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Abstract

Background: Affective states are important aspects of healthy functioning; as such, monitoring and understanding affect is
necessary for the assessment and treatment of mood-based disorders. Recent advancements in wearable technologies have increased
the use of such tools in detecting and accurately estimating mental states (eg, affect, mood, and stress), offering comprehensive
and continuous monitoring of individuals over time.

Objective: Previous attempts to model an individual’s mental state relied on subjective measurements or the inclusion of only
a few objective monitoring modalities (eg, smartphones). This study aims to investigate the capacity of monitoring affect using
fully objective measurements. We conducted a comparatively long-term (12-month) study with a holistic sampling of participants’
moods, including 20 affective states.

Methods: Longitudinal physiological data (eg, sleep and heart rate), as well as daily assessments of affect, were collected using
3 modalities (ie, smartphone, watch, and ring) from 20 college students over a year. We examined the difference between the
distributions of data collected from each modality along with the differences between their rates of missingness. Out of the 20
participants, 7 provided us with 200 or more days’worth of data, and we used this for our predictive modeling setup. Distributions
of positive affect (PA) and negative affect (NA) among the 7 selected participants were observed. For predictive modeling, we
assessed the performance of different machine learning models, including random forests (RFs), support vector machines (SVMs),
multilayer perceptron (MLP), and K-nearest neighbor (KNN). We also investigated the capability of each modality in predicting
mood and the most important features of PA and NA RF models.

Results: RF was the best-performing model in our analysis and performed mood and stress (nervousness) prediction with ~81%
and ~72% accuracy, respectively. PA models resulted in better performance compared to NA. The order of the most important
modalities in predicting PA and NA was the smart ring, phone, and watch, respectively. SHAP (Shapley Additive Explanations)
analysis showed that sleep and activity-related features were the most impactful in predicting PA and NA.

Conclusions: Generic machine learning–based affect prediction models, trained with population data, outperform existing
methods, which use the individual’s historical information. Our findings indicated that our mood prediction method outperformed
the existing methods. Additionally, we found that sleep and activity level were the most important features for predicting next-day
PA and NA, respectively.
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Introduction

National estimates of mental health suggest that, as of 2019, 1
in 5 adults in the United States experiences mental disorders,
with young adults at greater risk than their older counterparts
[1]. An important facet of mental health is the affective,
subjective, and physiological experiences of emotion that differ
by valence (positive and negative states) [2,3]. Affective
disturbances and dysregulation, more specifically, overly
heightened or dampened affect, prolonged NA, or instability in
experienced affect, are core facets of many types of
psychopathology. Monitoring and increased understanding of
one’s affect may contribute to the regulation of affect and, as
such, are key components of many forms of intervention or
approaches (eg, therapy or medication administration) to manage
affective disturbances [4,5]. Given that monitoring and
understanding affect are crucial for the treatment and
management of mood-based disorders, it may be helpful to also
consider the degree to which affective experiences serve as
information regarding future mental well-being. Therefore, the
prediction of future affect can allow preventative approaches
for mitigating affective disturbances and dysregulation.

There are several reasons why it might be important to help
individuals in predicting their affect. Along with emotion and
mood, affect involves complex states with several response
systems like behavioral expressions, physiological and neural
reactivity, and subjectively felt experiences. Second, experiences
of affect involve the appraisal or interpretation of one’s thoughts
and the external environment (eg, running late to work and
feeling frantic) that then elicits affective responses; once an
emotion is elicited, there are also response tendencies, or ways
in which people may respond to the affect or emotions felt (eg,
speeding to get to work) [6]. Altogether, how affect may be
elicited and experienced is quite complex, depending on the
context, and it involves multiple response systems within an
individual. Little research has examined individual differences
in a person’s awareness of their own emotions. Identifying and
having increased granularity for describing one’s own emotions
are relevant factors in psychological well-being [7]. Despite
these important associations, it is unlikely that individuals are
constantly monitoring their affect, emotion, or mood throughout
their day. Mood-tracking studies and other ecological
momentary assessments (EMAs) suggest that, while helpful,
individuals may find it a hassle to constantly pay attention to
their emotions [8]. Using noninvasive wearables and other tools
to capture experiences may help individuals in predicting when
certain affective states may occur as well as help them regulate
(eg, actively select or avoid situations that would not be adaptive
for their mood).

