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Abstract

Background: Implementing automated facial expression recognition on mobile devices could provide an accessible diagnostic
and therapeutic tool for those who struggle to recognize facial expressions, including children with developmental behavioral
conditions such as autism. Despite recent advances in facial expression classifiers for children, existing models are too
computationally expensive for smartphone use.

Objective: We explored several state-of-the-art facial expression classifiers designed for mobile devices, used posttraining
optimization techniques for both classification performance and efficiency on a Motorola Moto G6 phone, evaluated the importance
of training our classifiers on children versus adults, and evaluated the models’ performance against different ethnic groups.

Methods: We collected images from 12 public data sets and used video frames crowdsourced from the GuessWhat app to train
our classifiers. All images were annotated for 7 expressions: neutral, fear, happiness, sadness, surprise, anger, and disgust. We
tested 3 copies for each of 5 different convolutional neural network architectures: MobileNetV3-Small 1.0x, MobileNetV2 1.0x,
EfficientNetB0, MobileNetV3-Large 1.0x, and NASNetMobile. We trained the first copy on images of children, second copy on
images of adults, and third copy on all data sets. We evaluated each model against the entire Child Affective Facial Expression
(CAFE) set and by ethnicity. We performed weight pruning, weight clustering, and quantize-aware training when possible and
profiled each model’s performance on the Moto G6.

Results: Our best model, a MobileNetV3-Large network pretrained on ImageNet, achieved 65.78% accuracy and 65.31%
F1-score on the CAFE and a 90-millisecond inference latency on a Moto G6 phone when trained on all data. This accuracy is
only 1.12% lower than the current state of the art for CAFE, a model with 13.91x more parameters that was unable to run on the
Moto G6 due to its size, even when fully optimized. When trained solely on children, this model achieved 60.57% accuracy and
60.29% F1-score. When trained only on adults, the model received 53.36% accuracy and 53.10% F1-score. Although the
MobileNetV3-Large trained on all data sets achieved nearly a 60% F1-score across all ethnicities, the data sets for South Asian
and African American children achieved lower accuracy (as much as 11.56%) and F1-score (as much as 11.25%) than other
groups.

Conclusions: With specialized design and optimization techniques, facial expression classifiers can become lightweight enough
to run on mobile devices and achieve state-of-the-art performance. There is potentially a “data shift” phenomenon between facial
expressions of children compared with adults; our classifiers performed much better when trained on children. Certain
underrepresented ethnic groups (e.g., South Asian and African American) also perform significantly worse than groups such as
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European Caucasian despite similar data quality. Our models can be integrated into mobile health therapies to help diagnose
autism spectrum disorder and provide targeted therapeutic treatment to children.

(JMIR Form Res 2023;7:e39917) doi: 10.2196/39917

KEYWORDS

edge computing; affective computing; autism spectrum disorder; autism; ASD; classifier; classification; model; algorithm; mobile
health; computer vision; deep learning; machine learning for health; pediatrics; emotion recognition; mHealth; diagnostic tool;
digital therapy; child; developmental disorder; smartphone; image analysis; machine learning; Image classification; neural network

Introduction

Autism spectrum disorder (ASD) affects 1 in 44 children and
is the fastest growing developmental disability in the United
States [1]. The prevalence of ASD has increased by 61%
globally since 2012 [2]. Although research has shown that early
detection and therapy are vital for treating ASD [3,4], a lack of
access to clinical practitioners, particularly among lower-income
families, results in 27% of children over the age of 8 years
remaining undiagnosed and too old to respond optimally to
treatment [5-8].

Clinicians spend several hours measuring dozens of behavioral
features when making a diagnosis [9], further accounting for
the long wait times that make it difficult to get an appointment.
However, prior research has shown that machine learning
models can achieve similar diagnostic capabilities for children
with ASD [10-26], providing rapid inference using fewer than
10 behavioral features that can be easily collected through
mediums such as short video clips [16,26-29]. Models that
analyze a single ASD-related symptom such as speech patterns
[30], hand stimming [31], and head banging [32] have provided
promising results for diagnosis of ASD when tested on highly
heterogeneous data from real children.

