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Abstract

Background: Community-engaged research (CEnR) involves institutions of higher education collaborating with organizations
in their communities to exchange resources and knowledge to benefit a community’s well-being. While community engagement
is a critical aspect of a university's mission, tracking and reporting CEnR metrics can be challenging, particularly in terms of
external community relations and federally funded research programs. In this study, we aimed to develop a method for classifying
CEnR studies that have been submitted to our university's institutional review board (IRB) to capture the level of community
involvement in research studies. Tracking studies in which communities are “highly engaged” enables institutions to obtain a
more comprehensive understanding of the prevalence of CEnR.

Objective: We aimed to develop an updated experiment to classify CEnR and capture the distinct levels of involvement that a
community partner has in the direction of a research study. To achieve this goal, we used a deep learning–based approach and
evaluated the effectiveness of fine-tuning strategies on transformer-based models.

Methods: In this study, we used fine-tuning techniques such as discriminative learning rates and freezing layers to train and
test 135 slightly modified classification models based on 3 transformer-based architectures: BERT (Bidirectional Encoder
Representations from Transformers), Bio+ClinicalBERT, and XLM-RoBERTa. For the discriminative learning rate technique,
we applied different learning rates to different layers of the model, with the aim of providing higher learning rates to layers that
are more specialized to the task at hand. For the freezing layers technique, we compared models with different levels of layer
freezing, starting with all layers frozen and gradually unfreezing different layer groups. We evaluated the performance of the
trained models using a holdout data set to assess their generalizability.

Results: Of the models evaluated, Bio+ClinicalBERT performed particularly well, achieving an accuracy of 73.08% and an
F1-score of 62.94% on the holdout data set. All the models trained in this study outperformed our previous models by 10%-23%
in terms of both F1-score and accuracy.

Conclusions: Our findings suggest that transfer learning is a viable method for tracking CEnR studies and provide evidence
that the use of fine-tuning strategies significantly improves transformer-based models. Our study also presents a tool for categorizing
the type and volume of community engagement in research, which may be useful in addressing the challenges associated with
reporting CEnR metrics.

(JMIR Form Res 2023;7:e41137) doi: 10.2196/41137
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Introduction

Community-engaged research (CEnR) is a research approach
in which scholars from typical research institutions, such as
universities, partner with organizations or members within a
community where they share an interest in progressing that
community’s well-being. These partnerships bring attention to
empirical work in areas that address a range of social, economic,
political, and environmental factors that affect health [1]. The
problem universities face surrounding CEnR is measuring and
reporting these studies due to inadequate methodological
processes for reviewing them. This problem leads to unreliable
metrics for funders and stakeholders, which leads to a lack of
appropriate infrastructure for capturing CEnR data. An example
of an appropriate infrastructure would be a system that properly
classifies a research study as CEnR or not. Virginia
Commonwealth University noticed this problem back in 2013
and began tracking CEnR studies using 3 custom fields in the
university’s web-based human subjects protocol submission
form (institutional review board [IRB]), as part of an award
from the National Center for Advancing Translational Sciences.
However, issues arose with these custom fields concerning the
quality with which the system documented CEnR studies, such
as inconsistent interpretations of the fields by principal
investigators submitting protocols.

This led to the exploratory technical study described in another
paper [2], which began this process of developing a model for
classifying CEnR as a spectrum rather than a binary
classification. We sought to automate the classification of a
newly created spectrum of CEnR studies using deep learning,
which was trained on a small sample of data. After numerous
comparisons, we discovered the use of transfer learning to be
superior compared to traditional deep learning models.
Additionally, we applied the best-performing algorithms to a
5-year data set of unlabeled research protocols (n>6000) to see
how well they delineated between the levels of CEnR. The work
presented in this paper takes a closer look at the previously
trained models and improves them using different fine-tuning
methods. In the recent experiment, we found that models
generalized better when changing from 6 classes to 3 classes;
therefore, the models used in these experiments are trained on
3 different classes.