Traditional therapeutic approaches to support emotion
management rely on the patient’s self-report or monitoring
through a diary. Patients may require assistance in interpreting
their affect, emotions, or moods from a therapist or provider

(eg, in identifying their feelings or the causes of their feelings).
Existing tools, such as commercially available mood-tracking
phone apps, and proposed digital tools have been developed to
subjectively monitor emotion and mood [8-11]. With respect
to studies examining emotion with greater ecological validity,
studies have been conducted to collect EMAs, leveraging
internet-based questionnaires. For example, Danowitz and
Beddoes [12] conducted a semester-long study, collecting data
through daily surveys and sampling the mental state of
engineering students across 5 institutions in the United States.
The surveys were designed to include overall mental health
disorders (eg, depressive, anxiety, and eating disorders) and
their symptoms in the targeted population. These solutions can
enable a therapist to track the user’s mental health condition
remotely or help with emotion management during sessions
[13]. However, the proposed solutions were merely limited to
questionnaires.

More recently, wearable devices and artificial intelligence-based
methods have been used to perform mood analysis and
prediction, resulting in a better understanding of an individual’s
mental health state [14]. There have been several attempts to
explore the feasibility of modeling people’s emotions, moods,
and stress levels in laboratories or other controlled settings. A
limited number of studies addressed mood prediction using a
continual and daily approach [10,15,16]. For example, Wang
et al [17] assessed sleep, activity, mood, and other factors
affecting academic performance in 48 students throughout a
10-week time period in a college. They leveraged smartphone
sensors (including the accelerometer [ACC], microphone, and
light sensor) to perform context- and behavior-enabled mental
health assessments. However, the study lacked an accurate
assessment of individuals’ biological states. Another holistic
study (ie, SNAPSHOT) [18] was introduced to monitor
participants’ daily lives for 1 month using 2 wristbands, a
smartphone, and self-report questionnaires. Sano [18] showed
that indicators of an individual’s well-being (eg, mood, stress,
and health) could be modeled using a set of subjective and
objective behavioral and biological features. Using the collected
data, Taylor et al [19] obtained 65.8% and 67.9% accuracy in
predicting mood and stress for the next day, respectively.

The previously mentioned studies have presented mental health
assessment and modeling approaches. However, they have
mostly relied on users’ subjective evaluation inputs for affect
and mood modeling. Unfortunately, such subjective data
assessments require a user’s dedicated attention, resulting in an
increased burden on users and unsatisfactory experiences. In
addition, subjective assessments are more prone to higher rates
of missing and inaccurate data, as the users might forget to
report when prompted and rely on the recall of past experiences.
Subjective data collection methods are also limited to certain
times throughout the monitoring phase. Therefore, subjective
assessments are unable to provide ubiquitous monitoring,
resulting in the absence of information between assessments.
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Another issue with the existing work is that it was limited to
short-term or midterm data collection (ie, a few weeks to a few
months). Such approaches have not captured long-term changes
or responses to certain stressors and events (eg, the COVID-19
pandemic) throughout the monitoring period. Another
shortcoming of the current wearable-based mental health
assessment study is that it predicts only a few psychological
and well-being factors. Further, they are mostly limited to a few
target labels, such as stress, depression, and personality disorder
[20-22], although having an accurate evaluation of one’s
psychological well-being requires a comprehensive evaluation
of their mental state.