Understanding facial expressions is among the most pronounced
symptoms for children with ASD, as they often display
significant impairments in both the understanding and imitation
of facial expression [33,34]. Thus, automated facial expression
classifiers can be used to detect ASD by comparing the ability
of children to simulate facial expressions compared with
neurotypical children in a controlled environment. Additionally,
these models can be used for adaptive therapeutic treatment by
providing instantaneous feedback to children already diagnosed
with ASD who are learning to mimic conventional expressions
when exposed to simulated interactions [35-41]. Despite its
potential, there have been few endeavors in creating such a
model for these purposes, as classifying facial expression is a
difficult task. Machine learning models rely on large volumes
of data, and children are underrepresented in the few data sets
available [42].

To address this issue, we previously developed a mobile game
named GuessWhat [43-47], which challenges children with
ASD to improve their social interactions while simultaneously
collecting structured video data enriched for social human
behavior. We subsequently extracted frames from videos
recorded by the app during game play and annotated them for
the 6 basic emotions described by Ekman and Keltner [48] to
create the largest collection of uniquely labeled frames of

children expressing emotion [42]. Using this data set, we trained
a facial expression classifier for children that attained
state-of-the-art accuracy on the Child Affective Facial
Expression (CAFE) data set [49], the standard benchmark in
the field for facial expression recognition (FER) of children.

Despite creating this high-performing model, we have yet to
leverage it in adaptive digital therapies such as GuessWhat. Due
to the decreasing prices of digital technologies and the
corresponding widespread availability of mobile devices for
almost all socioeconomic levels [50], it is conceivable to use
these models in mobile apps, thus offering an alternative
medium for autism diagnosis and treatment that is easily
accessible and highly affordable. Unfortunately, our prior
models were too computationally expensive to successfully run
on commercial smartphones, a problem that many other
state-of-the-art machine learning models share [51]. However,
we hypothesized that it was viable to utilize recent advances in
hardware-efficient deep learning architectures to create a facial
expression classifier that could be used on mobile devices and
be as accurate as these preceding models.

In this study, we evaluated several state-of-the-art expression
classifiers designed for use on mobile devices and utilized
various posttraining optimization techniques for both
classification performance and efficiency on a Motorola Moto
G6 phone. We additionally explored the importance of training
our classifiers on children rather than adults and evaluated our
models against different ethnic groups. Our best model was able
to match previous state-of-the-art results on expression
recognition for children achieved by Washington et al [42] while
being efficient enough to perform inference on the Moto G6 in
real time. We highlight the significant performance increase
from having children present in the training images and found
several ethnic groups that yield worse performance due to being
underrepresented. These models can be integrated into mobile
health therapies such as the GuessWhat digital health ecosystem
to diagnose ASD and provide targeted expression treatment
based on the affective profile of the user.

Methods

Ethical Considerations
All study procedures, including data collection, were approved
by the Stanford University Institutional Review Board (IRB
number 39562) and the Stanford University Privacy Office. In
addition, informed consent was obtained from all GuessWhat
participants, all of whom had the opportunity to participate in
the study without sharing videos.
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Data Collection
Because our model was built with the intention of being utilized
on mobile devices where videos are often captured from a wide
variety of orientations, it was important that the data we used
were highly heterogeneous in factors such as lighting and camera
angle. Thus, we initially leveraged images from 10 relatively
small, yet well-controlled, data sets in order to train our models:
National Institute of Mental Health Child Emotional Faces
Picture Set (NIMH‐ChEFS) [52], Facial Expression Phoenix
(FePh) [53], Karolinska Directed Emotional Faces (KDEF) [54],
Averaged KDEF (AKDEF) [54], Dartmouth Database of
Children’s Faces (Dartmouth) [55], Extended Cohn-Kanade
Dataset (CK+) [36], Japanese Female Facial Expression
(JAFFE) [47], Radboud Faces Dataset (RaFD) [56], NimStim
Set of Facial Expressions (NimStim) [57], and the Tsinghua
Facial Expression Database (Tsinghua-FED) [58].

