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Abstract

Background: Identifying biomarkers of response to transcranial magnetic stimulation (TMS) in treatment-resistant depression
is a priority for personalizing care. Clinical and neurobiological determinants of treatment response to TMS, while promising,
have limited scalability. Therefore, evaluating novel, technologically driven, and potentially scalable biomarkers, such as digital
phenotyping, is necessary.

Objective: This study aimed to examine the potential of smartphone-based digital phenotyping and its feasibility as a predictive
biomarker of treatment response to TMS in depression.

Methods: We assessed the feasibility of digital phenotyping by examining the adherence and retention rates. We used smartphone
data from passive sensors as well as active symptom surveys to determine treatment response in a naturalistic course of TMS
treatment for treatment-resistant depression. We applied a scikit-learn logistic regression model (l1 ratio=0.5; 2-fold cross-validation)
using both active and passive data. We analyzed related variance metrics throughout the entire treatment duration and on a weekly
basis to predict responders and nonresponders to TMS, defined as ≥50% reduction in clinician-rated symptom severity from
baseline.

Results: The adherence rate was 89.47%, and the retention rate was 73%. The area under the curve for correct classification of
TMS response ranged from 0.59 (passive data alone) to 0.911 (both passive and active data) for data collected throughout the
treatment course. Importantly, a model using the average of all features (passive and active) for the first week had an area under
the curve of 0.7375 in predicting responder status at the end of the treatment.

Conclusions: The results of our study suggest that it is feasible to use digital phenotyping data to assess response to TMS in
depression. Early changes in digital phenotyping biomarkers, such as predicting response from the first week of data, as shown
in our results, may also help guide the treatment course.
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Introduction

Transcranial magnetic stimulation (TMS) is a noninvasive and
safe method of selectively modulating aberrant brain circuits
to drive therapeutic gains [1]. TMS has been in use as a
treatment, typically administered as trains of repeated magnetic
pulses for a few minutes a day, for 4-6 weeks. The most
common clinical indications include major depression,
obsessive-compulsive disorder, substance dependence, and
schizophrenia [2]. Among these indications, the utility of TMS
is primarily for the treatment of resistant or difficult-to-treat
conditions that fail to respond to conventional therapies.
Although there is strong evidence for the clinical benefits of
TMS in the treatment of these disorders, TMS is most widely
used in the treatment of resistant major depression. TMS first
received regulatory approvals for the treatment of depressive
disorders, and over the years, there has been a substantial pool
of evidence that supports the use of different TMS
therapies—conventional, patterned, and deep TMS—for treating
depression [3]. Owing to the already persistent nature of
symptoms, the response rates for major depression with TMS
are variable, ranging from 30% to 60% [4]. Identifying
biomarkers of response to TMS is a priority for personalizing
care [5,6]. Clinical characteristics observed before starting TMS
have not yet been consistent indicators of the prospective
response to TMS [7]. Smartphone-based digital phenotyping
biomarkers offer a promising and scalable means to characterize
behavior across multiple domains, including symptomatic,
physiological, and cognitive domains [8]. Digital phenotyping
refers to “moment-by-moment quantification of the
individual-level human phenotype in situ using data from
smartphones and other personal digital devices” [9]. This is
achieved using passively obtained data, such as accelerometer
readings, geolocation information, and call or text logs.
Smartphone apps that apply these approaches have been used
in various psychiatric illnesses—particularly depression and
schizophrenia—to monitor psychological, physiological, and
behavioral measures. Studies using smartphone app–based
digital phenotyping to monitor response to treatment have found
that improvements in digital phenotyping–based parameters,
such as sleep and cognition, occur before subjects actually
perceive and report improvements in symptoms on assessment
scales [10]. This is feasible, as smartphone digital phenotyping
uses sensors in personal devices to transform metrics like
real-time accelerometer data or real-time geo-location data into
behavioral features like sleep duration or home time,
respectively. Digital phenotyping smartphone apps can also
facilitate actively obtained real-time surveys and cognitive
assessments. A combination of such active and passive data
captured within a defined time scale has been shown to have
predictive utility in determining prospective clinically relevant
outcomes [11]. The potential of such multimodal, scalable, and
longitudinal monitoring has not been investigated to assess
response to repetitive transcranial magnetic stimulation (rTMS)
in patients diagnosed with major depression. The longitudinal
predictive utility of such smartphone-derived digital phenotypes
has recently been demonstrated in predicting relapse in
schizophrenia across diverse sociocultural and geographical
settings [11]. In this proof-of-concept study, we assessed the

