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Abstract

Background: Deep learning offers great benefits in classification tasks such as medical imaging diagnostics or stock trading,
especially when compared with human-level performances, and can be a viable option for classifying distinct levels within
community-engaged research (CEnR). CEnR is a collaborative approach between academics and community partners with the
aim of conducting research that is relevant to community needs while incorporating diverse forms of expertise. In the field of
deep learning and artificial intelligence (AI), training multiple models to obtain the highest validation accuracy is common
practice; however, it can overfit toward that specific data set and not generalize well to a real-world population, which creates
issues of bias and potentially dangerous algorithmic decisions. Consequently, if we plan on automating human decision-making,
there is a need for creating techniques and exhaustive evaluative processes for these powerful unexplainable models to ensure
that we do not incorporate and blindly trust poor AI models to make real-world decisions.

Objective: We aimed to conduct an evaluation study to see whether our most accurate transformer-based models derived from
previous studies could emulate our own classification spectrum for tracking CEnR studies as well as whether the use of calibrated
confidence scores was meaningful.

Methods: We compared the results from 3 domain experts, who classified a sample of 45 studies derived from our university’s
institutional review board database, with those from 3 previously trained transformer-based models, as well as investigated
whether calibrated confidence scores can be a viable technique for using AI in a support role for complex decision-making
systems.

Results: Our findings reveal that certain models exhibit an overestimation of their performance through high confidence scores,
despite not achieving the highest validation accuracy.

Conclusions: Future studies should be conducted with larger sample sizes to generalize the results more effectively. Although
our study addresses the concerns of bias and overfitting in deep learning models, there is a need to further explore methods that
allow domain experts to trust our models more. The use of a calibrated confidence score can be a misleading metric when
determining our AI model’s level of competency.
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Introduction

Background
In community-engaged research (CEnR), academic researchers
partner with communities to improve research and community
outcomes. Effective CEnR requires prolonged community
engagement and access to resources such as funding and
training. An ability to track the types and number of CEnR
studies taking place at universities can support collaboration by
helping to identify partnerships, fostering communication, and
sharing results. It can also support institutional needs such as
planning, reporting, and accountability. Our goal is to identify
CEnR studies by using institutional review board (IRB)
protocols available through a university IRB database.

In addition to classifying whether studies qualify as CEnR, this
project aimed to classify the level of collaboration with
community partners in the research process. This is important
because classifying different levels of CEnR can allow us to
see whether researchers are deeply engaged with the community
partner or whether the engagement is primarily focused on
instrumental aims such as accessing data or recruiting
participants [1,2]. Providing estimates of the level of
engagement within CEnR could help a university plan for
infrastructure needs and provide more accurate reporting.
Because of CEnR’s call-for-action approach, classifying a study
based on the partner’s level of engagement allows the action
research to be more transparent. Organizations participating in
research in a way that uses dissemination to the community,
engagement in fieldwork, appropriate design, and development
of solutions iteratively alongside a principal investigator make
the solutions they are presenting more transparent (ie, more
dependable, transferable, trustworthy, and workable [3]).

Virginia Commonwealth University began tracking CEnR
studies in 2013 because of the aforementioned important
principles. CEnR studies were labeled under 3 custom fields in
the university IRB’s web-based human participants protocol
submission form, as part of an award from the National Center
for Advancing Translational Sciences [4]. Issues arose with
these custom fields concerning the quality of how CEnR studies
were labeled [5]. Principal investigators, when submitting a
protocol to the IRB, were asked to list whether there were any
community partners in the proposed research study and (if yes)
to describe their role by choosing one of the following
descriptions:

1. Community partners only provide access to study subjects
or project sites. They are not involved with study design,
subject recruitment, data collection, or data analysis.

2. Community partners do not make decisions about the study
design or conduct but provide guidance to the researcher
about the study design, subject recruitment, data collection,
or data analysis.

3. Community partners make decisions with the researcher(s)
about the study’s research activities and/or help conduct
those activities (i.e., study design, subject recruitment, data
collection, and/or data analysis).

