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Abstract

Background: Clinical deterioration can go unnoticed in hospital wards for hours. Mobile technologies such as wearables and
smartphones enable automated, continuous, noninvasive ward monitoring and allow the detection of subtle changes in vital signs.
Cough can be effectively monitored through mobile technologies in the ward, as it is not only a symptom of prevalent respiratory
diseases such as asthma, lung cancer, and COVID-19 but also a predictor of acute health deterioration. In past decades, many
efforts have been made to develop an automatic cough counting tool. To date, however, there is neither a standardized, sufficiently
validated method nor a scalable cough monitor that can be deployed on a consumer-centric device that reports cough counts
continuously. These shortcomings limit the tracking of coughing and, consequently, hinder the monitoring of disease progression
in prevalent respiratory diseases such as asthma, chronic obstructive pulmonary disease, and COVID-19 in the ward.

Objective: This exploratory study involved the validation of an automated smartphone-based monitoring system for continuous
cough counting in 2 different modes in the ward. Unlike previous studies that focused on evaluating cough detection models on
unseen data, the focus of this work is to validate a holistic smartphone-based cough detection system operating in near real time.

Methods: Automated cough counts were measured consistently on devices and on computers and compared with cough and
noncough sounds counted manually over 8-hour long nocturnal recordings in 9 patients with pneumonia in the ward. The proposed
cough detection system consists primarily of an Android app running on a smartphone that detects coughs and records sounds
and secondarily of a backend that continuously receives the cough detection information and displays the hourly cough counts.
Cough detection is based on an ensemble convolutional neural network developed and trained on asthmatic cough data.

Results: In this validation study, a total of 72 hours of recordings from 9 participants with pneumonia, 4 of whom were infected
with SARS-CoV-2, were analyzed. All the recordings were subjected to manual analysis by 2 blinded raters. The proposed system
yielded a sensitivity and specificity of 72% and 99% on the device and 82% and 99% on the computer, respectively, for detecting
coughs. The mean differences between the automated and human rater cough counts were −1.0 (95% CI −12.3 to 10.2) and −0.9
(95% CI −6.5 to 4.8) coughs per hour within subject for the on-device and on-computer modes, respectively.

Conclusions: The proposed system thus represents a smartphone cough counter that can be used for continuous hourly assessment
of cough frequency in the ward.

(JMIR Form Res 2023;7:e38439) doi: 10.2196/38439
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Introduction

Background
Patient monitoring is the repeated or continuous observation of
vital signs or physiological functions to ensure patient safety
and guide therapeutic interventions [1]. Most modern
cardiorespiratory monitoring systems rely on invasive sensors,
cables, and bulky monitors to detect, transmit, process, and
display the biosignals to be monitored [1]. Although most of
these advanced monitoring systems are performed in the
intensive care unit, nearly half of all adverse events in patients
admitted to hospitals occur in the general care ward [2,3]. In
fact, patients often die in wards where clinical deterioration can
go unnoticed for hours [4]. For example, in the United States,
acute respiratory events in inpatient wards are associated with
in-hospital mortality of approximately 40% [5]. In the European
Surgical Outcomes Study [6], which included 46,539 patients
from 498 hospitals in 28 countries, most (73%) patients who
died had not been admitted to the intensive care unit at any time
after surgery.

Current monitoring protocols in the wards usually consist of
random checks by a nurse approximately every 4-8 hours [1].
This leaves patients unattended most of the time during their
hospital stay [7]. Changes in vital signs as warning signs of
clinical deterioration are often not detected or are detected too
late in conventional assessments during random checks. A closed
claims analysis of opioid-induced respiratory problems in a
general care ward found that nearly half of all health adverse
events occurred within 2 hours of the last nursing check [8].
Furthermore, the authors concluded that almost all of these
events could have been prevented with better ongoing
monitoring and education [8]. Not only are critical changes in
vital signs missed but also the detection of abnormal vital signs
by a bedside nurse often triggers a long chain of commands that
results in delays until action can be taken [9]. With the
widespread adoption of mobile technologies such as
smartphones and wearables, researchers have recognized that
these technologies can facilitate continuous monitoring and may
improve patient outcomes in hospital wards [4,10]. Coughing,
in particular, holds great potential for monitoring through mobile
technologies in the ward. Coughing is one of the most common
medical complaints [11-13]. It is known as a symptom of the
common cold. Nevertheless, it is associated with many prevalent
communicable and noncommunicable respiratory diseases,
asthma, lung cancer, and lower respiratory tract infections,