Transfer learning is a powerful technique for improving the
performance of deep learning models. It involves using
unsupervised algorithms that have been pretrained on large
amounts of unlabeled data to jump-start the learning process
for a secondary task. Transfer learning has been shown to be
particularly useful for training transformer-based models, which
have become popular in recent years due to their ability to
process large amounts of data and achieve strong performance
on a wide range of tasks [3,4]. However, there is still much to
be learned about how to effectively train transformer-based
models. Some researchers have found that these models can
overfit small data sets and experience catastrophic forgetting,
which means that they tend to forget information learned during
previous training tasks [5,6]. Several studies have demonstrated
that periodically adjusting the learning rate during training can
help improve model convergence, as it allows the model to

adapt to changes in the data distribution [7,8]. Furthermore, it
has been shown that not all layers in a transformer-based model
need to be fine-tuned for a given task, and different layers may
capture varying levels of syntactic and semantic information
[9,10]. Lee et al [11] found that only a quarter of the final layers
in their tasks required fine-tuning. These findings have led to
the development and implementation of various fine-tuning
techniques, such as layer-wise discriminative fine-tuning,
gradual unfreezing of layers, layer freezing, and cyclical learning
rates, which have been shown to improve model performance
[12-17]. Overall, there is a growing body of evidence that
fine-tuning strategies can significantly improve the performance
of transformer-based models. Further research is needed to fully
understand the benefits and limitations of these techniques and
to develop more effective approaches for training these models.

The use of transfer learning from our previous experiments
resulted in overfitting due to the data set being small combined
with the number of parameters from the pretrained models being
large. As stated, fine-tuning too aggressively can cause
catastrophic forgetting, and fine-tuning too cautiously will
slowly lead to overfitting [5]. Therefore, we will observe and
make use of some of the previously stated techniques for our
problem. We hypothesized that using different fine-tuning
strategies for our problem will significantly outperform
previously built transformer-based models that classify levels
of CEnR. The rest of the paper proceeds as follows: the Methods
section describes approaches; data collection; data curation;
data classification; models; hardware; packages;
hyperparameters; train-, test-, or holdout-distributions; model
performance tracking; and frameworks for each model trained
with its corresponding layer-parameter group. The layer
parameter groups provide details on what learning rates were
used for each group. The next section is the Results section,
which provides results across all 3 transformer-based models,
showing average F1-scores, training losses, and so on, followed
by the Discussion and Conclusions sections, which provide
principal findings, limitations, and comparisons from previous
experiments.

Methods

Data
The data were collected from our university’s IRB database.
After cleaning and deduplicating the data, we were left with
6000 research studies, of which 360 were pulled, reviewed, and
manually labeled as one of the original 6 classes from our
previous study. Our training data set is derived from data
augmentation techniques on the 360 research studies, creating
2000 contextually similar training samples. Our testing data are
then the original, unaugmented data. Because of the
augmentations, it is easier for transformer models to do well on
the testing set; therefore, we have a holdout data set of 50
research studies. The holdout data sets’ performances are what
we report on in the paper. Textbox 1 shows the original 6 classes
that represent the levels of CEnR [18]. However, our most recent
study allowed us to see that combining the classes to fit a
broader spectrum was best. For these experiments, containing
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just the 3 classes, we collapsed the 1s and 2s (=1), the 3s, 4s, and 5s (=2), and kept the class 0 as is.

Textbox 1. Community-engaged research (CEnR) levels that were used to manually classify the training data.

0=No CEnR

• Research without a partnership or community engagement

1=Non-CEnR partnership

• There is reference to a partnership, but the relationship is uncategorizable (eg, not adequately described) or not a traditional community-engaged
partnership (eg, contractual relationships).

2=Instrumental partnership

• The community partner primarily facilitates access to the “inputs” needed to conduct the study (eg, posting recruitment flyers, providing participant
contact information, extracting data, and providing study sites for observation).

3=Academic-led partnership

• There is minimal yet important interaction between the research team and the community partner, which is often essential to project success (eg,
academic partners take the lead on study design and research activities, with community partner involvement at particular points, such as
troubleshooting recruitment or facilitating community meetings).