Some issues that arose when entering data into these custom
fields were identified in 2018, for example, inconsistent
interpretation of the role of a community partner by principal
investigators or study administrators not realizing that their
work qualifies as CEnR. These concerns led to an exploratory
study, where we hand labeled a set of 280 study protocols from
the IRB database on 3-level and 6-level classification spectra
[6]. We built a prototype model by comparing traditional deep
learning (DL) methods with those of transformer-based models.
The aim of the study was to create a proof-of-concept model
by using transformer-based models to test an automated
methodology of tracking CEnR studies using protocols
submitted to the university’s web-based IRB system. Using
numerous comparisons in this pilot study, we found that transfer
learning had superior performance compared with traditional
DL models. The work presented in the paper led our team to
take a closer look at these previously trained models and
improve upon them by using fine-tuning methods [7] (eg,
different learning rates for different layers and layer freezing).
In the initial experiments, we found that models generalized
better when categorizing 3 classes rather than 6; therefore, the
models used in the new experiments were trained on 3 classes.
By conducting experiments to improve our prototype models,
we found that transformer models performed better when their
learning rates differed among 4 layer groups. These results
substantially improved upon prior experimentations, leading to
the next phase of performance testing. The research question
we wished to explore involved evaluating these models in
different ways to see whether we can trust their predictions.

Our paper proceeds as follows. First, we review the literature
comparing human-level performances with those of DL models,
as well as novel evaluation research methods and tools.
Although our metrics are not necessarily performance related
because the correct answers are subject to our opinion, these
papers were important to our research because they helped to
create a framework for rigorously evaluating models as well as
attempting to explain them. Next, we describe our data classes,
methods, and models trained. Finally, we report our findings
by presenting F1-scores, accuracies, confusion matrices, and
confidence scores of our models and conclude by considering
the challenges and implications for future work.

Related Work

Designing Evaluation Approaches
The idea behind designing evaluation approaches is to explain
or explore model predictions, which allows us humans to
improve decision-making, as well as create evidence for
designing solid decision-making systems. Mucha et al [8]
evaluated an artificial intelligence (AI) model’s effect on human
decision-making by giving participants the task of estimating
the final grade of a student based on a list of attributes. The
participants were then presented with advice from the decision
support system, and, based on this advice and added information,
they were given the opportunity to change their estimation. The
study answered an important question: “Did people adhere to
the computer’s advice or not?” The authors state, “At the center
is the question how the way we represent machine behavior and
reasoning as interfaces, i.e. specific design elements, affects
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human decision making and behavior.” Although our study does
not have a decision-making support system, we are comparing
our predictions with those of our model to assess concordance
and learn about techniques that can be a viable option in terms
of influencing us.

Bansal et al [9] reported using AI as a complementary decision
maker rather than the sole one. The paper motivated us to view
our model as a fourth reviewer, rather than solely relying on its
predictions, which may improve decision-making performance.
Bansal et al [9] conducted 2 types of experiments using
sentiment analysis and question answering. They used different
combinations of explanation strategies, such as showing a
model’s predictions and confidence, highlighting influential
words, color-coding positive and negative words, or showing
the top 2 predicted classes. The authors presented results of the
performances of each experiment as well as how each
explanation strategy influenced a person’s decision-making
process. In explaining the differences among the accuracies of
the AI system versus human versus AI-human teams, they
mention that, with AI explanations, people tend to repose too
much trust in the AI system even when it is “worryingly”
incorrect. The study highlights the consequences of people
blindly trusting AI even when it is wrong, rather than using
their own discretion and using an appropriate amount of reliance
on the AI system. This points to the importance of using domain
experts when comparing predictions because experts in a
particular field may be less likely to defer to AI as easily as
nonexperts (eg, participants from Amazon Mechanical Turk).
The authors mention the need for new interaction methods to
increase this synergetic complementary performance beyond
simply showing an AI system’s confidence; nonetheless, we
present confidence scores in our study to find a pattern or
threshold between correct predictions with high confidence and
incorrect predictions with low confidence.

This coincides with the aims of the study by Chromik et al [10],
who considered how people without technical expertise attempt
to understand a model’s behavior by creating mental models
that reflect their belief about how a system works. The authors
examined whether these nontechnical users are prone to an
illusion of explanatory depth (IOED) [11]. IOED refers to people
forming an inaccurate understanding of complex systems
combined with overconfidence about how they perceive it.
Rozenblit and Keil [11] argue that most people feel that they
understand the world in far greater detail, coherence, and depth
than they really do. The authors break down IOED into 4
features, 2 of which are potentially relevant to AI models
(“representation/recovery confusion” and “label-mechanism
confusion” through subtle interactions). As Chromik et al [10]
state, users with certain insights into AI models might get the
impression that they understand why a model makes a prediction
for all observations. This is false because these black box models
have features that interact in many ways (ie, some features may
have a heavy influence on some observations but not on others).
The study demonstrates how we must be mindful of these AI
systems when deploying them in our organizations, societies,
universities, corporations, and so on, to support nontechnical
users by appropriately modeling the behavior of machine
learning (ML) and DL model decisions.