The advances in information and communication technologies,
for example, the Internet of Things (IoT), wearable IoT, and
machine learning, have opened new gateways to track an
individual’s health condition uninterruptedly [23]. However,
deploying these technologies in mental health assessment is
still in its early stages. IoT-based solutions have not been fully
leveraged in existing studies, both for ubiquitous monitoring
and for modeling the dynamics of an individual’s mental state
over time. We believe that such emerging technologies provide
an unprecedented opportunity to track mental health in everyday
settings. To this end, we aim to tailor them to address the
limitations of current affect monitoring and assessment by
enabling holistic and long-term data collection and analysis.

In this paper, we introduce an IoT-based platform (named
ZOTCARE) to monitor the physiological and behavioral states
of individuals along with a subjective evaluation of their mental
health and affective state. We conducted a 12-month study on
20 college students, during pre- and post–COVID-19 lockdown.
The participants were recruited to continuously wear smart
watches and rings and use an activity detection mobile app to
monitor their physiological and behavioral states. In addition,
they were prompted daily with a smartphone-based EMA
questionnaire to report their perceived affective states. We
developed an affect prediction method, enabled by multimodal
physiological and behavioral parameters. To this end, we used
and evaluated a set of machine learning models.

Methods

In this section, we discuss different aspects of our longitudinal
study for affect prediction, including data collection setup,
features and labels, and the affect prediction modeling scheme.

Data Collection Setup
To develop our fully objective models, we collected data from
20 college students (n=13, 65% female participants; meanage

19.80, SDage 1.0 years) as part of a larger study aimed at
assessing personalized approaches to understanding mental
health and well-being among emerging adults [1]. Participants
were eligible if they were (1) full-time college students between
the ages of 18 and 22 years, (2) unmarried, (3) fluent in English,
and (4) Android phone device users. This extensive longitudinal
study was conducted over a 12-month period among students
at a large West Coast university. The data were collected
throughout 2020 during the COVID-19 pandemic. The college
students were asked to wear the Samsung Galaxy Active 2 watch
along with the Oura ring [17] second generation, which captured
physiological, sleep, and physical activity parameters. These
noninvasive commercial smart devices were equipped with
sensors, including photoplethysmography (PPG) optical sensors,
ACCs, gyroscopes, and body temperature sensors. The students
downloaded a smartphone app that detected activities and life
logs (eg, staying still, walking, and in-vehicle), movement, and
location. During this monitoring period, participants also
completed daily surveys using a separate smartphone app that
prompted them to report their affect at the end of the day based
on a list of 20 discrete emotion words. The daily self-reported
affect was used to evaluate our predictive models.

The collected data were transferred and stored in real time using
a number of services offered by ZotCare [13]. ZotCare is a
dynamic and flexible multilayer (sensor-smartphone-cloud)
platform, built at the University of California, Irvine Institute
for Future Health that provides a variety of services to run
holistic human study trials. Different layers and data flow of
the ZotCare are shown in Figure 1. Subjective mood assessment
data were collected using ZotCare’s mobile app.
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Figure 1. Data collection setup; wearable devices collect targeted information through apps we developed and send the data to our cloud server by
proxying the smartphone’s internet connection. Smartphones are also used to collect daily affect assessments from participants. GSR: galvanic skin
response; HRV: heart rate variability.

Ethics Approval
This study was approved by the University of California, Irvine's
Institutional Review Board (HS#2019-5153). Participants
provided written consent prior to their participation in the study.
Because this investigation was part of a larger study examining
mental health trajectories over time, eligible participants were
first screened for severe depression or suicidal ideation and
consulted with a team member of the project who was a clinical
psychologist. Participants were allowed to withdraw from the
study, and the principal investigators could determine whether
to discontinue the participant’s involvement in the study to
ensure their health and safety at any time. For participating, the
individuals were compensated up to US $260, depending on
whether they completed all aspects of the study (eg, baseline
assessment, longitudinal monitoring, several mid point and end
point assessments).

Modalities and Labels
We obtained 3 data modalities from the smart ring, watch, and
phone. We outline the modalities as follows.