Although all these data sets were created in well-controlled
environments, they are incredibly diverse when presented in
conjunction: NIMH-ChEFS has images from direct and averted
gazes; KDEF/AKDEF has images taken from 5 different camera
angles; Dartmouth has images taken from 5 different camera

angles and 2 different lighting conditions; CK+ has images
taken from frontal and 30 degree views; RaFD has images taken
from 3 different gaze directions; and JAFFE, NimStim, and
Tsinghua-FED all have images taken from the frontal view.

Because children were severely underrepresented in these data
sets and our model is meant to be used with them, we
hypothesized that we needed a large data set that focused solely
on children's faces. We thus decided to use our data set of
images crowdsourced from GuessWhat, which, upon cleaning,
contained 21,456 uniquely labeled images of both neurotypical
and ASD. We also used a subset of the Face Expression
Recognition 2013 (FER-2013) [38] and Expression in-the-Wild
(ExpW) [58] data sets, large libraries of web-scraped images,
to balance the ratio of samples for each expression. In total,
78,302 images were collected, with approximately 75% of these
images consisting of children. This library is roughly as large
as the state of the art and follows a similar strategy of using the
GuessWhat images in conjunction with external data sets [42].
The participants presented in these data sets also come from a
wide array of backgrounds, with detailed demographics
(excluding the web-scraped images and FePH, which were not
provided) shown in Table 1.

Table 1. Demographics of the training data sets.

ASDb, %Female, %EthnicityAge (years), mean (SD)Participants, nData seta

0.0066.10East Asian13.57 (1.66)59NIMH-ChEFSc

0.0050.00Latino23.73 (7.24)70KDEF/AKDEFd

0.0050.00Caucasian9.84 (2.33)80Dartmouthe

0.0069.0081% Caucasian; 13% African American; 6% Other18-50g123CK+f

0.00100.00East AsianN/Ai10JAFFEh

0.0051.02Caucasian21.2 (4.0)49RaFDj

0.0041.8658% Caucasian; 23% Afro-American; 14% East
Asian; 5% Latino

19.4 (1.2)43NimStimk

0.00Group A: 50.75;
Group B: 50.00

East AsianGroup A: 23.82 (4.18);
Group B: 64.40 (3.51)

Group A: 67;
Group B: 70

Tsinghua-FEDl

65.9028.9555.26% Caucasian; 12.28% Hispanic; 9.65% East
Asian; 2.63% African; 1.75% Southeast Asian;
1.75% Pacific Islander; 0.87% Arab; 15.81% Un-
known

5.98 (2.97)114GuessWhat

aThe Facial Expression Phoenix (FePH), Face Expression Recognition 2013 (FER-2013), and Expression in-the-Wild (ExpW) data sets were excluded
because no demographic details were available.
bASD: autism spectrum disorder.
cNIMH-ChEFS: National Institute of Mental Health Child Emotional Faces Picture Set.
dKDEF/AKDEF: Averaged Karolinska Directed Emotional Faces/Karolinska Directed Emotional Faces.
eDartmouth Database of Children’s Faces.
fCK+: Extended Cohn-Kanade Dataset.
gReported as the age range.
hJAFFE: Japanese Female Facial Expression.
iN/A: not available.
jRaFD: Radboud Faces Dataset.
kNimStim Set of Facial Expressions.
lTsinghua-FED: Tsinghua Facial Expression Database.
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As Table 1 shows, Caucasian, Latino, and certain East Asian
ethnicities are well represented in nearly all data sets, with a
relatively even split among female and male participants.
However, African American, Middle Eastern, and South Asian
participants are considerably lacking. Furthermore, despite
including the GuessWhat images, only ~15% of participants in
total had been diagnosed with ASD. Because all children in the
evaluation data set are neurotypical, however, this
underrepresentation does not pose an issue in this study.

Data Preprocessing
Before training our models, faces were cropped from all images
using the Oxford VGGFace model [59] with a ResNet50
backbone. Images were then resized to 224x224 pixels, and
grayscale images were converted to 3 color channels. All images
were then normalized to a range from –1 to 1.