including COVID-19, as well as with 2 of the top 10 causes of
death worldwide, chronic obstructive pulmonary disease and
tuberculosis [14]. Cough is not only a symptom but also a
predictor of acute adverse health events. It is associated with
exacerbations, lung function decline, and risk of death [15-17].
In addition, cough detection approaches involving smartphones
and wearable recordings have been proposed and developed
[18-20]. Overall, the results provide a proof of principle for
cough detection with different devices in various settings. To
date, however, there is no standardized method for cough
quantification, and there is no adequately validated generic
cough monitor that is commercially available, let alone clinically
acceptable [12]. In fact, only a few of these systems have been
validated in independent studies with different cohorts [21-27]
(Table 1). The Leicester Cough Monitor is among the best
evaluated ones, and 2 × 1-hour and 6-hour cross-sectional
recordings of patients with chronic cough were used for
validation [22]. Consequently, most methods and approaches
developed only include the validation of the algorithm on audio
recordings, meaning they do not include the validation on the
device that has been designed for a real-world scenario. In
addition, it has not yet been demonstrated that a smartphone
can continuously monitor cough counts (in the ward).

Considering that most random checks of vital signs by nurses
have gaps of approximately 4 hours between 2 consecutive
assessments and that this period is associated with the highest
risk, continuous accessible hourly cough monitoring would be
desirable. Furthermore, these shortcomings in validation also
limit the adoption of smartphones for patient monitoring of
coughing and, consequently, hinder the potential that such
scalable technologies could bring for the assessment of
progression of prevalent diseases in the ward. To this end, this
study proposes a smartphone-based cough monitoring system
for the ward. Our approach differs from that used in previous
research because our key innovation is to use smartphones to
record and detect coughs in a contact-free and continuous
manner in the ward. The number of detected coughs and their
time stamps are transferred continuously to a server and
displayed on a web client, whereas the corresponding recorded
data are saved locally. The monitoring system is especially
suited to monitor patients who are hospitalized with an
aggravated condition. It operates contact free with low burden
and minimal obtrusion for the patient and provides remote
continuous cough monitoring, which the medical personnel can
access.
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Table 1. Overview of prior automatic and semiautomatic cough counting tools.

CommentsReported performance in validation
study

Valida-
tion
study
(partici-
pants,
n)

Real-
time
monitor-
ing

Con-
tact
free

Cough
quan-
tifica-
tion

Au-
toma-
tion

Recording
modality

HardwareCough moni-
tor

DIFFdFPcTNRbTPRa

Results reported
on a total of

—Median

4 ch−1f
99.6%75.5%Yes

(—e)

NoNoEpisodePartialFree-field
micro-
phone

Marantz
PMD620
handheld
recorder

Cayetano
CoughMoni-
tor [27,28] 49x30-minute-

long MP3 record-
ings of patients
with tuberculosis;
sensitivity for
single coughs:
51.4%

Results reported
on nocturnal

——80.2%98.7%Yes
(48)

NoNoSingleFull3 contact
micro-
phones

Custom-
built de-
vice

LEOSound
lung sound
monitor [29] recordings of

maximum 10
hours in patients

with COPDg;
published valida-
tion study [26]
did not undergo
peer review

Results reported
on a maximum

——99.6%78.1%Yes (8)NoNoSingleFullPlethys-
mography,

Custom-
built de-
vice

LifeShirt [24]

24 hours per pa-
tient and a total

EMGh, and
electrocar-
diogram of 109 hours of

recording in pa-
tients with COPD

Results reported
on a total of 40

Mean
−12.5

ch−1

———Yes
(10)

NoNoSingleFull3 EMG
sensors and
a contact
sound
transducer

Custom-
built de-
vice

LR102 [25]

hours of record-
ings of patients
with cystic fibro-
sis or a viral infec-
tion

Results reported
by the indepen-

Median
−100 c

(4 h)−1

——26%Yes
(10)

NoNoSingleFull2 contact
micro-
phones and
a pneumo-
gram belt

Custom-
built de-
vice

PulmoTrack-
CC [23]

dent evaluation
by Turner et al
[30] on 4-hour-
long hour record-
ings per partici-
pant with differ-
ent conditions;
original paper re-
ported results on
voluntary coughs
[23]
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CommentsReported performance in validation
study

Valida-
tion
study
(partici-
pants,
n)

Real-
time
monitor-
ing

Con-
tact
free

Cough
quan-
tifica-
tion

Au-
toma-
tion

Recording
modality

HardwareCough moni-
tor

DIFFdFPcTNRbTPRa

Results reported
on 1-hour-long
recordings of a
disjoint set of 10
participants (ie,
smokers experi-
encing chronic
cough) who were
part of the same
data collection
study used to
train the algo-
rithm

