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Abstract

Background: Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disease. Its slow and variable
progression makes the development of new treatments highly dependent on validated biomarkers that can quantify disease
progression and response to drug interventions.

Objective: We aimed to build a tool that estimates FSHD clinical severity based on behavioral features captured using smartphone
and remote sensor data. The adoption of remote monitoring tools, such as smartphones and wearables, would provide a novel
opportunity for continuous, passive, and objective monitoring of FSHD symptom severity outside the clinic.

Methods: In total, 38 genetically confirmed patients with FSHD were enrolled. The FSHD Clinical Score and the Timed Up
and Go (TUG) test were used to assess FSHD symptom severity at days 0 and 42. Remote sensor data were collected using an
Android smartphone, Withings Steel HR+, Body+, and BPM Connect+ for 6 continuous weeks. We created 2 single-task regression
models that estimated the FSHD Clinical Score and TUG separately. Further, we built 1 multitask regression model that estimated
the 2 clinical assessments simultaneously. Further, we assessed how an increasingly incremental time window affected the model
performance. To do so, we trained the models on an incrementally increasing time window (from day 1 until day 14) and evaluated
the predictions of the clinical severity on the remaining 4 weeks of data.

Results: The single-task regression models achieved an R2 of 0.57 and 0.59 and a root-mean-square error (RMSE) of 2.09 and
1.66 when estimating FSHD Clinical Score and TUG, respectively. Time spent at a health-related location (such as a gym or

hospital) and call duration were features that were predictive of both clinical assessments. The multitask model achieved an R2

of 0.66 and 0.81 and an RMSE of 1.97 and 1.61 for the FSHD Clinical Score and TUG, respectively, and therefore outperformed
the single-task models in estimating clinical severity. The 3 most important features selected by the multitask model were light
sleep duration, total steps per day, and mean steps per minute. Using an increasing time window (starting from day 1 to day 14)

for the FSHD Clinical Score, TUG, and multitask estimation yielded an average R2 of 0.65, 0.79, and 0.76 and an average RMSE
of 3.37, 2.05, and 4.37, respectively.

Conclusions: We demonstrated that smartphone and remote sensor data could be used to estimate FSHD clinical severity and
therefore complement the assessment of FSHD outside the clinic. In addition, our results illustrated that training the models on
the first week of data allows for consistent and stable prediction of FSHD symptom severity. Longitudinal follow-up studies
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should be conducted to further validate the reliability and validity of the multitask model as a tool to monitor disease progression
over a longer period.

Trial Registration: ClinicalTrials.gov NCT04999735; https://www.clinicaltrials.gov/ct2/show/NCT04999735

(JMIR Form Res 2023;7:e41178) doi: 10.2196/41178
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Introduction

Facioscapulohumeral muscular dystrophy (FSHD) is a
progressive neuromuscular disease characterized by the wasting
of muscles in the face, upper body, and legs [1]. The onset and
progression vary greatly between individuals [2]. Early
symptoms include difficulties in smiling, whistling, and shutting
of the eyelids during sleep. These symptoms are followed by
impaired upper-arm movements and walking. A total of 20%
of individuals with FSHD eventually become wheelchair bound
[2]. Less visible FSHD symptoms include fatigue and chronic
pain [3]. In addition to the physical burden, individuals with
FSHD also experience emotional, social, and socioeconomic
burdens [4,5]. As a result, patients report increased deterioration
in quality of life as the disease progresses [6].

Currently, there are no therapies or interventions that prevent
the wasting of muscles in patients with FSHD [7].
Muscle-strengthening drugs have been shown to have limited
effect on the disease progression [8]. As a result, patients with
FSHD largely rely on symptomatic treatments (eg, analgesics,
exercise, and cognitive therapy). The development of novel
treatment options to delay or halt FSHD disease progression is
currently under investigation [9,10]. However, measuring the
effect of such new treatments is complicated, as disease
progression is slow and no objective surrogate end points,
predictive for clinical benefit, have been established.