Model Training
We trained and compared 5 existing architectures designed for
use on mobile devices: MobileNetV3-Small 1.0x [60],
MobileNetV2 1.0x [61], EfficientNet-B0 [62], MobileNetV3
1.0x [60], and NasNetMobile [63]. All were pretrained on
ImageNet [64]. We retrained each layer of each network using
categorical cross entropy loss and an Adam optimizer [65] with
a learning rate of 1e–5. During training, all images were subject
to a potential horizontal flip, zoomed in or out by a factor up to
0.15, rotated between –45 degrees and 45 degrees, shifted by a
factor up to 0.10, and brightened by a factor between 0.80 and
1.20. We assumed the model converged and thus interrupted
training once the validation loss did not improve for 5
consecutive epochs.

We trained 3 versions of each model: 1 that included all data
sets, 1 that included all data sets that had solely children
(NIMH-ChEFS, Dartmouth, and GuessWhat), and 1 that
included only adults (KDEF/AKDEF, CK+, JAFFE, RaFD,
NimStim, and Tsinghua-FED).

Model Evaluation
We evaluated our models against the CAFE data set [49], a
large data set consisting of facial expressions for children, both
by ethnicity and in its entirety. CAFE’s participants are aged
between 2 years and 8 years, the same range in which an ASD
diagnosis is most vital (Table 2) [66]. The child participants in
CAFE are from a wide range of racial and ethnic backgrounds,
as shown in Table 3. Children in this data set express 7
expressions: happiness, sadness, surprise, fear, anger, disgust,
and neutrality.

We evaluated Subset A and Subset B of CAFE to observe our
models’ performance against faces that human annotators had
difficulty classifying [49]. Subset A contains faces that were
identified with ≥60% accuracy by 100 adult participants. In
contrast, Subset B contains faces with substantially greater
variability for each expression, resulting in a Cronbach alpha
internal consistency score that is 0.052 lower than that of Subset
A [49].

We profiled all models on a Motorola Moto G6 Phone using
the TensorFlow Lite benchmark application programming
interface (API). We also tested our models on an Android demo
app we built that performs real-time image classification on a
live video feed to ensure our models matched the results from
the benchmark tool.

Table 2. Gender distribution by age of the participants in the Child Affective Facial Expression (CAFE) data set.

Gender, nAge (years)

FemaleMale

502

27113

1881264

3502105

139866

1807

078

Table 3. Ethnicity of the participants in the Child Affective Facial Expression (CAFE) data set.

Results, n (%)Ethnicity

519 (43.54)Caucasian

246 (20.64)African American

180 (15.10)Latino

135 (11.33)Asian

112 (9.40)South Asian
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Model Optimization, Reevaluation, and Profiling
After evaluating on the CAFE data set, we performed weight
pruning before fine tuning the network until the validation loss
did not improve for 10 consecutive epochs. We then applied
weight clustering before fine tuning the network again in an
identical fashion. We finally performed quantized-aware training
before evaluating the fully optimized model against CAFE. If
the model was unable to undergo quantized-aware training, we
applied posttraining quantization instead. Once completed, we
exported our TensorFlow models to the TensorFlow Lite format
and profiled them using the TensorFlow Lite Benchmark
framework.

Results

Results on the Entirety of the CAFE Data Set
Upon evaluation, our best model was the MobileNetV3-Large
1.0x that was trained on all data sets, which acquired 65.78%

accuracy and a 65.31% F1-score on CAFE (confusion matrix
in Figure 1). This performance increased to 78.40% accuracy
and a 77.89% F1-score on Subset A of CAFE (confusion matrix
in Figure 2). When evaluated on CAFE Subset B, the
MobileNetV3-Large model acquired 64.77% accuracy and a
65.60% F1-score (confusion matrix on Figure 3), attaining
accuracies higher than those that even human annotators could
achieve [49].

All models except for the NasNetMobile obtained accuracies
and F1-scores above 61% when trained on all data sets (Table
4), nearly matching state-of-the-art results while being far more
efficient [42].