feasibility and clinical utility of smartphone-based digital
phenotyping in predicting the response to TMS among
individuals with a major depressive disorder recruited in a
naturalistic clinical setting. Feasibility was assessed via
adherence and retention rates. We hypothesized that more than
70% of patients would complete the study. Clinical utility was
assessed using the accuracy of predicting response rates to TMS
treatment. We hypothesized that the accuracy of digital
phenotyping in predicting the response to TMS would be more
than that achieved by chance (50%).

Methods

Study Design and Participants
The study was conducted as an open-label, single-arm feasibility
trial. Participants were recruited based on a nonprobability
convenience sampling after being referred to the brain
stimulation center at a tertiary care hospital in southern India.

We included adult patients of either gender with a primary
diagnosis of either unipolar or bipolar depression, according to
the International Classification of Diseases, Tenth Revision,
who had failed to respond to at least one adequate trial of an
antidepressant [12]. They met the inclusion criteria if they were
able to read and write in English and had access to a smartphone
with an internet connection. Exclusion criteria included
diagnoses of dysthymia, cyclothymia, or intellectual disability.
We also excluded patients who could not use the proposed
application due to reasons such as the unavailability of a
smartphone, the presence of sensory abnormalities, or difficulties
in comprehending the English language.

Intervention
Patients received rTMS treatments administered with a
MagVenture MagPro X100 device, involving sequential bilateral
theta burst stimulation (TBS) over the dorsolateral prefrontal
cortex manually localized 7 cm anterior to the motor hotspot.
Each session comprised 1800 pulses each of intermittent TBS
to the left dorsolateral prefrontal cortex and continuous TBS to
the right dorsolateral prefrontal cortex, both delivered at 90%
of the resting motor threshold. The rTMS treatments were
administered once daily, 6 days a week, for a duration of 3 to
4 weeks [13].

Following the baseline clinical assessments, MindLAMP, a
freely available smartphone-based app (compatible with both
iOS and Android systems) was installed on the patients’mobile
phones; patients were then registered with a unique ID.
MindLAMP collected both active and passive data. Active data
consisted of symptom surveys and cognitive tasks (brain games)
along with environment and context tagging. In passive data
collection, the app collected various parameters, such as physical
activity (total steps walked in 24 hours), relative physical
position using a global positioning system (without information
of precise locations), as well as phone use and screen use data.

Assessments
The adherence was assessed by dividing the number of
participants with available active data by the total number of
participants who completed the study. The retention rate was
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calculated by dividing the total number of participants who
completed the study by the total number of individuals recruited.

Digital Biomarkers
Digital phenotyping data included features derived from
passively acquired accelerometer data (sleep duration),
geolocation data (entropy, home time, and GPS data quality),
screen state data (screen-on duration), and actively acquired
symptom surveys—Patient Health Questionnaire (PHQ-9) and
Generalized Anxiety Disorder Screener (GAD-7) [14,15].
Specifically, home time was estimated by pooling significant
locations by the specified resolution to determine the amount
of time an individual spent at home within that time window.
Entropy was estimated as the variability of the time a participant
spent at significant locations determined by their GPS data.
Accelerometer data were set to be sampled at 5 Hz, and GPS
was set to be sampled at 1 Hz, but actual data collection occurred
at rates lower than these preset values. Screen capture data were
read directly from the operating system. Symptom surveys were
offered via the app every day. Together, these metrics yielded
critical behavioral information that is often not available during
in-person clinical interviews, and therefore, they served as
potential novel markers of change or improvement in symptoms
following treatment with TMS.

