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Abstract

Background: Electronic health record (EHR) data provide a unique opportunity to study the epidemiology of COVID-19,
clinical outcomes of the infection, comparative effectiveness of therapies, and vaccine effectiveness but require a well-defined
computable phenotype of COVID-19–like illness (CLI).

Objective: The objective of this study was to evaluate the performance of pathogen-specific and other acute respiratory illness
(ARI) International Statistical Classification of Diseases-9 and -10 codes in identifying COVID-19 cases in emergency department
(ED) or urgent care (UC) and inpatient settings.

Methods: We conducted a retrospective observational cohort study using EHR, claims, and laboratory information system data
of ED or UC and inpatient encounters from 4 health systems in the United States. Patients who were aged ≥18 years, had an ED
or UC or inpatient encounter for an ARI, and underwent a SARS-CoV-2 polymerase chain reaction test between March 1, 2020,
and March 31, 2021, were included. We evaluated various CLI definitions using combinations of International Statistical
Classification of Diseases-10 codes as follows: COVID-19–specific codes; CLI definition used in VISION network studies; ARI
signs, symptoms, and diagnosis codes only; signs and symptoms of ARI only; and random forest model definitions. We evaluated
the sensitivity, specificity, positive predictive value, and negative predictive value of each CLI definition using a positive
SARS-CoV-2 polymerase chain reaction test as the reference standard. We evaluated the performance of each CLI definition for
distinct hospitalization and ED or UC cohorts.

Results: Among 90,952 hospitalizations and 137,067 ED or UC visits, 5627 (6.19%) and 9866 (7.20%) were positive for
SARS-CoV-2, respectively. COVID-19–specific codes had high sensitivity (91.6%) and specificity (99.6%) in identifying patients
with SARS-CoV-2 positivity among hospitalized patients. The VISION CLI definition maintained high sensitivity (95.8%) but
lowered specificity (45.5%). By contrast, signs and symptoms of ARI had low sensitivity and positive predictive value (28.9%
and 11.8%, respectively) but higher specificity and negative predictive value (85.3% and 94.7%, respectively). ARI diagnoses,
signs, and symptoms alone had low predictive performance. All CLI definitions had lower sensitivity for ED or UC encounters.
Random forest approaches identified distinct CLI definitions with high performance for hospital encounters and moderate
performance for ED or UC encounters.
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Conclusions: COVID-19–specific codes have high sensitivity and specificity in identifying adults with positive SARS-CoV-2
test results. Separate combinations of COVID-19-specific codes and ARI codes enhance the utility of CLI definitions in studies
using EHR data in hospital and ED or UC settings.

(JMIR Form Res 2023;7:e39231) doi: 10.2196/39231
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Introduction

Electronic health record (EHR) data provide a unique
opportunity to study the epidemiology of COVID-19, clinical
outcomes of infection, comparative effectiveness of therapies,
and vaccine effectiveness (VE). For example, COVID-19
vaccines are highly effective against SARS-CoV-2 infection
[1-3], but emerging evidence regarding waning immunity [4-7]
and the emergence of novel variants [8,9] requires robust and
ongoing evaluations of VE [4,7,10] against hospitalizations and
other outcomes such as ambulatory, emergency department
(ED), and urgent care (UC) visits. A standardized and reliable
definition of COVID-19–like illness (CLI) would enhance the
quality of real-world effectiveness studies using EHR data
sources. However, computable phenotypes for CLI definitions
require further definition and evaluation.

A diagnosis code for COVID-19 (International Statistical
Classification of Diseases, Tenth Revision, Clinical Modification
[ICD-10-CM] code U07.1) was introduced in the United States
on April 1, 2020 [11], but the reliability of this and other
COVID-19–specific codes (eg, J12.82, pneumonia due to
COVID-19) in identifying CLI has not been widely studied.
Concurrently, it is unknown which existing acute respiratory
illness (ARI) codes drawn from studies conducted before the
pandemic [12,13] and now used in COVID-19 VE studies [14]
have sufficient sensitivity and specificity to identify
laboratory-confirmed cases and whether these definitions will
need to differ across different health care settings and age
groups. Assessing the accuracy of diagnostic codes and
computable phenotypes is essential for ensuring the validity
and reliability of these EHR data sources. The use of laboratory
results as a reference standard has been used as a standard
approach to evaluate the accuracy of ICD codes; however,
studies have demonstrated poor performance for other infectious
diseases, including influenza [15-18]. Therefore, the objectives
of this study were to evaluate the sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV)
of different combinations of ICD codes in identifying
polymerase chain reaction (PCR)–confirmed SARS-CoV-2
infection in adult patients in ED or UC and hospitalized settings.
Next, we sought to determine which combination of diagnostic
codes achieved a CLI definition with enhanced sensitivity and
specificity that could be utilized for future epidemiological and
VE studies using EHR data.