Figure 1. Confusion matrix for the entire Child Affective Facial Expression (CAFE) data set. Each row represents 100%; darker colors represent less
frequent occurrences, and lighter colors represent more frequent occurrences, while the true predictions are shown by boxes in the left-to-right diagonal.
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Figure 2. Confusion matrix for Subset A of the Child Affective Facial Expression (CAFE) data set. Each row represents 100%; darker colors represent
less frequent occurrences, and lighter colors represent more frequent occurrences, while the true predictions are shown by boxes in the left-to-right
diagonal.
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Figure 3. Confusion matrix for Subset B of the Child Affective Facial Expression (CAFE) data set. Each row represents 100%; darker colors represent
less frequent occurrences, and lighter colors represent more frequent occurrences, while the true predictions are shown by boxes in the left-to-right
diagonal.

Table 4. Model results when trained on all data sets.

F1-score, %SizeModel

TotalSubset BSubset AFLOPsa (in millions)Params (in millions)

61.3460.3573.6856.401.27MobileNetV3-Small 1.0x

63.6364.4978.04300.212.95MobileNetV2 1.0x

63.6462.7575.87393.954.74EfficientNetB0

64.5063.5576.74216.823.52MobileNetV3-Large 1.0x

55.8554.0966.82568.054.844NasNetMobile

aFLOPs: floating point operations per second.

CAFE Results When Training on Children Versus
Adults Versus All
We evaluated the performance of the best-performing model,
the MobileNetV3-Large, when trained on child data sets versus
adult data sets. Results are displayed in Table 5.

As shown, training on children yielded better performance than
with adults. Although there were nearly 3 times as many images
of children that could potentially account for the child model
having better performance, the frames in the GuessWhat app
are considerably noisy, with a standard of quality clearly worse
than that of the adult images that were all collected from
well-controlled experiments. Thus, the better performance with
poorer data when training on children suggests the importance
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of having images of children, even if data are crowdsourced from noisy media such as the GuessWhat app.

Table 5. Comparison of the predictive performance of MobileNetV3-Large.

F1-scoreAccuracyGroup

0.65310.6578Child + adult

0.60290.6057Child

0.53100.5336Adult

CAFE Results by Ethnicity
Because much of our training data were constrained children
of Caucasian, Latino, and East Asian descent, we analyzed the
performance of MobileNetV3-Large trained on all data sets
against different CAFE subsets. CAFE categorizes its
participants into 5 ethnicities: African American, Asian,
European American, Latino, and South Asian. Detailed results
are shown in Table 6.

As shown in Table 6, the model performed significantly worse
on African American and South Asian ethnicities than on other
groups, especially European American children, for which our
model performed better, achieving as much as 11.56% accuracy
and 11.25% F1-score better. As shown in Table 1, the very same
underrepresented groups had significantly less presence in our
training data, indicating that there is a high correlation between
the number of training samples and classification performance
by ethnicity. Thus, it is reasonable to suggest that, because our
training data sets were unbalanced by ethnicity, its performance
suffered for underrepresented groups.

Table 6. Results from the MobileNetV3-Large model trained on all data sets when used on different ethnic subsets.

F1-scoreAccuracyImages, nGroup

0.58260.6127246African American

0.66480.6607112Asian

0.67450.6869519European American

0.63490.6566180Latino

0.56200.5714112South Asian

Performance on an Android Phone
We profiled all 5 models on our Motorola Moto G6 phone and
measured the memory consumption and latency when it
performed inference on an image. As shown in Table 7, we
were able to decrease memory consumption by 4x and latency

by ~1.3x using weight pruning, weight clustering, and
quantization without sacrificing accuracy. These improvements
are significant considering how few refinements could be made
to these specific networks, as they already started out incredibly
well-optimized through their well-designed architecture.

Table 7. Latency and memory recorded using 7 CPU threads on the Motorola Moto 6.