Clinical Assessments
Clinical symptom severity assessments using the Hamilton
Depression Rating Scale (HDRS) [16] were performed every
week by a trained psychiatrist prior to TMS treatment and at
the end of the TMS treatment.

Outcome Definition
Response to TMS was defined as a reduction of >50% in the
HDRS score from baseline to the end of the treatment.
Remission was estimated as an HDRS score <8 at the end of
the TMS treatment.

Data Analysis
Digital phenotyping features were calculated using the
open-source cortex package designed to work with MindLAMP
data [17]. Features were computed on a day-by-day basis, and
days without data were excluded. To predict binary response
to rTMS, we applied a scikit-learn logistic regression model (l1
ratio=0.5) using the aforementioned data and related variance
metrics throughout the entire duration of the treatment and
individual treatment weeks. We performed 2-fold
cross-validation. The study was conducted between July 2021
and March 2022.

Ethical Considerations
The National Institute of Mental Health and Neurosciences
ethics committee approved the study protocol on June 4, 2020
(NIMH/Psy/DESC/BSP/2020/03). All data were deidentified,
encrypted, and securely stored for analysis. All participants
signed a written informed consent.

Results

A total of 26 patients who met the inclusion criteria were
screened. Of them, 23 provided consent for the study, and 19
completed the study. Patients received an average of 18 (SD 6)
TBS sessions. After 2 more dropouts, a total of 17 patients
completed the survey and provided passive and clinical
follow-up data and were included in this analysis. These
participants did not exhibit significant differences from the 6
participants who dropped out in terms of any baseline clinical
characteristics (Table 1).

The adherence rate was calculated to be 89.47%, and the
retention rate was 73%. GPS data coverage was computed as
the percentage of 10-minute windows with at least one data
point in the study and was on average 43%. The average
percentage change on the HDRS was 41.4% (SD 36.2%); among
the 17 participants, 8 achieved both response (defined as an
HDRS reduction of ≥50% from baseline) and remission (defined
as an HDRS score <8). No serious adverse effects were reported
following TMS.

Given the pilot nature of the analyses, we explored different
models that could determine the status of the treatment response
to TMS. We report the area under the curve (AUC) for each of
the models to enable the interpretation of model accuracy. The
AUC for the correct classification of TMS response based on
the average of all passive data features over the entire duration
of the treatment was 0.625. To increase the size of the data set,
we used the average of all features on a weekly basis (spanning
a total of 46 weeks); the AUC for this model was 0.59. When
including the variance of passive data features and individual
survey questions (active features), the AUC was 0.911. We were
also interested in the early prediction of treatment response in
the study. A model using the average of all features (passive
and active) for the first week yielded an AUC of 0.7375. In the
best-performing model (AUC 0.911), digital phenotyping
features derived from geolocation (home time and entropy) were
the 2 nonzero passive data model coefficients. A full list of
coefficients from this model can be found in Table 2.

JMIR Form Res 2023 | vol. 7 | e40197 | p. 3https://formative.jmir.org/2023/1/e40197
(page number not for citation purposes)

Kelkar et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Clinical characteristics of patients recruited.

P valuebComplete data (n=17)Dropoutsa (n=6)Overall (N=23)Characteristics

.5334 (14)39 (16)35 (14)Age (years), mean (SD)

.64Gender, n (%)

9 (53)2 (33)11 (48)Female

8 (47)4 (67)12 (52)Male

.5111 (11)9 (6)10 (10)Duration of illness (years), mean (SD)

.34Depression type, n (%)

6 (35)4 (67)10 (43)Bipolar

11 (65)2 (33)13 (57)Unipolar

.5514.0 (21.8)10.2 (7.7)13.0 (19.0)Duration of current episode (months), mean (SD)

.5321 (4)20 (1)21 (4)Baseline HDRSc (total), mean (SD)

.6737 (6)36 (6)37 (6)RMTd (left hemisphere), mean (SD)

.9138 (7)38 (5)38 (6)RMT (right hemisphere), mean (SD)

.3319 (4)15 (10)18 (6)Total TMSe sessions, mean (SD)

aRegarding the dropouts, 2 participants discontinued treatment with transcranial magnetic stimulation because of worsening symptoms requiring
electroconvulsive therapy, and 1 participant developed a seizure and discontinued; 3 could not use the app because of phone compatibility issues.
bFisher exact test was used for categorical data, and independent 2-tailed t test was used for continuous data.
cHDRS: Hamilton Depression Rating Scale.
dRMT: resting motor threshold.
eTMS: transcranial magnetic stimulation.