The studies reviewed illustrate how AI models powerfully
influence people’s decision-making abilities, which may result
in blindly following a model’s predictions and overestimating
one’s understanding of a model’s behavior. Open dialogue about
the production of these models needs to be prevalent in all
settings. As Dhanorkar et al [12] state, AI models must be
closely examined, tested, and reviewed, and they need to be
aligned with domain knowledge and social reality. The way to
achieve this is by ensuring that domain experts remain in the
loop to lead models toward correct explanations [13]. It is a
challenge to explain model predictions, but a slow, evaluative
process in each of the stages within the AI lifecycle, carried out
in collaboration with domain experts, is a professional,
transparent, and ethical step in the right direction.

Examples of Comparison Papers
It is said that AI will transform how life on this planet is
currently shaped, whether that be with regard to stock trading
[14], diagnosing patients [15], manufacturing [16], drug
discovery [17], or even poetry [18]. In fact, Grace et al [19]
report on survey findings from 400 ML researchers that
indicated strong belief about the progression of AI and showed
an aggregate forecast of the individual responses suggesting
that there is a 50% chance that unaided machines can accomplish
every task better and more cheaply than human workers within
45 years. Whether or not this forecast is accurate, AI is indeed
progressing quickly. Most of the respondents said that the field
of ML has accelerated more in the second half of their careers
than the first half. With that being said, in the following
paragraphs, we provide some examples of studies where AI
might be close to exceeding human performance already, and
others where humans are still the best. All these studies have
limitations regarding, as well as insights into, how to perform
well-designed and well-executed predictive modeling.

Blohm et al [20] provide a much-appreciated exhaustive
evaluation study on text classification tasks, comparing
automated ML (AutoML) with human data scientists. The
authors examined 4 popular AutoML tools on 13 text
classification data sets and found that, in 9 out of these 13
experiments, the best AutoML tool could not beat human-level
performance. Although we will not go over these 13 data sets
here, it was concluded that AutoML is a relatively new field in
which there is a lot of potential to make AutoML tools
increasingly useful and sophisticated, specifically with regard
to investigating the changes produced by, and outcomes of
using, various preprocessing techniques. Enos et al [21]
compared the performances of humans and machines in a task
involving deceptive speech detection and found the ML results
to be promising. The authors interestingly point out that, when
asked to judge whether something was true or a lie, individual
differences (personality factors) had a huge impact on their
success. This leads us to believe that the type of participant
matters considerably when comparing their performance with
that of an AI model. As is the case with surveying people and
reporting on the results, certain biases must be considered when
comparing humans with AI models. Other studies that have
compared DL and ML models with human graders for diabetic
retinopathy screening [22] and pigmented skin lesion
classification [23] point out how concerning false negative cases
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can be. It is important to be mindful of what sort of impacts AI
models have, for example, missing potential treatment referrals
that would create risks of vision loss. However,
Limwattanayingyong et al [22] point out that the DL models
had a better false negative rate than the human graders. The
thought of AI models making clinical decisions sounds
frightening, but, when handled properly, AI models can reduce
overhead costs (decreasing false positives) and improve
treatment recommendations.

AI models do have certain weaknesses, such as when trained
in low-resource settings [24] or under visual distortions [25,26].
Although AI model performances can be on par with those of
humans, certain challenges may drastically alter performance.
One thing to note is that models need to be able to perform at
a high level when they are presented with real-world situations,
meaning that sometimes the data presented look ugly (eg, not
perfectly cleaned up). Therefore, exploring what these models
are terrible at is a great way to improve the robustness of their
learning systems. A strength of AI models is that they never get
tired. The fatigue that comes with labeling data and making
predictions puts human performance at risk, which may be
something else to be cognizant of if one is labeling one’s own
training data.

AI offers considerable promise in the aforementioned fields.
Liu et al [27] point out that when carrying out these comparison
studies, it is necessary to highlight these comparisons using
out-of-sample (validation) data sets, which is what we have
done. The authors state that comparison studies need to
minimize bias as well as be thoroughly and transparently
reported. In their systematic review of 122 full-text articles
comparing DL algorithms with health care professionals for
medical imaging tasks, they state, “These image repositories
are rarely quality controlled for the images or their

accompanying labels, rendering the DL model vulnerable to
mistakes and unidentified biases. Population characteristics for
these large data sets are often not available (either due to not
being collected, or due to issues of accessibility), limiting the
inferences that can be made regarding generalizability to other
populations and introducing the possibility of bias toward
particular demographics.” There is much uncertainty regarding
the diagnosing performances of AI models, and there must be
an emphasis on ethical and transparent reporting.