Mean

10 ch−1
—96%80%No (10)NoNoSinglePartialFree-field

micro-
phone

Sony TCD-
D8 Walk-

man DATi

recorder

The Hull Auto-
matic Cough
Monitor [31]

Results reported
on 2×1-hour-long
recordings of
each patient with
chronic cough
[22]; data annotat-
ed by 2 raters

Mean
−4

cp−1h−1

Mean
2.5

cp−1h−1j

99%91%Yes (9)NoNoSinglePartialFree-field
micro-
phone

Archos
Jukebox
Recorder
20

The Leicester
Cough Moni-
tor [22]

Results reported
on 6-hour-long
recordings of
each patient with
chronic cough
[22]; data annotat-
ed by 1 rater

—Mean
1.0

cp−1h−1

99%86%Yes
(23)

NoNoSinglePartialFree-field
micro-
phone

Archos
Jukebox
Recorder
20

The Leicester
Cough Moni-
tor [22]

Results reported
on 24-hour
recordings on pa-
tients with differ-
ent conditions;
authors evaluated
the system by
confirming that
the identified
cough sounds in
the compressed
files are the same
sounds identified
by the trained
manual cough
counters in the
full 24-hour
recordings; algo-
rithm compresses
24-hour-long
recordings to an
average of 26.30
minutes, which
requires manual
counting

———99.92%Yes
(10)

NoNoTimePartialFree-field
micro-
phone and
contact mi-
crophone

Custom-
built de-
vice

VitaloJAK
[21]

Proposed system

JMIR Form Res 2023 | vol. 7 | e38439 | p. 4https://formative.jmir.org/2023/1/e38439
(page number not for citation purposes)

Barata et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


CommentsReported performance in validation
study

Valida-
tion
study
(partici-
pants,
n)

Real-
time
monitor-
ing

Con-
tact
free

Cough
quan-
tifica-
tion

Au-
toma-
tion

Recording
modality

HardwareCough moni-
tor

DIFFdFPcTNRbTPRa

Results reported
on 8-hourlong
recordings per
patient during the
night (11 PM-7
AM) and a total
of 72 hours of
recordings in pa-
tients with pneu-
monia

Mean
−0.9

cp−1h−1

Mean
0.6

cp−1h−1

99%82%Yes (9)NoYesSingleFullIn-built mi-
crophone

Smart-
phone
(Samsung
Galaxy
A3);
Python;
Tensorflow

Proposed
system on
computer

Results reported
on 8-hour-long
recordings per
patient during the
night (11 PM-7
AM) and a total
of 72 hours of
recordings in pa-
tients with pneu-
monia

Mean
−1.2

cp−1h−1

Mean
1.2

cp−1h−1

99%71%Yes (9)YesYesSingleFullIn-built mi-
crophone

Smart-
phone
(Samsung
Galaxy
A3)

Proposed
system on
device

aTPR: true positive rate.
bTNR: true negative rate.
cFP: false positive rate.
dDIFF: difference between automated and annotated cough counts.
eNot available.
fch-1: coughs or cough episodes per hour (see the Quantificationof Cough section).
gCOPD: chronic obstructive pulmonary disease.
hEMG: electromyography.
iDAT: digital audio tape.
jcp-1h-1: coughs or cough episodes per patient per hour (see the Quantificationof Cough section).

Objective
In this work, we contribute to existing research through the
following contributions. First, to the best of the authors’
knowledge, this work is the first validation of a holistic
smartphone-based cough detection system applied in a real-life
scenario and validated with a different cohort compared with
the one used to develop the models. Second, the proposed
system not only encompasses cough detection but also comes
with 2 additional functionalities, recording and continuous
transmission of cough detection in near real time. Recording,
on the one hand, allows for verifying the results and closing the
loops on detection errors. Continuous transmission, on the other
hand, enables the application of the technology in a remote
monitoring setting and the visualization of cough counts in near
real time. Third, we demonstrate the applicability of the
proposed system in the ward for patients with an acute
respiratory condition, that is, pneumonia. Moreover, by using
consumer-centric devices such as smartphones, which are
increasingly available in low- and middle-income countries,
our proposed system allows for a scalable and cost-effective

ward monitoring tool that can be used in low- and
middle-income countries.