Methods

Study Design and Population or Data Source
We conducted a retrospective analysis using EHR, claims, and
laboratory information system data from health systems within
the VISION Network: HealthPartners (Minnesota and
Wisconsin), Kaiser Permanente Northwest (Oregon and
Washington), University of California Health, and University
of Colorado Health. The health systems in these analyses
represent 87 hospitals, 85 EDs, and 83 UC centers. Our patient
cohort included persons who were aged ≥18 years and had ≥1
ambulatory visit within the 4 health systems in the 12 months
before September 1, 2019 (defined as the look-back period).
For Kaiser Permanente Northwest and HealthPartners, active
membership in the health system was also required during the
period from the look back to the end of the study (March 31,
2021), disenrollment, or death, whichever occurred first. Data
on encounters were collected if the encounter had an ARI
diagnosis or a respiratory virus test performed. This analysis
included all cohort members who underwent a SARS-CoV-2
PCR test (including symptomatic and asymptomatic patients)
from 14 days before through 72 hours after an inpatient, UC,
or ED encounter for CLI (definition is provided in the
subsequent section) between March 1, 2020, and March 31,
2021. Hospitalizations were included if the length of stay was
≥24 hours. Multiple visits per patient were permitted in the
analyses and could be included in both the inpatient and
outpatient cohorts. We excluded patients with inconclusive
SARS-CoV-2 PCR test results.

Data Collection and Variable Selection
We defined CLIs using ICD, ninth and tenth revision diagnoses,
and sign and symptom codes from hospital discharge and ED
or UC encounters, based on previous studies of COVID-19
[19-21]. The VISION CLI case definition required 1 or more
of the following diagnoses: COVID-19, COVID-19 pneumonia,
influenza pneumonia, other viral pneumonia, bacterial
pneumonia, influenza disease, acute respiratory distress
syndrome, chronic obstructive pulmonary disease (COPD)
exacerbation, asthma exacerbation, respiratory failure, other
acute lower respiratory tract infections, acute upper respiratory
tract infections, signs and symptoms of ARI such as cough and
tachypnea, and signs and symptoms of certain acute
nonrespiratory conditions [14,22,23] (Multimedia Appendix 1).
Codes were included if they were a principal or secondary
diagnosis during the health care encounter.

Data from hospital readmissions within 30 days of discharge,
repeat ED encounters within 24 hours, or repeat UC encounters
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within 24 hours were combined and analyzed as single medical
encounters within each setting. Encounters with a SARS-CoV-2
PCR test occurring ≤14 days before <72 hours after a hospital
admission or an ED or a UC encounter were selected as the
reference standard to represent COVID-19–associated
hospitalizations and encounters.

CLI Definitions
We assessed the performance of various CLI definitions. The
first definition used only COVID-19 ICD-10 codes (U07.1,
B34.2, J12.81, and J12.82). The second was the VISION CLI
definition. We used a third definition of CLI using signs and
symptom ICD codes of ARI and a fourth definition of ARI
signs, symptoms, and diagnoses alone. The specific ICD codes
for the definitions above are listed in Multimedia Appendix 1.

Statistical Analyses
The sociodemographic and clinical characteristics of the study
population were summarized by test result using proportions
for categorical variables. To determine the performance of each
CLI definition, we evaluated the sensitivity, specificity, PPV,
and NPV against the reference standard (SARS-CoV-2 PCR
positive test result). We evaluated the performance of each CLI
definition for distinct hospitalization and ED or UC cohorts.

We used a random forest classification method to identify the
groups of ICD-9 and -10 codes with the highest sensitivity and
specificity for identifying COVID-19 (defined as a positive
SARS-CoV-2 PCR test result) [24]. Random forest classification
is a type of machine-learning algorithm used to predict binary
outcomes by averaging predictions from a set of nonparametric
recursive decision trees. The method can be used as an
alternative to logistic regression when sample sizes are very
large and complex interactions exist among many independent
covariates [25]. A total of 2 random forest models were
developed for the inpatient and ED or UC cohorts separately.
The first model contained all codes in the VISION CLI
definition. The second model contained CLI groups included
in Multimedia Appendix 1 but excluded COVID-19 and
COVID-19 pneumonia codes.