Two common clinical assessments for assessing FSHD symptom
severity are the FSHD Clinical Score and Timed Up and Go
(TUG) test. The FSHD Clinical Score is composed of an
evaluation of the extent of the muscle weakness among 6 regions
of the body [11]. The TUG is a test used to assess functional
mobility [12]. The test requires a participant to rise from a chair,
walk 3 m forward, turn around, and return to the chair. These
clinician-rate assessments provide a snapshot of the disease
status and are primarily focused on muscular strength and
function that are inherently subjective. Identifying novel
objective biomarkers for monitoring disease progression could
additionally provide clinically relevant insights and aid drug
development. Novel digital end points for neuromuscular disease
drug development have already demonstrated to be sensitive to
differentiating patients from healthy volunteers and are strongly
correlated with clinician assessments [13-15]. The widespread

adoption of smartphones and wearables could provide new
opportunities for objective and continuous monitoring of FSHD
disease progression outside the laboratory.

This study was designed to identify smartphone-based and
remote sensor–based features that could be used to assess FSHD
disease severity. These features may enable the passive remote
monitoring of disease progression and might potentially facilitate
early detection of treatment effects on FSHD symptoms and
the patient’s quality of life. We hypothesized that the behavioral
features captured by these remote monitoring devices would
capture the daily physical and social burden that patients with
FSHD experience. Although other neuromuscular disease studies
with similar protocols have used machine learning to construct
their digital end points, until now, different monitoring periods
were arbitrarily selected by various researchers [16,17]. Here,
we investigated how different time windows affect the model’s
performance to estimate one’s symptom severity over time
[18,19]. As these features can vary considerably over time, we
assessed the stability and test-retest reliability of the first week
of data to estimate FSHD disease severity for the remainder of
the trial. In this paper, we describe the development of a novel
tool based on smartphone and remote sensor data to provide
remote estimation of FSHD disease severity.

Methods

Overview
This study is an extension of a previous longitudinal clinical
study that investigated the feasibility of monitoring and
characterizing patients with FSHD and healthy controls in terms
of biometric, physical, and social activities using data sourced
from smartphones and other remote monitoring devices.
Therefore, additional information regarding the data collection
and data quality has been previously published [15].

Patients
This was a noninterventional, cross-sectional study involving
patients with FSHD. The study was performed between April
and October 2019 in the Centre for Human Drug Research
(CHDR) research unit in Leiden, the Netherlands. Table 1
provides an overview of the demographic distribution of the
patients with FSHD enrolled in this study.
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Table 1. An overview of characteristics of the FSHDa participants (N=38).

ValuesDemographics

Gender, n

23Female

15Male

Race, n

—African American or Black

1Mixed

37White

44 (14.5) (18, 64)Age (years), mean (SD) (minimum, maximum)

79 (16) (52, 130)Weight (kg), median (SD) (minimum, maximum)

25 (4) (20, 44)BMI (kg/m2), median (SD) (minimum, maximum)

5 (3) (1, 13)FSHD Clinical Score, median (SD) (minimum, maximum)

7.7 (2.4) (5.5, 15.8)Timed Up and Go test (seconds), median (SD) (minimum, maximum)

aFSHD: facioscapulohumeral muscular dystrophy.

In total, 38 patients with genetically confirmed FSHD from the
Netherlands and Belgium were included in the study. Eligible
patients were 16 years or older, had genetically confirmed
FSHD, and had an FSHD Clinical Score greater than zero.
Patients had to be Android smartphone owners and willing to
use either their own smartphone or an Android smartphone
provided by CHDR for the duration of the study period. Patients
with internal medical devices such as a pacemaker or deep brain
stimulator were excluded from the study, as these could interfere
with the ––Withings scale measurements [20]. Participants could
not be pregnant or have a severe coexisting illness. Multimedia
Appendix 1 illustrates the enrollment pipeline for this study.
All patients participated in the trial from the beginning to the
end.

Ethics Approval
This study was approved by the Ethics Committee of BEBO,
Assen, the Netherlands (NL69288.056.19) and was registered
on ClinicalTrials.gov (NCT04999735). Before any study-related
activities, written informed consent was obtained from the
patients. Participants received monetary compensation for their
time and effort during the trial.