Table 2. Nonzero model coefficients for the best-performing model (area under the curve 0.911), using all features and variances.

CoefficientFeature

0.157Home time

–0.191Entropy

–0.323Today I felt little interest or pleasure.

–0.051Today I feel depressed.

–0.055Today I feel tired or have little energy.

–0.696Today I have a poor appetite or am overeating.

–0.334Today I have trouble focusing or concentrating.

–0.373Today I feel anxious.

–0.094Today I cannot stop worrying.

–0.673Today I am easily annoyed or irritable.

–0.301Today I have a poor appetite or am overeating (variance).

–0.120Today I have thoughts of self-harm (variance).

0.005Today I am easily annoyed or irritable (variance).

Discussion

Principal Findings
To the best of our knowledge, this is the first study testing the
feasibility of digital phenotyping in patients receiving rTMS
for depression treatment. Based on the adherence and retention
rates, it can be concluded that it is feasible to use digital
phenotyping data to assess the response to TMS. Digital

biomarkers have the potential for scalability and
cost-effectiveness in addition to being sensitive to clinically
relevant phenotyping across mood [18] and psychotic [11]
disorders. The utility of supporting continuous behavioral
measurements outside the constraints of the clinical environment
makes digital biomarkers particularly attractive in supporting
prognosis, symptom tracking, and overall improved clinical
care [19]. Our observations regarding feasibility can expand the
utility of digital technologies in aiding clinical decision-making
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throughout the course of TMS treatment for depressive
disorders.

Although it is not surprising that the model with the most
features performed the best, the model included a combination
of the sensor (GPS) and survey data, which highlights the ability
to capture relevant multimodal data on patient response.
Classical predictors of response to TMS include prior treatment
failures, comorbidities, and the duration of the current episode
[13,20,21], but adding digital phenotyping predictors could be
a useful complement. These digital phenotyping predictors could
also be used to screen patients for more expensive or
time-consuming predictors, such as electroencephalography or
neuroimaging-derived markers. Early changes in digital
phenotyping biomarkers, such as predicting response from the
first week of data, as shown in our results, may also help guide
the treatment course.

Limitations and Conclusions
We acknowledge that due to the small study sample in this pilot
research, the variability in the reported AUC scores will be high.
Although we demonstrate the feasibility of app-based digital
data collection in the clinical context of TMS for depression,
our preliminary associations between smartphone digital
phenotyping and response are only indicative of the potential
future clinical promise this technique might hold. These findings
can, therefore, enable us to conduct larger and well-powered

studies to confirm the predictive potential of digital phenotyping
in TMS response for depression. We could have captured other
measures through the MindLAMP application, such as activity
levels and other psychosocial features. However, given the
exploratory nature of this pilot study, we restricted the
assessments to the ones mentioned above. Future studies need
to replicate these pilot observations in similar longitudinal
studies with larger samples and across diverse clinical settings.
The stability and longevity of the observed changes after the
last TMS treatment also merit further investigation. In this study,
we did not include cognitive, voice, or physiological
smartphone-based biomarkers, which may offer further relevant
data. Larger sample sizes will also be necessary to help identify
and avoid overfitting as more biomarkers are explored. Although
the retention rates might have been affected by other illness-
and TMS-related factors as well, the adherence rates seem to
be high due to the use of passive data collection for assessment.
Thus, the utility of smartphone-based parameters is highly
promising for a resource-limited country like India. Due to the
scalability of smartphone digital phenotyping, with over 80%
of the world population already owning a smartphone, larger
studies are feasible. Methods to further increase the quality of
digital phenotyping data will also increase confidence in the
derived features. As the field of digital phenotyping matures,
new study procedures and data quality checks can help ensure
that the sensor data are captured with the highest coverage
possible.
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