For each model, the cohort data were randomly split into a
training set for model fitting and a test set for performance
evaluation. The training set comprised 80% of the full cohort,
and the test cohort comprised the remaining 20%. The low
SARS-CoV-2 positivity rate in our cohort created a class
imbalance between the majority class (observations without
SARS-CoV-2 positivity) and minority class (SARS-CoV-2
positivity by PCR). To account for this imbalance, we performed
random undersampling on the majority class of the training data
set to balance the 2 groups, thereby generating a 1:1 class ratio
for modeling. Additional covariates in the models were age,
sex, race or ethnicity, site or region, and any underlying medical
condition associated with the encounter of interest.
Hyperparameters were tuned as follows: 250 to 500 trees were
included per model, tree depth was between 3 and 4, between
4 and 6 features randomly selected per tree, and 75% of the data
were used for bagging per tree. We calculated the sensitivity,
specificity, PPV, NPV, area under the receiver operating
characteristic curve (AUROC), 95% CI to evaluate the model

performance. The AUROC ranges from 0.5 to 1, and the higher
the value, the better the model is in distinguishing the positive
SARS-CoV-2 results from negative SARS-CoV-2 results.
Variable importance plots, based on the mean decrease in
accuracy and mean decrease in the Gini coefficient, were
assessed to determine the top ICD codes for the prediction of
SARS-CoV-2 positivity.

Sensitivity Analyses
We conducted a sensitivity analysis of hospitalized and ED or
UC patients from HealthPartners using the available testing
indication data. These data differentiated whether the person
was symptomatic or asymptomatic for COVID-19 based on
ordering provider assessment when the specimen was collected
for SARS-CoV-2 testing at any medical facility within the
HealthPartners system. Patients identified as symptomatic or
asymptomatic with positive SARS-CoV-2 PCR results were
used as the reference standards for 2 separate analyses.

Ethics Approval
This study was reviewed and approved by the institutional
review board of Westat, Inc (45 code of federal regulations part
46; 21 Code of federal regulations part 56).

Results

Participant Enrollment Description
Of the 118,740 hospitalizations in the cohort, 94,643 (79.71%)
had SARS-CoV-2 testing performed within the study period.
Among the 24,097 (20.29%) patients who did not undergo
testing within the study period, 8.10% (n=1952) were admitted
from another acute inpatient setting. Excluding pediatric
hospitalizations, a total of 90,952 (76.6%) adult hospitalizations
were included in the analyses. Among the 90,952 hospital
encounters, 36,877 (40.55%) had testing performed within the
14 days before admission. Of the 207,056 ED or UC encounters
in the cohort, 149,848 (72.37%) had SARS-CoV-2 testing
performed within the specified time frame. Excluding pediatric
encounters, 137,067 (66.2%) ED or UC encounters were
included in the analyses. Of these, 5627 (4.11%) hospitalizations
and 9866 (7.2%) ED or UC encounters were associated with
positive SARS-CoV-2 results.

Participant Characteristics
The sociodemographic and clinical characteristics of the patients
in each of the 2 cohorts are summarized in Table 1.

In sum, in the hospitalized cohort, 55.3% (50,326/90,952) of
the patients were female, 65.8% (59,830/90,952) of the patients
were of White non-Hispanic race or ethnicity, and 45.7% of the
patients were aged >65 years. Most patients (80.7%,
73,379/90,952) had at least one underlying medical condition,
and 47.4% (43,118/90,952) had public insurance. In the ED or
UC cohort, 59.7% (81,852/137,067) of the patients were female,
70% (95,910/137,067) of the patients were White and
non-Hispanic, 28.3% (38,855/137,067) of the patients were
aged >65 years, 65% (89.068/137,067) of the patients had at
least one underlying medical condition, and 33.4%
(45,814/137,067) of the patients had public insurance (Table
2).
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Table 1. Demographic characteristics of patients hospitalized and tested for SARS-CoV-2.