Smart Ring
This modality includes information about sleep (eg, length of
awake, deep, and rapid eye movement [REM] sleep stages),
physiology (eg, heart rate, heart rate variability), and the activity
of the users (eg, daily movement and rest time) collected by
Oura smart rings. In our study, the information extracted from
this modality is chronically high-level (day-level). From the
viewpoint of missing data, the convenience of wearing the ring

and Oura’s built-in data management make this modality more
continuous and reliable [24].

Smart Watch
This modality contains fine-grained physiological data of users.
In contrast to smart rings, smart watches are capable of recording
and storing raw signals with a higher frequency and resolution
[24]. We recorded raw ACC, gyroscope, and PPG signals in
12-minute windows every 2 hours throughout the day. These
high-resolution raw signals can be processed to extract valuable
measures such as HRV, which is correlated with nervous system
responses. However, this modality requires a higher power
consumption device, thus requiring more frequent charging and,
therefore, a higher likelihood of missing data.

Smartphone
We also monitored the users’activity types and location changes
as a separate modality using the Personicle Android monitoring
app [16]. The Personicle app collected major physical (eg, in a
vehicle, still, on a bicycle) and behavioral (eg, working,
commuting, and relaxing) activity data throughout the day using
the Android application programming interface. This modality
relies mostly on the smartphone’s movement and location to
detect these activities. It should be noted that most of the
in-house activities might be missed due to the lockdown
situation and the movement limitations of the participants.

Finally, using these 3 modalities, we collected 52 features, as
shown in Textbox 1, each of which was captured daily or
intensively (eg, a 5-minute sliding average for the ring) over
the course of the day. The features captured intensively were
weighted-averaged, with respect to the duration.
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Textbox 1. List of collected features based on modality (device) and objectives. For further information about ring and watch features, please refer to
their web-based documentation [14-16].

Ring

• Sleep (mins)

• Awake

• Rapid eye movement

• Light

• Deep

• Total

• Activity

• Stay active

• Meet daily activity target

• Move every hour

• Training frequency

• Training volume

• Recovery time

• Daily movement

• Inactivity alerts

• Metabolic

• Average metabolic equivalent minutes (MET)

• MET inactive

• Minutes low activity

• MET low

• Minutes medium activity

• MET medium

• Minutes high activity

• MET high

• Calorie

• Calorie active

• Calorie total

• Target calories

• Target miles

• Heart

• Heart rate

• Heart rate std

• Heart rate variability std

Watch

• Distance

• Distance

• Run steps

• Remains

• Walk steps
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Environment•

• Pressure

• Pressure min

• Pressure max

Phone

• Activity

• Main activity

• Key activity

• Location change

Affect Labels (Daily Assessment)
For the daily assessments of affect, the participants were asked
to rate, on a scale of 0-100 (0=“Very Slightly; 100=“Extremely”)
how they felt on a series of 20 different discrete emotion items
(eg, “inspired,” “enthusiastic,” “nervous,” and “upset”) over
the course of the day. The selected items were adapted from the
Positive and Negative Affect Schedule [18], a frequently used
scale to assess emotions. Each emotion was examined separately
but also as a composite. For example, PA was calculated as the
average of 10 positive affective items (mean 45.27, SD 20.22;
α=.85), and NA was calculated as the average of 10 negative
affective items (mean 21.79, SD 12.28; α=.91).

Predictive Modeling Scheme
We developed machine learning methods to classify different
emotions. The binary classification label was defined as
predicting if each emotion value was above or below the median
of the whole distribution of all participants. Therefore, the
obtained binary labels were balanced. The middle 20% of the

values were removed from the whole distribution before the
class labeling [25]. We used random forest (RF), support vector
machine (SVM), multilayer perceptron (MLP), and K-nearest
neighbor (KNN) models for the prediction. We selected the
participants with more than 200 days of affect data available.
This included 7 participants out of 20 (see Figure 2). In the
preprocessing phase, detected activities by Personicle were
converted to continuous values, each of which represents the
weighted average in time during the day. Features were
z-normalized, with respect to the mean and variance of the
training set, and fed to the model. The hyper-parameters of each
model were tuned with respect to the accuracy of the validation
set (ie, a 10% held-out portion of the data set). We performed
random 5-fold cross-validation on the remaining 90% of the
data set, and the accuracies were averaged out. We selected PA
as the closest label to compare our models with other related
works [18], in which an aggregate single binary value is used
to represent the emotional state (ie, sad or happy) [19]. The
nervousness label in the questionnaire we referred to as stress,
which has been used interchangeably in related works [19].