To preserve the privacy of the patients, we deidentified the data
and limited the amount of personally identified information
collected from the smartphone and the connected devices. The
location coordinates of the GPS or the cellular networks were
collected as relative coordinates (GPS coordinates with respect
to another predetermined location). For the calls and SMS text
messaging, only metadata are stored (ie, no actual phone calls
or text is being processed and stored). The call and SMS text
messaging logs only store a partial phone number, making it
impossible to identify the original phone numbers. As for the
Withings devices, we created a unique email address (containing
patient identifiers) for each patient to couple the Withings device
with CHDR MORE, thus eliminating the need for using the
patients’ personal email.

Investigational Technologies
Smartphone and remote sensor data were collected on the CHDR
MORE platform. This customizable platform enables the
collection, ingestion, and management of data sourced from
monitoring devices. The CHDR MORE app was installed on
the smartphone of each participant and allows for the
unobtrusive collection of smartphone sensor data (sourced from
the smartphone’s accelerometer, gyroscope, magnetometer,
GPS, light sensor, and microphone) as well as phone usage logs
(eg, app usage, battery level, calls, and SMS text messages).
The smartphone sensor data provide insights into a participant’s
environment, such as location type and travel patterns (GPS),
if human voices are present in the environment (microphone),
and their physical activity (accelerometer and gyroscope). The
phone usage logs give an indication of social activity (through
social media and communication apps, calls, and SMS text
messages) and smartphone usage (app usage).

The app also collected Withings health data. In this study, 3
Withings devices were used: Withings Steel HR smartwatch
(monitors heart rate, sleep states, and a number of steps),
Withings Body+ scale (monitors weight and body composition),
and Withings BPM Connect (monitors heart rate, systolic blood
pressure, and diastolic blood pressure). Together the Withings
features reflect the daily physical activities of each of the
participants.

This is the first study that aimed to monitor and estimate FSHD
symptom severity using smartphone and wearable data. As this
was an exploratory longitudinal study, specifically aimed to
identify smartphone- and wearable-based features that were
predictive of FSHD symptom severity, we did not identify any
literature with a similar protocol. To identify these novel
features, we decided to collect data from all available sensors
and features from the CHDR MORE platform. As the symptoms
of FSHD can affect a patient’s travel abilities [21], physical
activity, sleep [11,22], and social lives [23], we deemed these
features relevant for estimating FSHD symptom severity.
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Data Collection
Participants were monitored for 6 continuous weeks. On days
1 and 42, the clinical evaluations (FSHD Clinical Score and
TUG) were performed. On day 1, the CHDR MORE and
Withings Health Mate apps were installed on their smartphones.
Participants were asked to use their smartphones as normal.
Participants were asked to continuously wear their Withings
Steel HR smartwatch and weigh themselves and take their blood
pressure weekly.

Data Preprocessing
Before modeling of the data, all sensor data were preprocessed
and converted into features using Python (version 3.6.0) and
the PySpark (version 3.0.1) library. The raw data were checked
for missing values and outliers. Missing values were defined
as the absence of data for a specific feature for each day, except
for 2 types of measurements: the weekly measurements (eg,
weight and blood pressure) and the data related to aperiodic
activities (eg, phone calls or SMS text messages). Missing data
were not imputed. Outliers were detected by manual visual
inspection rather than automated statistical techniques, as our
objective was to identify potential outliers that were a result of
potential measurement errors rather than participants’behaviors.

Measurement errors were deemed not relevant to our analysis,
whereas outliers in behavior could still provide insights into a
participant’s symptom severity; therefore, sensitivity analysis
was not conducted. Outliers would be subsequently excluded
at the discretion of the authors (eg, removing overlapping sleep
stages).

Feature Extraction
All raw data were collected from the smartphone and Withings
devices. The features were then aggregated per day, as the
symptom severity exhibited on a given day is the focus of FSHD
clinical evaluation. As there are no FSHD assessments that
assess FSHD symptoms over a longer period, we did not explore
other aggregation methods. Discrete features (eg, step count)
were summed per day per participant. Continuous features (eg,
heart rate) were averaged per day per participant. Table 2
provides an overview of how the features were aggregated based
on the data type. Table 3 summarizes which features were
extracted from the smartphone and Withings sensors. In
addition, Table 3 shows the features that were provided from
the MORE platform but were not included for the analysis either
due to outliers, missing data, or because they were not of clinical
interest.