4=Cooperative partnership

• Shared investment and mutual consideration between the research team and the community partner, without shared decision-making (eg, community
advisory boards that provided input on study design and methodology, reviewed data collection instruments, interpreted findings, informed
dissemination plans).

5=Reciprocal partnership

• Community partners and research teams share decision-making power and governance (eg, community-based participatory research, team science,
and steering committees with decision-making power).

Models

Overview
These proposed approaches are being compared to a previously
done experiment where the number of epochs, sequence length,
batch size, etc, were already defined and worked for this
problem. The only differences between these experiments and
the previous ones are the amount of training, testing, and holdout
data, the number of training epochs, and the learning rates for
different layers. For comparison, we fine-tune 3
transformer-based models, Bidirectional Encoder
Representations from Transformers (BERT),
Bio+ClinicalBERT, and XLM-RoBERTa.

BERT
BERT was introduced by Devlin et al [19]. This was pretrained
on BookCorpus (800 million words) and Wikipedia (2500
million words), and the model’s architecture ensures its
advantage in Natural Language Processing tasks because it
learns the contextual meanings of words and how each word is
being used in a sequence due to its 12 attention heads and 110
million parameters. Additionally, BERT can achieve
state-of-the-art results on various tasks for large and small data
sets, and it does not need to be trained for more than 2-4 epochs.
BERT’s baseline version was used for this.

Bio+ClinicalBERT
BERT is pretrained on enormous data sets such as BookCorpus
and Wikipedia, and in general, this really can model language
well. However, Alsentzer et al [20] studied ways to improve

this by using BERT models in a more specific way, such as
pretraining with clinical text and discharge summaries. The
authors used data from the MIMIC-III (Medical Information
Mart for Intensive Care) data base in 2 ways: Clinical BERT
(which contains all note types) and Discharge Summary BERT
(which contains only discharge summaries) so that tasks with
clinical data could be used with a more specific classification
language model. They then trained 2 BERT models on the
clinical text, where one is initialized from the BERT-base model
and the other is initialized from BioBERT [21] (this is the model
we chose).

XLM-RoBERTa
XLM-RoBERTa was not created for our kind of task; however,
it still performed very well in the previous experiment. It was
introduced by Conneau et al [22] in 2019 and updated in 2020.
This model closely resembles the RoBERTa architecture [23],
except that it is a cross-lingual model pretrained on 100 different
languages. This type of model is made for cross-lingual transfer
learning tasks and was trained on more than 2 terabytes of the
CrommonCrawl corpora. It differs from BERT in terms of its
tokenization and masking pattern, thus making it an interesting
model to compare BERT with.

Training Details

Overview
We used the SimpleTransformers library created by Thillina
Rajapakse, which can train and evaluate transformer models
(derived from the HuggingFace website) with very few lines of
code. Since the input text lengths in our sample data set were
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longer than the limits for BERT and other transformer models,
we used a sliding-window technique, which comes as a tool
inside the SimpleTransformer’s library. Therefore, sequences
from the data (input sentences) that exceed the “maximum
sequence length” will be split into subsets, each equaling the
maximum sequence length value. Using this technique, each
subset of the sliding window has overlapping values, also
referred to as the stride (stride=0.8), resulting in about a 20%
overlap between the windows. This process lengthens training
time but is preferable to truncating data during training. We
trained the models on a single Graphics Processing Unit device
(NVIDIA GeForce RTX 2070 with 8GB GDDR6 memory).
For inference, we use an Intel Core i7-10750H CPU at 2.60
GHz and 32 GB RAM. Additionally, every model had weights
corresponding to a class so that it was equally balanced during
the training, ensuring no class was heavily favored. As for
evaluation metrics and strategies, we compare both accuracy
and the F1-score, but the F1-score gives a more balanced view
of the performance. After every model is trained, we make
predictions on the holdout data set and record the accuracy,
F1-score, class accuracies, and the output of final predictions

to compare and run evaluations on the best-performing models.
The training data comprises 614 samples of the zero’s class,
645 samples of the one’s class, and 769 samples of the two’s
class. The testing set comprises 82 samples of the zero’s class,
51 samples of the one’s class, and 146 samples of the two’s
class. The holdout data set comprises 17 samples of the zero’s
class, 27 samples of the one’s class, and 36 samples of the two’s
class.