Figure 2. The number of days that participants had valid data collected from different devices and ecological momentary assessment (EMA) sorted by
affect values.
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Results

Affect Feature and Label Analysis
In this section, we examined the characteristics of the features
collected from different modalities and labels. We first indicated
the distribution differences of the selected 8 features, that is, 4
physiological, 2 physical activity, and 2 behavioral parameters.
We selected 7 out of 20 participants with more than 200 days
of valid affect scores. We then showed the PA and NA label
distributions of the 7 participants. Finally, the distributions of
missing data, separated by their modalities and participants, are
presented.

The distributions of features selected from different modalities
are shown in Figure 3. We observed that features related to
physiological states tended to have data samples within their
entire value range compared to features related to physical
activity and activity detection, which generally had a sparse
distribution across their feature space. Figure 3A,B indicates
the (min and max normalized) distributions of REM and light
sleep, heart rate, and heart rate variability collected by the Oura
ring. Figure 3C depicts atmospheric pressure and the number
of steps detected by the smart watch. The distribution of the
number of steps after min-max normalization is very
concentrated (the y axis is logarithmic), showing the users had
intensive physical activities on certain days. This could be an
effect of the COVID-19 lockdown circumstances. Finally, the
distributions of location changes and commuting features
collected via the Personicle app are shown in Figure 3D.
Reliance of this modality on a smartphone’s GPS and motion
sensors made this modality largely affected by the pandemic

lockdown situation, as the users tended to communicate and
move less than usual.

Figure 4 demonstrates the averaged affect distributions for
participants with more than 200 days of valid affect values. In
general, NA (Figure 3A) had a narrower distribution with higher
peaks; this makes NA score values less discriminative compared
to PA (Figure 3B). We define classification labels if each day’s
affect is above or below the median of the distribution. For
example, 2 days with similar NA scores could have small
differences but get labeled differently because they are located
on different sides of the median (refer to the previous section
for the classification scheme).

Missing data is a major challenge in our 1-year human subject
study performed in everyday settings as well as during the
COVID-19 pandemic. In particular, the increased volume of
missing data poses additional challenges for data modeling.
Figure 4 shows the number of days of available data, divided
by participants and modalities. We found that activities detected
by smartphone data (Personicle) were the modality with the
highest ratio of missing values. We speculate that when the
participants spent most of their time at home (self-quarantining),
the movement data were missing, as, for example, when they
left their smartphones at their desks. The rings and watches
generally had the fewest missing values, confirming the
necessity of objective measurements through wearable devices.
For affect prediction, we handled missing data using a single
imputation method [26,27]. To this end, the missing value was
interpolated using the data of the 2 preceding and succeeding
days with valid data. No data imputation was applied to the
targeted affect scores to avoid inaccuracy in the prediction.

Figure 3. Histogram of selected features. (A) REM and light sleep durations; (B) heart rate and heart rate variability collected by ring; (C) atmospheric
pressure (altitude) and step counts collected by smart watch; and (D) location change and commute events detected by the Personicle app on the phone.
REM: rapid eye movement.
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Figure 4. Smoothed distribution of (A) negative affect (NA) and (B) averaged positive affect (PA) of 7 selected participants. NAs tend to have a
narrower distribution compared to PAs.