Table 2. A simplified summation of how the features were aggregated based on the data type.

Example aggregationAggregation formatExample featureTime unitData type

StepsPer day,
per hour

Count •• Total stepsSum
• •Mean Max steps per hour

•• Mean steps per hourMaximum

Heart ratePer dayContinuous data
within a range

•• Lowest 5% heart rateMinimum (5%)
• •Median (50%) Median heart rate

•• Maximum 95% heart rateMaximum (95%)

App usagePer dayDuration •• Total duration of social apps openedTotal duration
• •Mean duration Mean duration of social app use per interaction

LocationPer dayGPS coordinates •• Total distance traveledSum
• •Maximum Mean and Maximum distance from home
• Mean
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Table 3. An overview of the features provided from the MORE platform and the features that were subsequently aggregated per day (with the exception
of the body measurements as that was measured once a week).

Excluded featuresDerived features (per day)Category and MORE features

Demographics

Age

Gender

Acceleration

Mean acceleration magnitude98% acceleration magnitudeAcceleration magnitude

Gyroscope

Magnetometer

Activity

Total steps, max steps per hour, and mean steps
per hour

Steps

5%, 50%, and 95% beats per minute (bpm),
SD of bpm, and % time spent in the resting
state

Heart rate

Soft, moderate, and intense activity durationPhysical activity duration

Distance traveled and distance per stepCalories

Apps

House and home, libraries and demo, reading,
and travel

Duration, times openApp categories: health and fitness, recreational,
communication and social, tools, and shopping

Body

Height (m), fat mass (kg), fat ratio (%), hydra-
tion, and muscle mass

Diastolic blood pressure, systolic blood pres-
sure, heart pulse (bpm), and weight

Diastolic blood pressure, systolic blood pressure,
heart pulse (bpm), and weight

Location

Total duration at place, total distance traveled,
total number of unique places visited, max
distance from home, and time spent commuting

Location categories: commercial, health, home,
leisure, public, social, and travel

Social

SMS text messagesNumber of calls; number of unique numbers;
number of incoming, outgoing, and missing
calls; number of calls from known and un-
known numbers; total duration of calls; average
duration of calls; and % time human voice is
detected

Calls, voice

Sleep

Number of sleep sessions, total sleep duration,
number of sleep phases (awake, light sleep,
and deep sleep), duration of sleep phases
(awake, light, and deep sleep), time between
sleep sessions, and time to fall asleep

N/Aa

aN/A: not applicable.

Feature Selection
Before modeling, both expert-based manual and automated
feature selections were performed. First, features were visually
inspected by all authors. Excluded features were based on the
number of available data points (eg, 9 participants did not have
body composition data) and clinical relevance (eg, time spent
on parenting apps was deemed clinically irrelevant). Next, two
automated feature selection strategies were compared: (1)
stepwise regression and (2) variance inflation factor (VIF). The

stepwise regression strategy was an iterative process to select
predictive variables that met a significance criterion (P<.05).
Both forward and backward stepwise regression strategies were
used. The VIF was calculated for all pairwise combinations of
features to identify collinear features. Pairs of features having
a VIF value greater than 10 were identified, and one of the
features was subsequently removed for each of the pairs [24].
For comparison, we also fitted the model without any automated
feature selection strategies. For each regression model, we
applied each of the feature selection strategies.
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Statistical Analysis
Python (version 3.6.0) was used for the data analysis and
modeling in conjunction with the Pandas [25], NumPy [26],
Matplotlib [27], and Sklearn packages [28]. Three regression
models were created: 2 single-task regression models, 1 for each
clinical assessment and 1 for each multitask regression model,
simultaneously estimating both clinical assessments. For the
multitask regression model, a dummy variable was included to
denote either the FSHD Clinical Score or TUG.