Discriminative Fine-Tuning Procedure
The models in this experiment use the AdamW optimizer [24].
Therefore, for the different learning rates, we split the layers
inside every model into 3 groups. Doing this will be
computationally easier; that way, we are not performing
hyperparameter tuning for every single layer in a transformer
model. As for the layer freezing, the learning rate (α) will just
be zero. All the models trained have 12 layers; therefore, we
created 3 groups consisting of 4 layers in each group. Table 1
shows that the higher layers had larger learning rate values,
while the lower and middle layers had smaller ones. This is in
correspondence to what the literature says about layers going
from general to specific.

Table 1. Parameter groupings.

Learning rate value listLayer group parameter

Learning rates are 0 for every layer in every groupAll Frozen

{Group 1 and Group 2: 0}; {Group 3:

3e-5 or 4e-5}

Up until 8th

Layer Frozen

{Group 1: 0}; {Group 2: 1e-5 or 2e-5};

{Group 3: 3e-5 or 4e-5}

Up until 4th

Layer Frozen

{Group 1: 1e-5 or 2e-5}; {Group 2: 1e-5 or 2e-5}; {Group 3: 3e-5 or 4e-5}None are Frozen

Layer Freezing
We did a gradual unfreezing of the layer groups, but not in the
way that might be found in the current literature, where the
gradual unfreezing part occurs during the training. By this, we
mean we compared models where every group’s learning rate
is zero (frozen), then “unfreeze” by training models where
2-layer groups are frozen and continue going until none of the
layer groups are frozen, adding up to 45 models per transformer.
The model names, epochs, groups and so on, are shown on the
Weights and Biases (WandB) websites [25-27].

WandB
Our models during training are connected to a website called
WandB [28], which keeps track of the model and its training
parameters and performances such as training time, Graphics
Processing Unit usage, custom layer parameters, epochs, loss,
and so on. This is an organized way to keep track of the 100+
models trained. We have a separate working environment for
each of the 3 models, and within each environment, it has a
name related to the specific parameter groupings and is colored
by the number of training epochs: 3 (blue); 4 (orange); and 5
(green). Links to this data are provided in the References section
[25-27]. We define parameter groups, which can also be found
in the Table section of each of the 3 WandB websites.

Ethical Considerations
This study involves a secondary analysis of human subject
protocols and therefore did not need an IRB review. The
research and ethics presented in this study were approved by
the IRB of Virginia Commonwealth University; they were the
ones that provided these protocols for us to do our analysis.
These studies are anonymous and private to the public; we only
worked with the IRB applications, not the research itself.

Results

We performed 3 sets of 45 experiments. In this section, we will
discuss the comparisons of all 3 models by their corresponding
parameter groupings and epochs. Each table can be seen in
Multimedia Appendix 1. The appendix includes the accuracies,
F1-scores, and the accuracies for the individual classes. Figure
1 shows that the transformer model that performed the best
overall was Bio+ClinicalBERT, which received the highest
accuracy and F1-score at 73.08% and 62.94% (Table I in
Multimedia Appendix 1). BERT and XLM-RoBERTa were
able to perform best when training for 4 epochs as opposed to
3 and 5, but Bio+ClinicalBERT achieved a much higher average
F1-score when trained for 3 epochs (as seen in Figure 1). Most
of the models do well in the two’s class, averaging about
78%-80% accuracy (most likely due to oversampling in the
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two’s class); however, they struggle with the ones and zeros.
For the one’s class, all the models average around 20%-45%
accuracy, and for the zero’s class, they average around 40%-50%
accuracy. BERT and Bio+ClinicalBERT outperform
XLM-RoBERTa in the one’s class by 10%-20%, but all the
transformer models did around the same in the 0’s class. The
best parameter group on average was “None are Frozen8,” where
all the layer groups had different learning rates (Group 3: 3e-5;
Group 2: 2e-5; Group 1: 2e-5), which achieved an average
F1-score of about 54%. The worst parameter group was when

all the layers were frozen (no learning rate), achieving an
average F1-score of 46.5%. BERT’s best parameter group was
“None are Frozen3,” where the top layers had a much larger
learning rate. However, BERT was unpredictable when sifting
through the parameter groups. XLM-RoBERTa and
Bio+ClinicalBERT start to perform better as more layers become
unfrozen, and the upper layers have a learning rate of 3e-5.
Their best parameters groups were both “None are Frozen8”
(54.3% and 57%).