Methods

Overview
We examined 3 previously trained and tested transformer-based
models and compared their predictions with those of 3 domain
experts on a new validation data set of 45 research studies to
test the generalizability on unseen data as well as to test whether
they emulate our classification spectrum. In this section, we go
over where the data came from, how the data were sampled,
our reviewing process, and the saved models from previous
experiments.

Data

Categories Used to Label Protocols
Textbox 1 shows the 6 categories we originally used to label
protocols [28]. These categories are based on the differences in
the levels of community partner involvement in research that
we observed in the IRB data set protocols. Although 6
classifications captured the observed levels of CEnR, this level
of detail was not easily generalizable to train models on;
therefore, we combined some of the classes together to fit a
3-level classification spectrum instead: we combined classes 1
and 2 (=1), as well as classes 3, 4, and 5 (=2), and kept class 0
as is.

Textbox 1. Community-engaged research (CEnR) levels that were used to manually classify the training data.

• 0=no CEnR: research without a partnership or community engagement

• 1=non-CEnR partnership: there is reference to a partnership, but the relationship is either uncategorizable (eg, not adequately described) or not
a traditional community-engaged partnership (eg, contractual relationship)

• 2=instrumental partnership: community partner primarily facilitates access to the inputs needed to conduct the study (eg, posting recruitment
flyers, providing participant contact information, extracting data, and providing study sites for observation)

• 3=academic-led partnership: minimal yet important interaction between the research team and the community partner, which is often essential
to project success (eg, academic partners take the lead on study design and research activities, with community partner involvement at particular
points, such as troubleshooting recruitment or facilitating community meetings)

• 4=cooperative partnership: shared investment and mutual consideration between the research team and the community partner without shared
decision-making (eg, community advisory boards that provided input on study design and methodology, reviewed data collection instruments,
interpreted findings, and informed dissemination plans)

• 5=reciprocal partnership: community partners and research teams share decision-making power and governance (eg, community-based participatory
research, team science, and steering committees with decision-making power)

Sampling of the Validation Set
The 45 studies were pulled from an unlabeled 6K IRB data set.
We were not able to perform a stratified sampling method for
each class because there was no way of knowing what class a
study fit into. In previous experiments, we have made
predictions on this 6K data set from our trained models on both

our 3-level and 6-level classification spectra, but there is no
way of knowing whether these predictions were correct. In
addition, by combining our classes into a 3-level classification
spectrum, although this is more accurate, it makes it so that we
cannot know for sure whether we are collecting studies in which
there is an academic-led partnership, consulting partnership, or
reciprocal partnership because these are all combined into class
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2. A way to work around this was looking at how we labeled
CEnR levels (Textbox 1) and finding the top words for each
class that we had already labeled by using the Gensim package
in Python. We understand that this may cause sampling bias or
an inaccurate representation of the population data set; hence,
this can be considered a limitation of this study. We carried this
out by searching for studies with relevant keywords that would
typically show up in specific classes; for example, words such
as “community-based participatory research,” “community
partner,” “advisory board,” and “academic-community
partnerships” would typically be found in classes 3 to 5, and
“flyer,” “contract,” “recruitment,” and “client” would be found
in class 1 or class 2. When the keyword search for a study was
reported as “true” (meaning that it had a certain amount of these
top associated words), we randomly pulled it. Regardless of the
sampling method used, we are still labeling the studies ourselves
and checking how the models label them.

Reviewers and Models

Overview
This section reviews how we labeled our data set and provides
a brief description of the models we compared with us. These
models underwent what is called “transfer learning,” which is
the use of unsupervised algorithms that are pretrained on larger
data sets of unlabeled samples and then reused for another task
such as ours. One imports these pretrained models and then
retrains and evaluates them based on one’s own classifications.

Reviewers
There were 3 reviewers, 2 of whom have extensive experience
in CEnR practices, whereas the third reviewer’s main role has
revolved around leading in the development of the models. Each
reviewer read and labeled the 45 studies as one of the 3 classes
without seeing the predictions made by the algorithms or the
other reviewers. The reviewers provided a rationale and
reasoning for some studies to explain why they believed that
the study fell into a particular class, whereas for other studies,
the reviewers had questions or expressed confusion regarding
what they thought the class should be. To address disagreements
or confusion over protocols, once the reviewers had completed
making their predictions, we first used comments in Google
Sheets to respond to the disagreements and then met over Zoom
(Zoom Video Communications, Inc) to reconcile any remaining
differences in our predictions. There was a need to have our
predictions agreed upon because we are comparing the models
with us as a team rather than as individuals. We were left with
13 class 0 studies (29%), 13 class 1 studies (29%), and 19 class
2 studies (42%) in this validation data set (N=45).