For all models, linear regression, random forest regressor, and
gradient boost regressor were used. A grid search was performed
to optimize the hyperparameters for each model. For the Elastic
Net linear regression model, we optimized the hyperparameters
for the α (range 0-200) and L1 ratio (range 0.0-1.0). For the
random forest and gradient boost regressors, we optimized the
hyperparameters for the number of estimators (range 0-200),
maximum depth (range 1-20), maximum features (range: auto,
square root, log2), and maximum leaf nodes (range 2-20). In
addition, we optimized the learning rate (range 0.0-1.0) for the
gradient boost regressor.

Each model was validated using a group 5 outer-fold and 5
inner-fold nested cross-validation. By using group
cross-validation, for each fold, we ensure that the participants
in the validation are not also present in the training fold. While
the data for all participants were used for the modeling, the
cross-validation procedure was used for out-of-sample testing;
hence, for each fold of the cross-validation procedure, only a
subsample of participants’ data were used. Further, the random
forest and gradient boost regressor models only consider a
subsample of participants and features per decision tree node.
The elastic-net linear regression penalization would also reduce
the potential features considered in the model. The
cross-validation and models together would improve the
generalizability and robustness of the models and therefore
reduce the probability of spurious correlations.

We applied each of the feature selection strategies to each of
the regression models and compared the results of each model.

The model that provided the highest R2 (variance explained)
and the lowest root-mean-square error (RMSE) was selected as

the best-performing model. The R2 and the RMSE explain the
variance and the error between the true clinical scores and the
predicted scores of the regression models, respectively.

To assess how varying time window affects the model’s
estimation of symptom severity, we used an incrementally
increasing time window to train the regression models, starting
with day 1 and adding the following days until the first 2 weeks
of data were included in the training set. To train, optimize, and
assess each model’s generalizability, we applied a 5-fold nested
cross-validation model. To validate the performance of these
models, we used the remaining 4 weeks of data as an external
validation data set. To assess the stability of the trained models
to yield consistent estimations of symptom severity, we trained
the FSHD Clinical Score, TUG, and multitask models on the
first week of data. We estimated the symptom severity for the
subsequent weeks. We selected the first week, as each patient
would have each day of the week represented in their data set.

In sum, we investigated 3 final models, 2 single-task models,
and 1 multitask model. For each model, we considered 3 types
of regression models (the linear regression, the random forest
regressor, and the gradient boost regressor). For each model,
we considered 3 feature selection strategies (no automated
feature selection, stepwise regression, and VIF); hence, in total,
we compared 27 models. Given that we are mainly interested
in the comparison of the predictions of single-task and multitask
models and the influence of the time windows on the predictions,
we reported only the results of these models.

Results

No patients dropped out of the study. One patient was
wheelchair-bound and therefore unable to perform the TUG.
The FSHD Clinical Scores ranged between 1 and 13, with a
median score of 5. The TUG times ranged between 5.5 seconds
and 15.8 seconds, with a median time of 7.7 seconds.
Multimedia Appendix 2 illustrates the range of the averaged
FSHD Clinical Scores and TUGs.

Before modeling, several features were manually excluded.
Nine patients had no body composition (eg, fat and muscle
mass) data. As a result, the Withings body composition data
(except weight) were excluded from the final analysis. We
excluded SMS text message–related features as not all the
patients used SMS text messaging (less than 30% of patients),
and the SMS text message features were not deemed clinically
relevant. Further, we excluded smartphone apps from the
analysis that were used by less than 5% of the patients. We did
not exclude any outliers as none of the data points were viewed
as potential measurement errors. In a previous publication, we
provided an overview of the proportion of observations that
were missing per feature [15].

The FSHD Clinical Score for 24 participants did not change
over the 6 weeks. The scores of the remaining 14 participants
changed by +1 or −1 point. The average difference between the
day 1 and day 42 TUG scores was 0.38 seconds (95% CI
0.12-0.63). After reviewing the stability of the TUG and FSHD
scores, we decided to use the averaged clinical assessment scores
as the outcomes for all models. Subsequently, each feature was
also averaged over the 6 weeks. These averaged features were
used as inputs for the regression models.