This work builds upon our prior research [20,32], in which we
developed cough detection models based on coughs from
patients with asthma. We evaluated the proposed system with
9 patients hospitalized for lower respiratory tract infections (3
infected with SARS-CoV-2) at night (ie, 11 PM-7 AM).

Methods

Study Design
This validation study compares automated cough counts with
those identified using manual sound analysis. For this purpose,
we targeted an adult patient population (aged 18 years)
hospitalized for lower respiratory tract infection at the Lung
Center of the Cantonal Hospital St Gallen, Switzerland. This
study was motivated by the emergence of the COVID-19
pandemic and was designed, planned, and conducted in March
2020 and April 2020.

Patients enrolled in the study underwent nocturnal (ie, 11 PM-7
AM) cough monitoring using a contact-free smartphone-based
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cough detection system. To conduct the study, we used
smartphones (Samsung Galaxy A3 2017, SM-A320FL, 2 GB
RAM, Exynos 7870 Octa: 14 nm, Octa-core 1.6 GHz
Cortex-A53, Wi-Fi 802.11a/b/g/n/ac) with the study app
installed and equipped with secure digital cards (SanDisk Ultra
microSDXC A1 64 GB 100MBs Adapt) to expand the memory
for audio recording.

We placed the smartphones above the bed after the patients
were admitted to the study in the hospital and had provided

consent to be recorded. In addition, during the study, we used
a web server to monitor cough counts in near real time, visualize
them, and ensure that the technology was working (Cough
Detection section). Figure 1 shows the experimental setup and
a screenshot of the web server displaying the cough counts. Of
the total nights of hospital stay of each patient, we randomly
selected 1 night (ie, 8 hours) for validation purposes. Two
trained annotators labeled the selected recordings according to
a predefined annotation protocol.

Figure 1. Experimental setup of the study (left) and cough count visualization on the web server (right). The experimental setup shows where the
smartphones were placed and where the bed was located in the hospital room. The cough count visualization shows the cough counts per night of a
patient. COCO: COugh in COvid-19; CSV: comma-separated values.

Quantification of Cough
For quantification purposes, the definition of cough depends
on the signals used for the measurement. Most commonly, cough
is counted based on sounds, either alone or in combination with
a second signal [12]. Quantification of coughs based on sound
recordings can be accomplished using different methods.
Counting the characteristic explosive cough sounds is the most
commonly used metric for quantifying cough and is used in this
study [12]. The counting of explosive cough sounds is
sometimes referred to as cough frequency in the literature.

Data Annotation
For the annotation process, we used the same labeling manual
that we published in our previous study [20]. First, annotators
marked silence by applying a decibel filter to the recordings
using the Audacity software (The Audacity Team). The Sound
Finder filter marked sounds <−26 dB as silence with the
restriction that the minimum duration of silence between sounds
was 1 second. These periods marked as silence served as visual
aids for the rest of the annotation process. Human annotators
listened to the smartphone recordings and marked the periods

not marked as silence as coughs when an explosive cough sound
was identified [12,33].

We used 2 approaches to guarantee the quality of labeling. First,
we instructed human annotators to label an acoustic event if
they were unsure whether it was a cough. If the annotators were
unsure, the event was discarded and excluded from the analysis.
The remaining acoustic events were classified as noncough.
Second, to assess the quality of the annotations and determine
interrater reliability, we used the intraclass correlation
coefficient.

Ethics Approval
The study protocol was reviewed and approved by
Ethikkommission Ostschweiz, which is responsible for research
on humans in Eastern Switzerland (Business Management
System for Ethics Committees ID BASEC ID: 2020-00741).

Proposed System
The proposed system consists primarily of an Android app
running on a smartphone that detects coughs and records sounds
and secondarily of a backend that continuously receives the

JMIR Form Res 2023 | vol. 7 | e38439 | p. 6https://formative.jmir.org/2023/1/e38439
(page number not for citation purposes)

Barata et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


cough detection information and shows the hourly cough counts.
This gives rise to the two modes of use that are validated in this
work: (1) near real-time smartphone-based cough monitoring
through on-device cough detection and (2) a posteriori cough
monitoring through on-device recording and on-computer
detection.

On-Device Cough Detection
The on-device cough detection system consists of 3 building
blocks: recording, detection, and transmission (Figure 2). To
enable the described building blocks, we developed an Android
app with a foreground service for continuous recording and
detection processes. Recording and detection are triggered and
run in 2 separate threads (ie, recording thread and detection

thread) to handle the latencies between the audio sampling rate
and detection speed. The monitoring system is triggered
manually by a start and stop button click in the app.

