measurement and its associated time series predictors. This
analysis has limited predictive value as these time series
predictors were not tested on a test cohort of data. The machine
learning approaches presented to combat this limitation may be
prone to overfitting given the complexity of the models.
Although the machine learning models were significantly more
predictive than any individual time series predictor, the clinical
significance of these findings is uncertain given the only modest

increases in R2 value with the machine learning models. Finally,
the time series predictors performed poorly as glycemic
variability increased, which is the type of patients that could
benefit most for a tool to predict the next glucose value.
Similarly, patients with T1DM, who may be more at risk for
dysglycemia owing to insulin needs, had no glycemic predictor
achieve >45% of predictions in zone A of the Clarke Error Grid.

Conclusions
To the best of our knowledge, this is the first study to evaluate
different prediction models for the value of the next BG
measurement using only POC and serum glucose measurements
in hospitalized patients. Our results did not rely on data from
CGMs and were agnostic to when the patient’s next BG would
be measured. We found that BG prediction is highly dependent
on the most recent BG observation, with diminishing
performance as the lookback window increases. Future
prospective studies need to evaluate prediction of BG using
such time series models and determine whether quantitative
prediction of glucose results in better clinical outcomes
compared with previous studies that predict hypoglycemic and
hyperglycemic events as binary or categorical outcomes.
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