Using all 6 weeks of data, we built a single-task model that used
the CHDR MORE features to estimate the FSHD Clinical Score
for each participant. Comparing the estimated scores and the

true FSHD Clinical Score yielded an R2 of 0.57 and an RMSE
of 2.09. This was achieved using VIF-selected features and
Elastic Net–penalized linear regression. A total of 11 features
were predictive of the FSHD Clinical Score, as seen in Figure
1. The features were related to app usage, blood pressure,
location visits, and calling behaviors. Figure 2 (top) shows the
estimated FSHD Clinical Score in relation to the actual FSHD
Clinical Score.

Similarly, the comparison of the TUG single-task model

estimated TUG and the actual TUG yielded an R2 of 0.59 and
an RMSE of 1.66 (seconds) for each participant. This was
achieved with forwarding selection stepwise regression and
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Elastic Net–penalized linear regression. In total, 13 features
were predictive of the TUG score (Figure 1). The feature
categories related to age, app usage, calling behaviors, sleep,
physical activity, and location visits were predictive of TUG.
Figure 2 (bottom) illustrates the relationship between the
predicted and actual TUG times.

The multitask model achieved an R2 of 0.74 and an RMSE of
1.89 for the FSHD Clinical Score and TUG prediction together.

The same model achieved an R2 of 0.66 and an RMSE of 1.97

for the FSHD Clinical Score and an R2 of 0.81 and an RMSE
of 1.61 for the TUG separately. The gradient boost regressor
selected 50 predictive features. The relative feature importance
is presented in Figure 3. The 5 most important features were
light sleep duration, total steps per day, mean steps per minute,
the number of times the social and communication apps were
opened, and the number of incoming calls. Figure 4 illustrates
the relationship between the predicted clinical scores and the
actual clinical scores.

For each clinical score, we evaluated the effect of different
monitoring periods on the estimation of symptom severity. The
best performing FSHD Clinical Score single-task model, TUG

single-task model, and multitask model yielded the highest R2

on day 3 (0.70), week 2 (0.86), and day 1 (0.86), and the lowest
RMSE on day 3 (2.8), week 2 (1.9), and day 6 (3.4),
respectively. As seen in Figure 5, although our analysis has

identified windows that yielded the highest R2 and RMSE, we

found that the mean (SD) of the R2 and RMSE for the FSHD
Clinical Score single-task model, TUG single-task model, and
multitask model was 0.65 (0.03) and 3.37 (0.19), 0.79 (0.05)
and 2.05 (0.09), and 0.76 (0.08) and 4.37 (0.20), respectively.

When evaluating the stability, the models trained on a week’s
worth of data were used to estimate the symptom severity for
subsequent days. We found that the FSHD Clinical Score, TUG,

and multitask models achieved median R2 (median RMSE) of
0.51 (3.66), 0.42 (2.44), and 0.72 (2.61), respectively (as seen
in Figure 6).

Figure 1. Linear regression coefficients for the features selected by the single-task FSHD Clinical Score and TUG models. Features with a coefficient
of zero are not shown. FSHD: facioscapulohumeral muscular dystrophy; TUG: Timed Up and Go.
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Figure 2. True FSHD Clinical Scores and TUG times against the predicted scores using the respective FSHD Clinical Score and TUG regression
models. The lines represent a regression line with a 95% CI band. FSHD: facioscapulohumeral muscular dystrophy; TUG: Timed Up and Go.
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Figure 3. SHAP (SHapley Additive exPlanations) variable importance plot showing the feature importance of the top 20 most important features, in
which the features are ranked in descending order. Each scatter point represents one prediction. The color of the scatter point reflects the value of the
real data. If the actual value of the data point was high, then the color was red. If the value was low, then the color was blue. The SHAP value, as
illustrated on the x-axis, shows the direction and magnitude of each feature’s contribution toward predicting the facioscapulohumeral muscular dystrophy
symptom severity.
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Figure 4. Scatterplot of the estimated FSHD Clinical Scores and TUG times in relation to the actual FSHD Clinical Scores and TUG using the multi-task
learning regression model. The lines represent the regression lines with a 95% CI band. FSHD: facioscapulohumeral muscular dystrophy; TUG: Timed
Up and Go.
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Figure 5. Evaluating the performance of the single-task FSHD Clinical Score, TUG, and the multitask FSHD Clinical Score and TUG regression
models trained on an incrementally increasing time window. The colored lines represent the 3 types of regression models trained on the data (Elastic
Net, Random Forest Regressor, and Gradient Boosting Regressor). For each model and each incremental time window, the top and bottom plots show

the R2 and RMSE, respectively. The lines represent the median performance, and the bands represent the 95% CI. FSHD: facioscapulohumeral muscular
dystrophy; RMSE: root mean square error; TUG: Timed Up and Go.