Affect Prediction
As previously mentioned, we used machine learning methods
to perform daily affect prediction. In the following, we evaluated
the performance of 4 machine learning models on each reported
affect score. Figure 5 demonstrates the accuracy of the models
and a dummy classifier using a 5-fold cross-validation method.
The accuracy of SVM, MLP, and KNN is similar. However,
RF outperformed the other models in terms of accuracy across
all affect labels. “Guilty” and “Alert” had the most and least
prediction accuracy, respectively, with 78.8% and 67.2%. We
found that PA had higher predictive accuracy than NA (78.1%
vs 76.1% accuracies). The best accuracy achieved for the
nervousness label was 71.6%. In the rest of the paper, we select
RF as the classifier to perform feature and label analysis.

Figure 6 shows the receiver operating characteristic (ROC) and
area under the curve (AUC) of RF classifier performances for
different labels. Figure 6A indicates the ROC of the model
predicting mood as a general indicator. Figures 6B and C
demonstrate the ROC of affect prediction models with the
highest, lowest, and median AUC within NAs and PAs,
respectively. NA models had a higher ROC but, in general,
lower accuracy (Table 1). The main reason could be the
comparatively narrower distribution of NA (Figure 3A) that
results in closer values getting different labels. This indicates
that despite better probabilities being generated for NA, the
chance of producing the wrong label is higher since the labeling
thresholds are narrower.

One of the objectives of this study was to explore the capabilities
of leveraging multimodal data for modeling affect. In general,

multimodal machine learning could be used to either increase
robustness (ie, by providing redundant information) or improve
prediction performance (ie, by obtaining additional information
from different aspects of the event). In this study, we focused
on the latter purpose of multimodal machine learning. Therefore,
assessment modalities were selected to monitor different aspects
of an individual’s life, from physiological (ring and watch) to
behavioral (phone) parameters. To test the power of multimodal
assessment, we trained the model’s modalities separately and
all together. Table 1 compares the accuracy of RF models trained
with data from different modalities separately to ones trained
with data from all devices for NA and PA. In single-modality
setups, the smart ring, phone, and watch have, respectively, the
highest capability to predict both PA and NA. We also show
that leveraging all of the modalities improves accuracy by up
to 21.8%.

We explored the importance of each feature in the PA and NA
predictive models. SHAP (Shapley Additive Explanations) [28]
is a game theory-based method proposed to explain the effects
of input features on machine learning model outputs. Figure 7
represents the SHAP values of the top 5 most impactful features
on PA and NA RF models in the test set. We can see that high
deep sleep and low light sleep length both have a clear impact
on PA. We can also observe that higher “in vehicle” main
activity has a distinctive effect on the PA outcome. Lower target
and total calories have the most impact on the NA label. We
can also see that higher target walking distance values
distinctively affect NA prediction in a negative way. Step count
appears among the top 5 most important features on both PA
and NA.
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Figure 5. Accuracy of RF, SVM, KNN, and MLP models and a dummy classifier calculated in 5-fold cross-validation. KNN: K-nearest neighbor;
MLP: multilayer perceptron; RF: random forest; SVM: support vector machine.

Figure 6. Receiver operating characteristic for compound positive affect (A), 3 negative affect (B), and 3 positive affect (C) with the largest, medium,
and lowest area under the curves.

Table 1. Accuracy (%) of trained random forest models on modalities separately and all together for positive affect and negative affect.

PhoneWatchRingAll Modalities

65.2263.0772.7876.82Positive average

62.1361.5571.4974.47Negative average

Figure 7. SHAP (Shapley Additive Explanations) values of the 5 most impactful features on positive affect (A) and negative affect (B) predictive
models.

Discussion

Principal Findings
The purpose of this study was to investigate the viability of
predicting an individual’s next-day affect solely through

objective measurements, without the need for user intervention
to collect feedback. We used multimodal data collection methods
for affect prediction tasks and found that the smart ring is the
most reliable modality with the least amount of missing data.
This modality also yielded the best accuracy in PA and NA
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prediction in single-modality experiments. The smartphone and
watch were, respectively, the most predictive modalities in these
affect.