Models

Bidirectional Encoder Representations From Transformers

Bidirectional Encoder Representations From Transformers
(BERT) was introduced by Devlin et al [29]. BERT was
pretrained on BookCorpus (800 million words) and Wikipedia
(2500 million words), and owing to its 12 attention heads and
110 million parameters, it ensures state-of-the-art results on a
variety of tasks. BERT has 2 main versions; we used the baseline
version in our study. This pretrained model reads entire

sequences of words (tokens) to learn a word’s contextual
meaning. This is done through masking (hiding) words and
attempting to predict the original word by looking at the context
and the unmasked words around the hidden word, as well as
through next-sentence prediction: predicting which sentence
comes after a particular sentence, corresponding to the original
text. These strategies were trained together during the pretraining
phase; subsequently, to fine-tune BERT for our task, it was
trained in a similar fashion but with a classification layer on
top.

Bio+Clinical BERT

BERT is pretrained on data sets such as BookCorpus and
Wikipedia, and this can be considered a general language model;
however, Alsentzer et al [30] studied ways to improve upon
this by using BERT models specifically pretrained with clinical
text and discharge summaries. The authors used data from the
Medical Information Mart for Intensive Care-III database to
create 2 BERT models for clinical text: Clinical BERT, which
contains all note types, and Discharge Summary BERT, which
only contains discharge summaries, so that fine-tuning tasks
such as ours can be better accomplished because our data sets
contain clinical texts. They then trained the 2 BERT models on
the clinical text: one initialized from the BERT base model and
the other initialized from BioBERT [31] (this is the model we
chose).

Cross-lingual Language Model-Robustly Optimized BERT
Pretraining Approach

Cross-lingual Language Model-Robustly Optimized BERT
Pretraining Approach (XLM-RoBERTa) was introduced by
Conneau et al [32] in 2019 and updated in 2020. This model
closely resembles the Robustly Optimized BERT Pretraining
Approach architecture [33], except that it is a cross-lingual
model, pretrained on 100 different languages. This type of model
was made for cross-lingual transfer learning tasks and is trained
on >2 terabytes of the Common Crawl corpus. It differs from
BERT in terms of its tokenization and masking pattern, thus
making it an interesting model with which to compare BERT.

Calibration Scores
The final output from making predictions is often seen as a
measure for how confident a model is in its predictions owing
to the softmax values being predicted probabilities that add up
to 1 (implying that the largest probability is for whatever class
the model will predict). However, these outputs should not be
used as true probabilities, mainly because the values are often
too high and need to be calibrated [34-36]. To calibrate these
values to reflect true confidence, we tried histogram binning
[37] and temperature scaling [35], as well as other methods
provided by the NetCal package in Python [38]; in addition, we
used ensemble of near isotonic regression [39] for all 3 models
because this had the lowest calibration error (with N=3 bins)
using the average calibration error metric [40]. These methods
were used mostly for experimental purposes; it does not imply
that they are the best ways to calibrate our models, and other
authors who wish to perform calibrations should conduct
research into how to implement the aforementioned methods.
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Details From Our Previous Study
In our previous study [7], the models were trained using the
Simple Transformers library, created by Rajapakse [41], which
trains and evaluates transformer models (derived from the
Hugging Face website) with fewer lines of code built on top of
PyTorch. These models were trained on a single graphics
processing unit device (NVIDIA GeForce RTX 2070 with 8
GB graphics double data rate 6 memory). For inference, we
used an Intel Core i7-10750H central processing unit (2.60 GHz)
with 32 GB RAM. Every model had weights corresponding to
one of the 3 classes so that it was equally balanced during the
training, ensuring that no class was heavily favored. When we
trained these models, the training data set of 2028 samples
comprised 614 (30.28%) class 0 samples, 645 (31.8%) class 1
samples, and 769 (37.92%) class 2 samples. The testing data
set of 279 samples comprised 82 (29.4%) class 0 samples, 51
(18.3%) class 1 samples, and 146 (52.3%) class 2 samples. The
holdout data set of 80 samples comprised 17 (21.3%) class 0
samples, 27 (33.8%) class 1 samples, and 36 (45%) class 2
samples. For evaluating these models, we compared both
accuracy and F1-scores. After every model was trained, we
made predictions on the holdout data set and recorded the
accuracy, F1-score, and class accuracies. These previous
experiments ensured that we were using the best performing
models for this study, which will be used for comparison in this
study with the new data set.