SARS-CoV-2–negative hospitaliza-
tions (n=85,325), n (%)

SARS-CoV-2–positive hospitaliza-
tions (n=5627), n (%)

All SARS-CoV-2–tested hospitaliza-
tions (n=90,952), n (%)

Characteristics

Sex

37,827 (44.3)2794 (49.7)40,621 (44.7)Male

47,494 (55.7)2832 (50.3)50,326 (55.3)Female

4 (0)1 (0)5 (0)Other or unknown

Age (years)

3419 (4)144 (2.6)3563 (3.9)18-24

22,018 (25.8)1121 (19.9)23,139 (25.4)25-49

21,103 (24.7)1587 (28.2)22,690 (24.9)50-64

38,785 (45.5)2775 (49.3)41,560 (45.7)>65

Race or ethnicity

56,952 (66.7)2878 (51.1)59,830 (65.8)White and non-Hispanic

6725 (7.9)491 (8.7)7216 (7.9)Black and non-Hispanic

4867 (5.7)337 (6)5204 (5.7)Asian and non-Hispanic

11,917 (14)1581 (28.1)13,498 (14.8)Hispanic or Latinx

2277 (2.7)179 (3.2)2456 (2.7)Other

2587 (3)161 (2.9)2748 (3)Unknown

Study site

4931 (5.8)445 (7.9)5376 (5.9)HealthPartners

13,487 (15.8)812 (14.4)14,299 (15.7)Kaiser Permanente Northwest

35,049 (41.1)1778 (31.6)36,827 (40.4)University of California Health

31,858 (37.3)2592 (46.1)34,450 (37.9)University of Colorado

ICUa admission

14,118 (16.5)1350 (24)15,468 (17)Yes

71,207 (83.5)4277 (76)75,484 (83)No

Underlying conditions

68,646 (80.5)4733 (84.1)73,379 (80.7)Yes

16,679 (19.5)894 (15.9)17,573 (19.3)No

Primary insurance type

26,002 (30.5)1780 (31.6)27,782 (30.5)Medicare

14,331 (16.8)1005 (17.9)15,336 (16.9)Medicaid

14,168 (16.6)1083 (19.2)15,251 (16.8)Private

15,198 (17.8)769 (13.7)15,967 (17.6)Other

15,626 (18.3)990 (17.6)16,616 (18.3)Unknown

aICU: intensive care unit.
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Table 2. Demographic characteristics of patients evaluated in an emergency department (ED) or urgent care (UC) setting and tested for SARS-CoV-2.

Negative ED or UC visits
(n=127,201), n (%)

Positive ED or UC visits
(n=9866), n (%)

All SARS-CoV-2–tested ED or
UC visits (n=137,067), n (%)

Characteristic

Sex

51,080 (40.2)4108 (41.6)55,188 (40.3)Male

76,095 (59.8)5757 (58.4)81,852 (59.7)Female

26 (0)1 (0)27 (0)Other or unknown

Age (years)

8990 (7.1)848 (8.6)9838 (7.2)18-24

45,796 (36)4133 (41.9)49,929 (36.4)25-49

35,665 (28)2780 (28.2)38,445 (28)50-64

36,750 (28.9)2105 (21.3)38,855 (28.3)>65

Race or ethnicity

90,640 (71.3)5270 (53.4)95,910 (70)White and non-Hispanic

7157 (5.6)900 (9.1)8057 (5.9)Black and non-Hispanic

7135 (5.6)618 (6.3)7753 (5.7)Asian and non-Hispanic

13,310 (10.5)2204 (22.3)15,514 (11.3)Hispanic or Latinx

3930 (3.1)412 (4.2)4342 (3.2)Other

5029 (4)462 (4.7)5491 (4)Unknown

Study site

31,344 (24.7)2888 (29.3)34,232 (25)HealthPartners

44,038 (34.6)3049 (30.9)47,087 (34.4)Kaiser Permanente Northwest

42,447 (33.4)2702 (27.4)45,149 (32.9)University of California Health

9372 (7.4)1227 (12.4)10,599 (7.7)University of Colorado

Underlying conditions

83,113 (65.3)5955 (60.4)89,068 (65)Yes

44,088 (34.7)3911 (39.6)47,999 (35)No

Insurance type

28,578 (22.5)1555 (15.8)30,133 (22)Medicare

14,084 (11.1)1597 (16.2)15,681 (11.4)Medicaid

50,379 (39.6)4351 (44.1)54,730 (39.9)Private

28,524 (22.4)1729 (17.5)30,253 (22.1)Other

5636 (4.4)634 (6.4)6270 (4.6)Unknown

Model Performance
Table 3 summarizes the sensitivity, specificity, PPV, and NPV
for each CLI definition among hospitalizations. Among CLI
hospitalizations in adults, COVID-19–specific codes had the
highest sensitivity (91.6%) and specificity (99.6%) in identifying
patients with SARS-CoV-2 PCR positivity.