Figure 6. Evaluating the performance of the single-task FSHD Clinical Score, TUG, and the multitask FSHD Clinical Score and TUG regression
models trained on the first week of data to estimate symptom severity for the subsequent weeks. The colored lines represent the 3 types of regression
models trained on the data (Elastic Net, Random Forest Regressor, and Gradient Boosting Regressor). For each model and each week, the top and

bottom plots show the R2 and RMSE respectively. The lines represent the median performance, and the bands represent the 95% CI. FSHD:
facioscapulohumeral muscular dystrophy; RMSE: root mean square error; TUG: Timed Up and Go.
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Discussion

Principal Findings
We developed and compared 2 regression models to monitor
and estimate FSHD symptom severity outside the clinic with
remote sensor data to estimate the FSHD Clinical Score and
TUG for each participant. For the first type of model, both
clinical assessment scores were separately estimated using 2
single-task regression models. For the second type of model,
both clinical assessment scores were simultaneously estimated
using a multitask regression model.

The 2 single-task models selected features that were uniquely
predictive of each of the clinical scores. In addition, the models’
selected features were found to be predictive for both scores
(time spent at health locations and total call duration). Other
studies have found that (a modified version of) the TUG
significantly correlated to the FSHD Clinical Score [12,29],
indicating that these clinical scores share mutual information.
Simultaneously estimating multiple tasks with shared features
can improve the model performance [30-32]. This supports the
notion that a multitask approach would improve the estimation
of FSHD symptom severity.

Indeed, the multitask modeling of both the FSHD Clinical Score
and the TUG outperformed the single-task models. Additionally,
the multitask model identified features not selected as important
by the single-task models (eg, sleep and the resting heart rate).
The clinical assessments and their respective single-task models
only captured a limited range of disease symptoms, which
misses the opportunity to model other aspects of the disease
(eg, sleep impairments [33,34] and arrhythmic abnormalities
[35]). The multitask model, however, identified features
representative of a broader range of FSHD symptoms. As shown
in the SHAP (SHapley Additive exPlanations) plot (Figure 3),
participants with a higher mean step per minute, light sleep
duration, soft activity duration, and total steps (indicated by the
red feature value) had lower SHAP values. This indicates that
participants with more physical activity and better sleep quality
had a lower FSHD Clinical Score and TUG. Although the
multitask model outperformed the single-task models, the
multitask model required approximately twice as many features
as the single-task models. Using fewer features could be
considered beneficial as it reduces the number of sensors needed.
Additionally, it eases the interpretation of the results. Therefore,
there is a tradeoff between the performance of estimation of
disease severity and the complexity of the data set and model.
However, given that the multitask model showed an important
improvement over the single-task models, we recommend using
the multitask model for future estimation of the FSHD Clinical
Score and TUG.

It is critical to determine how much data are needed to obtain
reliable inferences without burdening the patients and the
clinicians. Insufficient data can lead to inaccurate extrapolations,
whereas excessive data can lead to wasted time and resources.
This study investigated how long a patient needs to be monitored
to estimate symptom severity reliably. Our results demonstrated
that behaviors exhibited that based on our sample, the optimal

time window (based on the highest R2 and lowest RMSE) varied

for each task. The multitask model yielded the overall highest

R2 based on a training data set of the first day. Although we
identified that 5 days of data seem sufficient for training the
multitask model, a longer or shorter time window would still
provide consistent estimation of the symptom severity. However,
our results also demonstrate that selecting any time window
between days 1 and 14 would produce relatively stable results.
Our results also demonstrated that training the multitask model
on the first week of data allowed for constant and reliable
estimations of symptom severity for the subsequent weeks. This
further supports the notion that the multitask should be used to
estimate the clinical scores for longitudinal studies.