Results showed that we can predict next-day PA with an
accuracy of ~78% using generic machine learning algorithms.
These models outperformed their alternatives in similar studies
even without an individual’s historical information for
personalization or temporal context. The results reveal that
features extracted from each modality tend to have different
distributions. The outcomes also confirm that leveraging
multiple modalities together increases the affect modeling
capability. Sleep and daily movement features collected by the
smart ring are among the most important predictors of PA and
NA, which suggests further investigation into the importance
of sleep and movement on affect. Using objective approaches
such as this can be expanded to do predictive modeling of mental
health symptoms (eg depression, loneliness).

Comparison With Prior Work
The SNAPSHOT data set is one of the similar works in the
literature to our study [18]. Taylor et al [19] investigated mood,
stress, and health prediction using a set of features in this data
set. In that work, the authors leverage daily survey information
collected about participants’ activity, sleep, and interactions.
With a modeling scheme similar to our work, they achieved
65.8% and 67.9% of accuracy for mood and stress prediction
models. We reported accuracy rates of 78.1% and 71.6% for
PA and nervousness, respectively, which could be considered
equivalent labels for their work. Multiple parameters in a
real-world study make a fair comparison between 2 studies a
difficult task. Our rich and continuous data collection method
(specifically in sleep using a smart ring) was shown to be a
strong candidate for subjective alternatives.

Spathis et al [29] reported similar daily mood classification
modeling performance on the Emotion Sense [30] data set. The
data set that Spathis and colleagues [29] used contained daily
reports of participants’moods along with information collected
from their smartphones. They also collected information aimed
to cover the environment, activity, and sociability factors of the
participants’ daily lives. From our study, there was an 8.1%
improvement in the AUC of the ROC in our experiments (Figure
6), compared to the best values reported by [29] for mood
prediction.

Limitations and Future Work
Our data collection was limited to Android smartphones. This
reduces the external validity of the study because many college

students use iOS. In future work, we would increase the
generalizability of the work to be able to expand beyond
Android users, though it would introduce new technological
challenges. Another limitation was that, during the study,
COVID-19 lockdown circumstances imposed some challenges
for data collection due to limited contact with participants and
disruptions to their normal movement and commute patterns.
These challenges may have imposed a greater rate of missing
data.

In our future work, we plan to investigate methods that
incorporate patient-specific information into modeling. We are
also planning to investigate deep-learning methods for automatic
feature extraction from raw PPG and ACC data in the context
of affect prediction. Our findings suggest that objective
assessment in real-time can provide accurate information about
people’s experiences. Future studies can include exploring the
feasibility of interventions triggered by the outcomes of the
predictive models to regulate and manage their affect. Future
research may benefit from designing and refining interventions
among emerging adults using smartphones. For instance,
monitoring and prediction of affect could be used to identify
when to use interventions in the hope of personalizing
interventions targeting affect and other aspects of mental health.

Conclusions
Tracking an individual’s affective state has shown to be a rich
source of information vital to their mental well-being. Human
psychology is intrinsically complex, making it difficult to
monitor these states, especially in a continuous and uninterrupted
way. Recent advancements in smart wearable devices,
accompanied by novel machine learning methods, offer
opportunities to predictably model affective states. This study
investigated the viability of modeling affective states using
wearable devices that objectively monitor certain parameters
of users’ physiological and behavioral states. We conducted a
12-month study on 20 college students, collecting 20 of their
daily affect. We monitored physiology and activities using smart
wearable devices. We then investigated the characteristics of
the collected data. We developed machine learning models to
predict next-day affective states using objective measurements
and investigated the most impactful factors in these predictions.
We demonstrated the capabilities of multimodal and continuous
data collection methods. Our generic personal models gained
~78% accuracy in PA prediction without requiring
personalization techniques. Sleep and physical activity were
shown to be among the most impactful parameters in
determining an individual’s PA and NA.
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