Using the VISION CLI definition, the sensitivity remained high
(95.8%), but the specificity was considerably lower (45.5%).
By contrast, the signs and symptoms of ARI had low sensitivity
and PPV (28.9% and 11.8%, respectively) but higher specificity
and NPV (85.3% and 94.7%, respectively). Using ARI signs,
symptoms, and diagnoses alone, sensitivity and specificity were
76.4% and 60.6%, respectively.

The evaluation of individual codes among the hospitalized
patients confirmed that the “COVID-19, virus identified”
ICD-10 code (U07.1) was associated with the highest odds of
having a SARS-CoV-2 test result, followed by the COVID-19
pneumonia codes (pneumonia due to SARS-associated
coronavirus and pneumonia due to COVID-19).

As shown in Table 4, all CLI definitions had a lowered
sensitivity for ED or UC encounters using the reference standard
of SARS-CoV-2 PCR positivity. COVID-19–specific codes
had a sensitivity of 32.8% but retained high specificity (99.6%),
whereas the VISION CLI definition also had lower sensitivity
(49.1%) but improved specificity (74.2%). A CLI definition
using signs and symptoms alone did not have improved
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performance in the ED or UC cohort compared with the hospitalized cohort (sensitivity 22.3%; specificity 87.8%).

Table 3. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of various definitions of COVID-19–like illnesses
(CLIs) using International Statistical Classification of Diseases (ICD)-10 codes in identifying hospitalized adult patients with SARS-CoV-2 infection
using polymerase chain reaction (PCR) detection as the reference standard (n=87,771).

NPV, % (95% CI)PPV, % (95% CI)Specificity, % (95% CI)Sensitivity, % (95% CI)CLI definitiona using PCR results as the gold
standard

99.4 (99.4-99.5)93.4 (92.7-94.0)99.6 (99.5-99.6)91.6 (90.9-92.3)COVID-19–specific codes

99.4 (99.3-99.5)10.7 (10.4-10.9)45.5 (45.2-45.9)95.8 (95.3-96.4)VISION CLI

94.7 (94.5-94.8)11.8 (11.3-12.4)85.3 (85.1-85.6)28.9 (27.7-30.1)Signs and symptoms of ARIb

97.5 (97.4-97.6)11.3 (11.0-11.7)60.6 (60.3-60.9)76.4 (75.3-77.5)ARI diagnoses alone

99.5 (99.4-99.5)27.8 (27.1-28.4)83.5 (83.2-83.8)93.6 (92.9-94.2)Random forest analysis: highest predictive codesc

96.9 (96.6-97.2)18.9 (17.6-20.2)81.9 (81.4-82.5)61.7 (58.7-64.5)Random forest analysis: VISION CLI excluding
COVID-19–specific codes

aCLI definitions are outlined in Multimedia Appendix 1.
bARI: acute respiratory illness.
cCodes with the highest predictivity based on Gini and accuracy measures using random forest analyses included COVID-19, virus identified (U07.1),
acute respiratory failure (ICD-10 code J96.0 and ICD-9 code 518.81), pneumonia due to COVID-19 (J12.82), hypoxemia (ICD-10 code R09.02 and
ICD-9 code 799.02), asphyxia or hypoxemia (R09.0), other bacterial pneumonia (ICD-10 code J15 and ICD-9 code 482), and chronic obstructive
pulmonary disease with acute lower respiratory tract infection (ICD-10 code J44.0 and ICD-9 code 419.22).

Table 4. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of various COVID-19–like illness (CLI) definitions
using International Statistical Classification of Diseases (ICD)-10 codes in identifying the patients evaluated in an emergency department (ED) or urgent
care (UC) setting with SARS-CoV-2 infection using polymerase chain reaction (PCR) detection as the reference standard.