OptimizedOriginalModel

Memory (mb)Latency (ms)Memory (mb)Latency (ms)

2.7745.489.7252.33MobileNetV3-Small 1.0x

4.1145.6113.7862.33MobileNetV2 1.0x

6.08301.6219.91415.04EfficientNetB0

4.3498.1414.82124.47MobileNetV3-Large 1.0x

8.99192.8526.98218.07NASNetMobile

Discussion

Principal Findings
In this study, we trained several machine learning models to
recognize expressions on children’s faces. We showed the
importance of having children in the training data set and that
the model performs significantly worse on different ethnicities
if they are underrepresented in the training data. Using various
optimization techniques, we were able to match state-of-the-art

accuracy while ensuring each model was able to perform
real-time inference on a mobile device. We demonstrated that,
with specialized training, machine learning models designed to
run on edge devices can still match state-of-the-art results on
difficult classification tasks.

Limitations
There were a few limitations to this study. Most notably, we
only evaluated the performance of our models against CAFE
when further evaluation on data sets with more heterogeneity
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would better indicate whether the model can generalize on
photos taken from mobile devices. Although the GuessWhat
data set has these traits, labels from the GuessWhat images are
still too noisy after cleaning and need more accurate labels to
be a reliable evaluation data set. Another issue is that we were
only able to profile our models on a Moto G6 phone. In the
future, more extensive testing on devices with less computational
power and different operating systems is needed. Although our
models performed well on 7 expressions, larger models may be
needed to generalize to data with more expressions.

Comparison With Prior Work
The fields of FER and edge machine learning are vast. Prior
work relevant to this study can be divided into 3 categories: (1)
FER, (2) neural architecture search (NAS), and (3) model
compression techniques.

Facial Expression Recognition for ASD Diagnosis and
Treatment
FER is a widely researched field with a large library of data sets
and classifiers. Early techniques introduced by Kharat and Dudul
[35] involved extracting key facial points from faces and passing
them through standard models such as support vector machines.
Although initial results using this method were promising and
computationally inexpensive, these classifiers were evaluated
against small, well-structured data sets such as the CK+ [36]
and JAFFE [37] data sets. When tested against more
heterogeneous data from images taken from a variety of
orientations, such as the FER-2013 data set [38], models
received much lower scores [39].

Convolutional neural networks (CNNs) have shown the greatest
potential in both accuracy and generalizability due to their
powerful automatic feature extraction [40,41]. Thus, CNNs are
presently the most widely used technique in FER, with an
ensemble of CNNs with residual masking blocks leveraged by
Pham et al [67] to achieve current state-of-the-art results.

Although results with CNNs in FER have improved consistently
through recent years and CNNs have been used in similar
applications such as eye gaze detection [68,69], there are few
endeavors involving classification on children’s faces. The
CAFE data set [49] currently is the largest publicly available
data set of facial expressions from children and is a standard
benchmark in the field of FER on children. The current state of
the art on this data set, attained by Washington et al [42],
reached 69% accuracy using a ResNet152-V2 architecture
pretrained on ImageNet weights and was fine-tuned using data
curated from the GuessWhat digital therapy system [43-47].

Prior work has shown that children with ASD are significantly
less accurate, need far more time, and require further prompts
to respond to facial expression understanding tasks when
compared with neurotypical children [70-77]. When mirroring
real-life interactions, other studies found that children with ASD
especially struggled to understand complex and dynamically
displayed expressions, often failing in situations that required
fast expression extraction mechanisms [70,73]. The evocation
of expressions could also be helpful in detecting whether a child
has ASD, with Banire et al [78] discovering that, during
controlled experiments, children with ASD often made

expressions such as pressing their lips, something that
neurotypical children could not do. Thus, by analyzing the
performance of both the understanding and imitation of facial
expressions, prior works have shown that facial expression can
provide a sensitive biomarker for diagnosing ASD [70-78].

Past studies have also successfully explored using machine
learning and other technologies in gamified environments to
provide assisted therapy for children with ASD to understand
facial expressions with long-term retention [79-83]. Notably,
Li et al [80] built a robot-tablet system that offered children the
opportunity to play several digital games that practiced their
abilities to recognize and imitate facial expressions. Using
computer vision and reinforcement learning techniques to predict
a child with ASD’s facial expression and adjust game strategy
to enhance interactive effects, the robot had great therapeutic
effect, significantly improving social awareness, cognition,
communication, and motivation [80].