Figure 1. F1-scores by parameter group (colored by epochs): 3 epochs (blue), 4 epochs (orange), and 5 epochs (green). BERT: Bidirectional Encoder
Representations from Transformers.

Discussion

Principal Findings

Training Losses
WandB also has graphs of each model’s training loss to show
how the models performed when grouped by their parameter
groups, and WandB has graphs showing the spread across the
100+ models trained, showing their training losses. The only
thing worth noting that is distinguishable is that you can see the
training losses that stand out the most and have the highest
training error. These losses come from the Parameter Group,
where all the layers are frozen, with a learning rate of 0. These
errors are even more extreme for XLM-RoBERTa [27].
XLM-RoBERTa had a much larger variance in its training loss
across models trained for 3, 4, and 5 epochs. The range of loss
values is extreme, almost covering the entire graph.
Bio+ClinicalBERT [26] was very choppy, with a lot of random

spikes, whereas BERT’s [25] training loss was much more
smoothed out. The point of this was to show the distribution of
training losses across the >100 models that were trained, and
we conclude that BERT and Bio+ClinicalBERT did not have
as many issues minimizing their error the majority of the time
in comparison to XLM-RoBERTa.

Comparisons to Previous Experiments
The best Bio+ClinicalBERT model (3 epochs; None Are Frozen)
outperformed the best model from the previous experiment with
23% accuracy. In fact, all the models in this paper were higher
than the models trained in the previous experiment by 10%-23%
in terms of F1-score and accuracy. Unfortunately,
XLM-RoBERTa did not perform as well as we had
hypothesized, considering how well it did in the previous work.
The prior experiment had 30 samples in the holdout data set,
and the models trained were achieving at best 40%-53%
accuracy and the same for their F1-scores; however, with these
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discriminative fine-tuned models, we were able to achieve about
65% accuracy on average out of that original 30 (+16%) and as
high as 63% F1-score (Table IV in Multimedia Appendix 1).
We conclude that discriminative fine-tuning has proved to be
better for this text classification task as opposed to training
models where every layer has the same learning rate.

Limitations
The limitations for our experiments still remain somewhat the
same as in our previous paper in the sense that our computing
power (although significantly increased from the last paper)
still has certain computing restrictions. In addition, there was
an option for researchers to attach research protocol information
in the form of a PDF instead of the database fields, which we
did not include in this experiment. We also lack data for the
one’s class, so it makes it very difficult for the models to classify
those as correct.

Conclusions
In this paper, we have explored and proposed layer-wise
discriminative fine-tuning strategies to improve a previous
experiment where we classified newly created levels of CEnR.

The contributions of our paper are as follows: we showed a
comparative analysis of fine-tuning methods across 3
transformer-based models such as BERT, Bio+ClinicalBERT,
and XLM-RoBERTa and how they improve predictive
performance, and we compared the specific components of the
different strategies mentioned, such as different learning rates
for different layers and layer freezing. By conducting a lot of
experiments, we have demonstrated that Bio+ClinicalBERT
achieved the best F1-score and accuracy, and most importantly,
that transformer models perform better when their learning rates
vary for different layers. The reason why Bio+ClinicalBERT
outperformed the other transformer models could be because
the data contains a lot of clinical studies, and this type of
transformer was made to be able to capture the contextuality of
clinical data. These performances have significantly improved
from prior experimentations, which give us a real opportunity
to implement them in a practical system. As for future work,
we can continue to explore different strategies such as gradual
unfreezing during the actual training, cyclical learning rates,
and attaching classification-head architectures to improve these
models’performances, such as a Bidirectional-Long Short-Term
Memory Unit.
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