NPV, % (95% CI)PPV, % (95% CI)Specificity, % (95% CI)Sensitivity, % (95% CI)CLI definitiona using PCR results as the gold
standard

95 (94.9-95.2)85.8 (84.7-86.9)99.6 (99.5-99.6)32.8 (31.9-33.8)COVID-19–specific codes

94.9 (94.8-95.1)12.9 (12.5-13.2)74.2 (74.0-74.4)49.1 (48.1-50.1)VISION CLI

93.6 (93.4-93.7)12.4 (11.9-12.9)87.8 (87.6-87.9)22.3 (21.5-23.1)Signs and symptoms of ARIb

93.9 (93.8-94.1)11.1 (10.7-11.4)78.4 (78.2-78.6)34.7 (33.8-35.7)ARI diagnoses alone

95.4 (95.3-95.5)24.5 (23.9-25.2)89.4 (89.2-89.5)44.6 (43.6-45.6)Random forest analysis: highest predictive codesc

94.9 (94.6-95.2)13.7 (12.9-14.6)77.4 (76.9-77.9)46.5 (44.3-48.7)Random forest analysis: VISION CLI excluding
COVID-19–specific codes

aCLI definitions are outlined in Multimedia Appendix 1.
bARI: acute respiratory illness.
cCodes with the highest predictivity based on Gini and accuracy measures using random forest analyses included COVID-19, virus identified (U07.1),
cough (ICD-10 code R05 and ICD-9 code 786.2), disturbance of smell and taste (R43), fever (R50), fever, unspecified (ICD-10 code R50.9 and ICD-9
code 780.6), pneumonia, unspecified organism (ICD-10 code J18 and ICD-9 code 486), pneumonia due to COVID-19 (J12.82), and myalgia (ICD-10
code M79.1 and ICD-9 code 729.1).

Random Forest Analyses
The split cohort resulted in 69,933 (80%) and 17,838 (20%)
patients in the training and test hospitalization data sets,
respectively, and 109,591 (80%) and 27,476 (20%) patients in
the ED and UC data sets, respectively. Observations with
missing diagnostic codes were removed from the data sets (3181
hospital and 0 ED or UC were excluded). After performing
random undersampling, the balanced training set consisted of
4417 SARS-CoV-2–negative and 4417 SARS-CoV-2–positive
hospitalized events. Codes yielding the highest predictive
performance included COVID-19, pneumonia due to
COVID-19, asphyxia and hypoxemia, acute respiratory failure,

hypoxemia, other bacterial pneumonia, and COPD with acute
lower respiratory tract infection; using only these diagnostic
codes led to a sensitivity of 93.6%, specificity of 83.5%, PPV
of 27.8%, and NPV of 99.5%, with an AUROC of 0.89 (Table
4).

For the ED or UC cohort, the balanced data set included 7891
positive and 7891 negative observations. The top predictive
codes included COVID-19, cough, disturbance of smell and
taste, fever, fever (unspecified), pneumonia (unspecified
organism), pneumonia due to COVID-19, and myalgia. These
codes alone had a sensitivity of 44.6%, a specificity of 89.4%,
a PPV of 24.5%, an NPV of 95.4%, and an AUROC of 0.67.
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Excluding the COVID-19–specific diagnosis codes lowered the
sensitivity and specificity, as outlined in Table 4.

Sensitivity Analyses
Using the data from 17.5% (343/1961) symptomatic patients
among SARS-CoV-2–positive hospitalizations from
HealthPartners as the reference standard, sensitivity and
specificity for COVID-19–specific ICD-10 codes remained high
(100% and 97.2%, respectively), but for definitions using ARI

codes, there was a loss of specificity (6.2% for the VISION CLI
definition, 16.6% for ARI diagnoses alone, and 38.8% for signs
and symptoms alone; Table 5).

Restricting our analyses to 78 (3.7%) asymptomatic patients
from the 2109 SARS-CoV-2–associated hospitalizations with
positive test results, the sensitivity (97.5%) and specificity
(99.2%) for COVID-19–related ICD-10 codes remained high.
Sensitivity (97.5%) was also high for the full VISION CLI
definition; however, specificity (36.0%) dropped markedly.

Table 5. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the various definitions of COVID-19–like

illnesses (CLIs) using the reference standard of symptomatic and asymptomatica SARS-CoV-2–positive hospitalizations (HealthPartners data only,

n=1961)b.