The agreement between the clinical scores and the remotely
monitored features did not achieve 100% adherence. This may
be due to the sensors being unable to capture specific aspects
of the clinical score. For example, features captured by the
remote monitoring system may not provide sufficient proxies
for arm, scapular, and abdominal weaknesses (which the FSHD
Clinical Score specifically addresses). Adding additional sensors
and features could potentially allow for more complete modeling
of FSHD. For example, an additional accelerometer could try
to capture arm swings [36] or detect the (limited) shoulder range
of motion [37]. Another explanation for the imperfect model
fit is that the clinical scores have limited accuracy in capturing
disease severity. There can be variation within a specific clinical
score, as patients with the same scores may exhibit different
FSHD symptoms. For example, patients with scores between
2 and 4 may have impairments related to facial muscles and
upper limbs, whereas others may be unable to walk on their
heels [11].

The clinical scores provide snapshots of muscular strength and
function, whereas the remote monitoring approach provides a
more continuous measure of (FSHD-related) social and physical
activity. Additionally, the clinical scores were assessed at the
clinic, whereas the sampling of the remotely monitored features
occurred at home, and in daily practice. Altogether, these 2
clinical scores may not be the optimal clinical assessment
strategies for fully assessing FSHD symptom severity. These
are only 2 of several FSHD-related assessments that can be used
in a clinical trial. The remotely monitored features may show
different correlations with other FSHD-related assessments such
as the Clinical Severity Scale for FSHD [38,39] and the
Pittsburgh Sleep Quality Index [39,40]. Although the remotely
monitored features may not correlate strongly with the 2 clinical
scores, they still provide relevant insights into FSHD-related
symptoms. Our multitask model could prove to be a promising
tool for monitoring the FHSD severity based on patients’
everyday activities outside the clinic.

Although the models cannot replace the TUG or FSHD Clinical
Scores for estimating the disease severity, these models can
potentially be used as a (complimentary) tool in clinical studies.
When validated in longitudinal studies, given the continuous
sampling of data from multiple sensors, this FSHD tool could
potentially be used to track the symptom severity for long
periods of time without patients having to visit a clinic. Previous
studies have demonstrated that this approach of using
smartphone-based models to quantify medication responses can
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be advantageous [37,38]. When implemented in a clinical trial,
the FSHD tool might be evaluated as a tool to monitor drug
effectiveness by tracking drug-induced changes in FSHD
symptom severity [41]. Additionally, it might enable the
identification of improvements in specific aspects of the disease
severity (eg, muscle function or sleep quality). Therefore, remote
monitoring might aid clinicians’assessments of a patient’s status
during a clinical trial based on the review of the patient’s
in-clinic assessments and out-of-clinic daily activity.

We present an FSHD tool that estimates the FSHD Clinical
Score and TUG using smartphone and remote sensor data. The
conclusions drawn from this study are preliminary in view of
the relatively small sample size and cross-sectional study nature.
Given the short observation period, we did not expect changes
in the patients’ FSHD scores. As a result, we could not validate
the use of the model to estimate changes in the FSHD severity
over time. A trial where the FSHD clinical score is expected to

change could help validate the FSHD tool’s capacity to detect
changes in FSHD symptom severity. Additionally, the FSHD
tool could be improved by including more patients with FSHD
and adding other remote sensors. All in all, the remote
monitoring approach presented here could be a promising tool
for monitoring FSHD severity outside the clinic environment.

Conclusions
We presented a smartphone-based and remote sensor–based
FSHD tool that can estimate a patient’s FSHD symptom
severity. This is the first study to demonstrate how to monitor
patients with FSHD remotely and subsequently model their
FSHD Clinical Score and TUG simultaneously. The tool holds
potential for monitoring disease progression and drug
intervention effects outside the clinic, pending a longitudinal
follow-up study to validate the capacity of the FSHD tool to
detect changes in the disease severity score over time due to
disease progression or drug intervention.
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