Ethical Considerations
This study involved a secondary analysis of human participant
protocols and therefore did not need an IRB review. The
research and ethics protocols presented in this study were
approved by the IRB of Virginia Commonwealth University,
who provided these protocols for us to analyze. These studies
are anonymous and private with regard to the public; we only
worked with the IRB applications and not the research itself.

Results

Superiority of BERT
Table 1 shows results from all 3 text classification
transformer-based models on the 45 samples of data derived
from the IRB database. We present F1-scores and accuracies to
show how they differ. Clearly, BERT outperforms Bio+Clinical
BERT and XLM-RoBERTa by 11% on accuracy and by
approximately 10% to 12% on the F1-score. It was confusing
to see that it was not Bio+Clinical BERT that was outperforming
the other models, considering that in previous experiments it
had the highest accuracy and F1-score. This shows that different
data sets produce different results; however, one certainty is
that BERT provides a generalizable model based on these results
as well as those of past experiments, proving its value.

Table 1. Results from the 3 models.

F1-scoreAccuracyModel

0.59280.6444BERTa

0.47060.5333Bio+Clinical BERTb

0.49410.5333XLM-RoBERTac

aBERT: Bidirectional Encoder Representations From Transformers.
bBio+Clinical BERT: Bidirectional Encoder Representations From Transformers for Biomedical Text Mining+Clinical Bidirectional Encoder
Representations From Transformers.
cXLM-RoBERTa: Cross-lingual Language Model-Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach.

Confusion Matrices, Precision, and Recall
Figure 1 shows the confusion matrices for all 3 predictions made
by the transformer models. Confusion matrices are widely used
and are helpful for visualizing errors for multiclass classification
problems. The numbers that go diagonally from left to right
indicate what the models correctly predicted, and the
off-diagonal numbers indicate what the models labeled a class
(y-axis) incorrectly as (x-axis); for example, the confusion
matrix for BERT labeled 8 samples of class 1 incorrectly as
class 2 (middle-right square). As we will see later, each model
confused class 1 samples with class 2 samples the most. These
classes are semantically close to each other (both have
community partners) and offer very minor nuances in their
sequences. Each model only got 3 samples of class 1 correct,
and most of the correct predictions were from class 2. BERT
and Bio+Clinical BERT also never misclassified a class 2
sample as a class 1 sample, but XLM-RoBERTa did so on 2

occasions. We further report on these confusion matrices in the
following paragraph showing precision and recall for each class.

In Table 2, we show precision, recall, F1-score, and support
(count of each class) for each class, as well as the averages of
these scores for each model. The only values that do not have
the average shown are the F1-scores because these have been
presented in Table 1. It is important to look at precision and
recall when one’s data sets are highly or even slightly
imbalanced because accuracy is not always going to be a great
measure for assessing performance (the F1-score provides a
solid representation of how well a model performs on both
precision and recall, making it meaningful as well). Recall is
the number of true positives divided by the number of true
positives plus the number of false negatives (number of correct
predictions divided by support). A higher score for recall
indicates a low false negative rate; therefore, for class 0, recall
is high for BERT and decent for XLM-RoBERTa but low for
Bio+Clinical BERT, indicating that Bio+Clinical BERT has a

JMIR Form Res 2023 | vol. 7 | e41516 | p. 6https://formative.jmir.org/2023/1/e41516
(page number not for citation purposes)

Ferrell et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


higher false negative rate for class 0. Each model had the same
recall for class 1 (0.2308), which is the highest false negative
rate; however, for class 2, each model had the highest recall
values (high true positive rate) compared with those for the
other classes. By contrast, precision is the number of true
positives divided by the number of true positives plus the
number of false positives. In other words, it is the number of
correctly predicted values divided by the number of times a
model incorrectly predicted something as a particular class; for
example, in Figure 1, BERT correctly predicted 10 of the

samples as class 0 but incorrectly predicted a class as 0 on 5
occasions; thus, 10 divided by 15 (10+5) is 0.6667, which can
be seen in Table 2 as the precision for class 0. Whether precision
is more important than recall or vice versa depends on the data
and the problem. Our interpretation of these results indicates
that our models struggled considerably with correctly predicting
class 1 (low recall) and that the BERT model was more precise
(returning more relevant results than irrelevant ones) and
returned the highest number of relevant results.