Neural Architecture Search
NAS is a paradigm for automating network architecture
engineering. NAS can be used to find efficient deep neural
network architectures that can be used for FER. Although NAS
requires a large amount of computational power to find the
optimal network, it can be easily tailored to find the best model
for a specific use case. For instance, Lee et al [68] used NAS
to build EmotionNet Nano, which was able to outperform other
state-of-the-art models at FER while optimizing for speed and
energy. Although we did not pursue NAS in this study, we
highlight this field as a promising family of methods for mobile
model optimization, especially when paired with existing model
compression techniques.

Model Compression Techniques
With CNNs being both computationally and memory intensive,
several model compression techniques have been developed.
Han et al [69] proposed 3 techniques to increase inference speed
while decreasing memory overhead and energy consumption:
weight pruning, weight clustering, and quantization.

Weight pruning involves gradually zeroing the magnitudes of
the weights, making the model sparser by effectively removing
weights that have the least significance in the model’s
predictions. When weight pruning is used with weight clustering,
which groups homogeneous weights together to share common
values, model size can be decreased by as much as 9 times to
13 times with negligible accuracy loss [69]. By quantizing the
standard 32-bit weights of a model to a lower bit representation,
models can be further compressed and used in specialized edge
hardware for faster inference [84]. In this study, we used all
these techniques in conjunction to improve our models'
performance.

Conclusions
These models are sufficiently optimized and performant to be
used in mobile health therapies such as the GuessWhat
smartphone application [43]. GuessWhat delivers therapy by
providing important social skill development to children with
ASD. Children are exposed to a series of cues and are prompted
to respond with the appropriate facial expression—the next
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prompt only appears once a caregiver confirms that the child
has successfully completed the previous task. By playing the
game, children learn to identify which expressions to exhibit
under different social contexts while concurrently improving
their own execution of these faces. Although these learning
exchanges between parent and child are often fruitful, they
depend on how well the parents can conduct the session while
ensuring that the child is correctly displaying the expressions.
This is problematic for parents who do not assess their children
with enough rigor or who themselves are unsure of the suitable
reaction to a particular setting. Furthermore, if parents are too
busy to conduct sessions, children are unable to have the
adequate practice necessary for improvement.

Using emotion classifiers can thus remove the human error and
bottleneck of requiring another person in the learning session,
as they can classify the acted expressions in real time and
provide similar instantaneous feedback. These models can be
used to compare the child’s proficiency with the typical
performance of a neurotypical child to indicate how severely a
child is unable to recognize and act out expressions, providing
an indication of whether a child may have ASD. More holistic
analyses are possible when using facial expression classifiers
together with models that analyze other phenotypes such as eye
gaze and vocal tone. Creating this ecosystem will make autism
diagnosis and treatment much more accessible and affordable

to the public, ensuring that children can get the necessary
treatment early enough in their lives to have lasting effects.

Although we deployed these models on mobile devices, they
are efficient enough to be transferred to other edge devices.
SuperpowerGlass is an autism therapeutic delivered on Google
Glass, a wearable optical display that responds to touch and
voice commands [85-92]. During sessions, children put on the
glasses, which capture faces in a child’s field of view, and
classify faces in real time, providing analysis in the form of
emojis that children often find easier to understand. Several
game modes are provided to help children learn how to better
understand facial expressions. The models we developed can
be integrated into this ecosystem to increase the performance
of the emotion classifier running on SuperpowerGlass while
decreasing power consumption and system performance.

An opportunity for future work includes further recording
children’s faces from communities that are still heavily
underrepresented in facial expression data sets, resulting in
lower performance than for other groups in this study. Public
data sets with more children are needed. Now that these models
can provide inference on mobile devices, another area of
promise is integrating these models into on-device training
workflows. Once this is complete, federated learning techniques
can further improve the models in a privacy-preserving manner
while simultaneously providing diagnosis and treatment of ASD.
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