NPV, % (95% CI)PPV, % (95% CI)Specificity, % (95% CI)Sensitivity, % (95% CI)

Symptomatic hospitalized patients with SARS-CoV-2–positive testing

10088.4 (85.2-91.6)97.2 (94.4-98.0)100COVID-19–specific codes

10018.4 (16.7-20.2)6.2 (5.1-7.4)100VISION CLI definition

88.3 (86.0-90.7)20.8 (18.5-23.0)38.8 (36.4- 41.1)75.8 (71.3-80.3)Signs and symptoms of ARIc

96.1 (93.8-98.4)19.8 (17.9-21.7)16.6 (14.8-18.4)96.8 (94.9-98.7)ARI diagnoses alone

100 (99.7-100)38.6 (35.4-41.9)66.3 (64.0-68.6)100 (98.9-100)Random forest analysis: highest predictive

codesd

92.2 (88.4-95.0)44.2 (34.5-54.3)81.8 (77.1-85.8)67.6 (55.2-78.5)Random forest analysis: VISION CLI exclud-
ing COVID-19–specific codes

Asymptomatic hospitalized patients with SARS-CoV-2–positive testing

99.9 (99.9-100)76.2 (67.9-84.5)99.2 (98.9-99.6)97.5 (94.0-100)COVID-19–specific codes

99.9 (99.7-100)3.7 (2.9-4.5)36 (34.4-37.7)98.7 (96.3-100)VISION CLI

98.5 (98.1-99.0)6.3 (4.4-8.2)81.4 (80.0-82.7)50.6 (39.6-61.7)Signs and symptoms of ARI

98.8 (98.3-99.3)4.3 (3.2-5.4)60.8 (59.1-62.5)70.9 (60.9-80.9)ARI diagnoses alone

100 (99.8-100)11.0 (8.8-13.5)80.0 (78.6-81.4)98.7 (93.1-100)Random forest analysis: highest predictive

codese

98.7 (97.4-99.4)12.2 (4.6-24.8)93.3 (91.1-95.1)42.9 (17.7-71.1)Random forest analysis: VISION CLI exclud-
ing COVID-19–specific codes

aSymptomatic and asymptomatic designations were based on test indication data completed by ordering provider at time of test order.
bCLI definitions are outlined in Multimedia Appendix 1.
cARI: acute respiratory illness.
dCOVID-19, virus identified, acute respiratory failure, pneumonia due to COVID-2019, hypoxemia, asphyxia and hypoxemia, and other bacterial
pneumonia.
eCOVID-19, virus identified, acute respiratory failure, asphyxia and hypoxemia, hypoxemia, cough, pneumonia, unspecified organism, and altered level
of consciousness or altered mental status.

Discussion

Principal Findings
In this multicenter cohort study of adults undergoing
SARS-CoV-2 testing in 4 large, integrated health systems, we
found high sensitivity of our existing VISION CLI definition
for hospitalized patients, which uses ICD-10 diagnoses and sign
and symptom codes that have been associated with COVID-19
in previous studies. However, this definition had a lower
sensitivity for ED or UC encounters. Signs and symptoms alone
had low sensitivity but higher specificity than VISION CLI for
both hospitalization and ED or UC encounters. COVID-19 codes

alone were not able to adequately differentiate symptomatic
from asymptomatic hospitalizations, given the similar
performance characteristics between the 2 groups. Using random
forest classification methods, the combination of COVID-19,
COVID-19 pneumonia, bacterial pneumonia, acute respiratory
failure, COPD with acute lower respiratory tract infection,
hypoxemia, and asphyxia or hypoxemia diagnoses codes had
high sensitivity and specificity in identifying a
SARS-CoV-2–positive hospitalization. A different combination
of codes (COVID-19, cough, disturbance of smell and taste,
fever, fever [unspecified], pneumonia unspecified organism,
pneumonia due to COVID-19, and myalgia) were used for
similar model prediction for ED or UC encounters, but the
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overall performance remained lower, as compared with the
hospitalization findings. These analyses enhance our
understanding of the use of ICD-10 codes to generate specific
computable phenotypes for CLI that can be used in future
EHR-based epidemiological studies of COVID-19 illness and
VE studies.

Calculating VE against important real-world outcomes using
EHR data requires the ability to identify CLI-associated
hospitalizations and cannot solely rely on SARS-CoV-2 test
results, given that many medical facilities practice universal
testing of patients and may include patients with asymptomatic
COVID-19 infection among patients being hospitalized for
unrelated reasons. Conversely, diagnostic codes alone have been
shown to be inaccurate for case identification and classification
in epidemiological surveillance studies [26,27]. This study
provided several important insights into the use of EHR data to
define CLIs. First, we validated our prior approach to identify
CLIs, which is being used in studies using the VISION network
to estimate VE against COVID-19–associated hospitalizations
and ED or UC encounters [2,12,18,19]. Second, we generated
a more refined CLI definition using random forest methods with
high sensitivity and specificity for future studies. Third, we
evaluated the accuracy of COVID-19–specific codes in the
identification of SARS-CoV-2 infection in different health care
settings.