Figure 1. Confusion matrices for models. BERT: Bidirectional Encoder Representations From Transformers; Bio+Clinical BERT: Bidirectional Encoder
Representations From Transformers for Biomedical Text Mining+Clinical Bidirectional Encoder Representations From Transformers; XLM-RoBERTa:
Cross-lingual Language Model-Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach.

JMIR Form Res 2023 | vol. 7 | e41516 | p. 7https://formative.jmir.org/2023/1/e41516
(page number not for citation purposes)

Ferrell et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Classification report of confusion matrices.

SupportF1-scoreRecallPrecisionModel and class

BERTa

130.71430.76920.66670

130.35290.23080.75001

190.71110.84210.61542

——b0.61400.6774Average

Bio+Clinical BERTc

130.38460.38460.38460

130.30000.23080.42861

190.72730.84210.64002

——0.48580.4844Average

XLM-RoBERTad

130.53850.53850.53850

130.26090.23080.30001

190.68290.73680.63642

——0.50200.4916Average

aBERT: Bidirectional Encoder Representations From Transformers.
bNot available.
cBio+Clinical BERT: Bidirectional Encoder Representations From Transformers for Biomedical Text Mining+Clinical Bidirectional Encoder
Representations From Transformers.
dXLM-RoBERTa: Cross-lingual Language Model-Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach.

Calibrated Scores
In this section, we examine the use of the calibrated confidence
scores and explore whether there is some sort of threshold on
the models correctly predicting a class as well as their level of

average confidence. Tables 3-5 show the average confidence
score for all 3 classes and each individual class for when the
model correctly predicted a study and when it incorrectly
predicted a study.

Table 3. Average confidence scores from calibrations for Bidirectional Encoder Representations From Transformers.

Predictions (%)Confidence score (%), average (SD)Class and predictions

0, 1, and 2

64.4465.17 (11.52)Correct

35.5662.19 (17.15)Incorrect

0

76.9260.45 (9.49)Correct

23.0856.69 (3.96)Incorrect

1

23.0877.68 (16.41)Correct

76.9256.26 (10.94)Incorrect

2

84.2165.78 (10.56)Correct

15.7987.46 (21.71)Incorrect
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Table 4. Average confidence scores from calibrations for Bidirectional Encoder Representations From Transformers for Biomedical Text Mining+Clinical
Bidirectional Encoder Representations From Transformers.

Predictions (%)Confidence score (%), average (SD)Class and predictions

0, 1, and 2

53.3367.3 (17.33)Correct

46.6753.48 (14.07)Incorrect

0

38.4664.31 (7.57)Correct

61.5443.35 (5.59)Incorrect

1

23.0873.08 (33.31)Correct

76.9262.16 (15.44)Incorrect

2

84.2167.16 (16.95)Correct

15.7951.55 (2.4)Incorrect

Table 5. Average confidence scores from calibrations for Cross-lingual Language Model-Robustly Optimized Bidirectional Encoder Representations
From Transformers Pretraining Approach.

Predictions (%)Confidence score (%), average (SD)Class and predictions

0, 1, and 2

53.3369.93 (17.52)Correct

46.6752.87 (11.64)Incorrect

0

53.8568.04 (14.57)Correct

46.1546.72 (7.77)Incorrect

1

23.0874.8 (24.78)Correct

76.9253.29 (10.06)Incorrect

2

73.6869.84 (18.53)Correct

26.3259.43 (16.22)Incorrect

It is clear that for BERT, there was no clear distinction between
the confidence scores on incorrect and correct predictions for
the average confidence scores of all 3 classes as well as class
0. In fact, 64% of the predictions were correct for BERT, and
regarding this 64%, the average confidence was 65%; however,
it was 62% confident even for incorrect predictions, which is
why there is no distinct threshold. In addition, the average
confidence level was higher for incorrect predictions for class
2 than for correct predictions. However, one does notice a higher
confidence level for class 1 at 77.68% for correct predictions
and 56.26% for incorrect predictions; therefore, one could
conclude that the studies BERT correctly predicted for class 1
had a high confidence level, although it only got 23% of class
1 correct. We conclude that, based on the calibration techniques
used for the BERT model, this did not help with evaluating its
predictions and thus would ultimately trick human reviewers if
this were used as a reference for labeling studies. Perhaps this
means BERT got lucky in achieving the highest accuracy among

the 3 models, or it could mean that to be more generalizable,
the level of confidence has to decrease; for example, instead of
being 100% confident in one’s predictions with lesser accuracy,
one has 65% confidence but with higher accuracy.

With Bio+Clinical BERT, there was a distinction between high
confidence with its correct predictions and low confidence with
its incorrect predictions. The average confidence level for all
classes was 67% for correct predictions and 53% for incorrect
predictions. How one interprets these results is that one looks
at the prediction column to see the model’s accuracy for all 3
classes or each individual class, and of these correct predictions,
one looks at the average confidence score that the model
obtained; for example, Bio+Clinical BERT correctly predicted
84% of class 2, and regarding this 84%, it had an average
confidence score of 67% as opposed to an average confidence
score of 43% for the incorrect predictions. This tells us that of
the predictions Bio+Clinical BERT got correct, it had a much

JMIR Form Res 2023 | vol. 7 | e41516 | p. 9https://formative.jmir.org/2023/1/e41516
(page number not for citation purposes)

Ferrell et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


higher confidence level than for the ones it got incorrect,
ensuring that these calibrated outputs would allow a reviewer
to have more trust in a model’s confidence (ie, using its
confidence level as a valuable tool for labeling studies).

XLM-RoBERTa shows us another example of a large difference
between high and low confidence scores. The average
confidence score for correct predictions on all 3 classes was
higher than that of the other 2 models; in fact, this model had
the highest confidence scores for correct predictions for all the
individual classes except for class 1 (74.8% vs BERT’s 77.68%).
These types of results assure us that when XLM-RoBERTa’s
confidence is 69% on average, we can trust that it has a higher
probability of being correct.

Discussion

Principal Findings
Figure 2 visually depicts what we discussed in the tables
presented in the Results section; however, it shows each

confidence score for all the studies’ predicted classes for every
model. One can see that the green dots (correct predictions) are
moving away from the red dots (incorrect predictions) as one
studies the models from left to right, indicating higher
confidence levels for correct predictions. In conclusion, BERT
(the more accurate model) was not able to distinctly give us
high or low confidence scores as Bio+Clinical BERT and
XLM-RoBERTa did. This presents a trade-off between choosing
a model with better predictions but no useful confidence scores
and models with more incorrect predictions but more trustworthy
confidence scores. Essentially, if we think of this AI system as
a fourth reviewer, we want the confidence scores to be an asset
in trusting its predictions; for example, a prediction of class 0
with only 40% confidence allows us to use more of our own
discretion. However, a model with 60% confidence for every
single prediction is not helpful in adjusting our labeling. We
want a model that can give high confidence for correct
predictions and low confidence for incorrect predictions so that
we do not blindly trust a model’s predictions without any
threshold regarding its confidence.

Figure 2. Jitter plot of confidence scores (green=correct predictions and red=incorrect predictions). BERT: Bidirectional Encoder Representations
From Transformers; Bio+Clinical BERT: Bidirectional Encoder Representations From Transformers for Biomedical Text Mining+Clinical Bidirectional
Encoder Representations From Transformers; XLM-RoBERTa: Cross-lingual Language Model-Robustly Optimized Bidirectional Encoder Representations
From Transformers Pretraining Approach.

Conclusions
In summary, to classify a study’s potential community partner
role, we compared the predictions of 3 transformer-based models
with those of 3 domain experts on 45 studies from our
university’s IRB database. Our main experiment was to test
whether calibrated confidence scores could be an asset in making
the AI system more like a fourth reviewer in classifying these
studies rather than solely relying on it to make decisions. On
the basis of the explication in the Related Work subsection, it
seems that a measure of confidence can influence humans
heavily, but our experiments showed that the more confident a
model was on average, the less accurate it became. We believe

that this work can stimulate the design and conception of AI
systems being used as support for complex decision-making,
and although the accuracies of the models were not terrible to
begin with, perhaps the use of calibrated confidence scores as
a way to influence domain expert decisions sounds too good to
be true. Additional improvements can be made, such as figuring
out a way to lessen the sampling bias we may have caused when
choosing our sample of 45 studies with which to make
comparisons, discovering new ways of training our models as
well as adding to our training data, making use of the
combination of all 3 models’ predictions and confidence as
opposed to only choosing those of 1 model, and researching
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additional techniques that may be better suited for explaining
why models make their predictions (ie, local interpretable
model-agnostic explanations). In conclusion, identifying CEnR
and classifying levels of engagement allow us to help
organizations, better serve our stakeholders, and plan for the
infrastructure needed to support community engagement.

However, our study raises questions about the usefulness of
calibrated confidence scores in classifying these studies. The
search continues to find a trustworthy algorithmic way of
classifying these research studies, which can improve the
efficiency and effectiveness of identifying key CEnR metrics.
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