A new ICD-10-CM code for COVID-19 (U07.1) was introduced
on April 1, 2020, to facilitate billing and case monitoring.
Hospitals rapidly began using the new ICD-10-CM code for
COVID-19 (U07.1) within 2 weeks of its release [28]. Our data
reflect the rapid uptake of these diagnostic codes among the
health systems in our study, with high sensitivity and specificity
for the U-code COVID-19, virus identified (U07.1), and B-code
coronavirus infection, unspecified. A study using the Premier
Healthcare Database (an administrative all-payer repository that
covers approximately 20% of all US hospitalizations from 48
states) conducted between January 1, 2020, and May 31, 2020,
found similar sensitivity, specificity, PPV, and NPV for the
ICD-10 code U07.1 among hospitalized adults, using
SARS-CoV-2 PCR test results as the reference standard [28].
A similar approach was taken by investigators at the Yale and
Mayo Clinic but yielded contrary findings. They reported a
higher misclassification by COVID-19 diagnostic codes, with
a sensitivity of 83.3% and PPV of 68.8% of a CLI diagnosis
code in the medical record among patient records with a
documented positive SARS-CoV-2 test [29]. This and other
studies have cautioned against the sole reliance of these codes
to identify SARS-CoV-2 infections, demonstrating that the
sensitivity may decrease over time [29-31] and may also be
lower among younger age groups [29].

To our knowledge, our analyses represent the first evaluation
of EHR-based CLI definitions in the ED and UC settings. We
found that these definitions had lower sensitivity than the
inpatient setting, even when limited to COVID-19–specific
codes (the sensitivity was 91.6% for the inpatient cohort vs
32.8% for the outpatient cohort). This finding may result from
the coding of these visits occurring before SARS-CoV-2 test
results are available or coding based on test results outside the

health system. Therefore, alternative definitions may need to
be considered in these settings. Random forest analyses selecting
the highest predictive codes demonstrated improved specificity
from the VISION CLI diagnosis by approximately 15% in the
ED or UC setting, suggesting that acute respiratory symptoms
and signs, coupled with pneumonia and COVID-19 codes, may
better define positivity in this cohort, given that the proportion
of patients with milder presentations is higher than that of
hospitalized patients.

To further refine our CLI diagnoses for potential use in future
studies, we used a random forest approach to identify a group
of ICD-10 codes that maximized the sensitivity and specificity
for identifying COVID-19 infection. This approach has several
advantages in studies using EHR data because it can handle
large data sets efficiently, uses nonparametric statistical
procedures, focuses on optimizing accuracy in predicting
outcomes, and identifies and ranks variables that are important
in predicting outcomes while accounting for all interaction
effects [32]. Using this approach, we identified the codes that
had the highest predictive accuracy at identifying SARS-CoV-2
infection. These ICD-10 codes included viral pneumonia and
respiratory failure, which have been shown in other studies to
be strongly associated with COVID-19 infection [33]. Fever,
cough, hypoxemia, and disturbance of smell and taste were the
sign and symptom codes with the highest predictive accuracy
in the ED or UC cohort, which has also been observed in other
studies across different age groups [34].

Limitations
The strengths of our study include a large sample size from a
geographically diverse sample, with reliable testing data
available at each site. However, our study had several limitations
worth noting. The ideal reference standard would be
hospitalizations and ED or UC visits attributed to SARS-CoV-2
infection, but we did not have reliable testing indication data
for all sites and, therefore, were restricted to a sensitivity
analysis at 1 site. Next, testing performed within the network
partners’ medical facilities was captured in the EHR data;
however, if testing was performed outside of the partners’
medical facilities and yielded positive results, outcome
misclassification is possible. Next, collinearity between
diagnostic codes and test positivity may exist for hospitalized
patients at some sites, whereby a positive test may trigger a
COVID-19–specific discharge code. Finally, we did not evaluate
the performance of primary versus secondary diagnoses or
evaluate changes in performance over time, which will be an
important focus of future research.

Conclusions
CLI definitions that maximize sensitivity and specificity in this
study could be applied to COVID-19–related studies in which
universal SARS-CoV-2 testing may not be available or in other
EHR-based analyses with limited or no access to laboratory
data. These findings can help refine specific computable
phenotypes for CLIs that can be used in future epidemiological
studies of COVID-19 illness and studies evaluating the
effectiveness of COVID-19 vaccines against hospitalization
and other clinical end points.
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