The recording thread consists of a continuous loop reading the
audio buffer and passing the dB filter until 6.5-second–long
audio segments are gathered and stored on the external data
storage of the smartphone. We implemented the dB filter to
discard 0.65-second audio segments that do not contain absolute
amplitudes higher than −26 dB. The recording of the audible
audio files is optional. For validating the performance of the
proposed system in this study, we recorded the audio files in
Waveform Audio File Format on an inserted SD card at a
sampling frequency of 16 kHz, 16 bits/sample, and pulse-code
modulation codec.

Figure 2. The proposed cough monitoring system. The figure shows the recording, the detection of cough on the running Android app, the transmission,
and the visualization of the cough counts on the web client. CNN: convolutional neural network. dB: decibel; repo: repository; ETH: Eigenössische
Technische Hochschule; req: request.

Simultaneously, the detection thread loads the produced
pulse-code modulation–encoded files. From each
6.5-second–long audio file, six 0.65-second–long segments
were extracted for cough detection. These 6 windows were
centered on the 6 maximum absolute amplitudes of the signal,
spaced at least half a window apart in the audio file. Cough
detection is based on an ensemble convolutional neural network
(CNN) developed and trained on asthmatic cough data [20,32].
The detection step followed the procedure previously reported
by Barata et al [20]. We first normalized the extracted
minimum-maximum windows and multiplied them using a
Hanning window. We then filtered the output with a Butterworth
high-pass filter of order 5 and a cutoff frequency of 10 Hz to
reduce the low-band noise and discontinuity effects. Finally,
we computed Mel spectrograms with 80 bands, 112 samples
between successive frames, and a 2048-point fast Fourier
transform yielding an 80×128-sized matrix. We computed the
Mel spectrograms using the Melspectrogram function of the
librosa (version 0.9.2) Python package [34].

Subsequently, these Mel spectrograms serve as input to the
trained ensemble classifier, which outputs the cough
probabilities. The trained ensemble classifier consists of 5
different CNN-based models. Each CNN-based models’
architecture consists of 5 convolutional layers with alternating
max-pooling layers, followed by a global max-pooling layer.
The architecture of a single CNN is illustrated in Figure 3. We
computed cough probabilities as the average of the output cough
probabilities of each CNN model. Subsequently, we sent the
cough probabilities to a remote server. On the server, if the
generated probability by the ensemble classifier was above a
predefined threshold, a cough was counted. Alongside the cough
probabilities, we encapsulated the time stamp when the cough
event occurred (derived from the time of recording and the
sampling rate), battery, and memory recorder statuses into JSON
objects. These data objects are then sent in 2-minute intervals
to the server by HTTP POST requests, stored in MySQL
databases, and visualized using a web client (see the
transmission box in Figure 2). In this way, the cough counts
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can be visualized on the web server within 2 to 3 minutes after
the first recording on the device.

The monitoring app meets the following specifications, which
were measured using Android Profiler, an integrated tool of
Android Studio [35]. The Android app requires 90 MB for
installation and Android 8 or a higher version. The RAM use
of the monitoring app ranges between 133.9 MB when a
recorded sound exceeds the threshold of the dB filter and 106.0
MB in the idle (eg, no noise) mode. The CPU use of the
monitoring app ranges between 16% and 25% in idle and
processing mode, respectively. The network use of the app
consists of the HTTP POST requests for status updates (506
B/request) and information about the detected cough (1.6
kB/request). The Android Profiler estimates the battery
consumption as “light,” which is reflected by an observed mean
battery life of 12 hours and 1 minute (SD 1 hour and 19 minutes)
while running the app. Fluctuations in the battery life can be
attributed to the fluctuating noise during the recording.

The detection of cough in real-world data sets represents an
imbalanced classification problem, that is, noncough sounds
occur much more frequently than cough sounds. This raises the
problem that a loss function on imbalanced data can easily be
minimized by focusing on the majority class and overlooking
the minority class. This problem can be alleviated by means of
cost-sensitive learning, that is, by adopting a different loss
function with different costs associated with each class [36].
Cost-sensitive learning can be applied during training and as a
postprocessing step, introducing the cost factor when a decision
regarding a new instance is being made [36].

This can be achieved by moving the decision threshold of the
pretrained classifier. As derived by Fernandez et al [36], a new
instance should be classified as one belonging to a class
characterized by the lowest expected cost. The cost (C) can be
considered as a penalty factor aiming at increasing the
importance of the minority classes.

Hence, in a 2-class problem, a cost-sensitive classifier classifies
a given instance x as belonging to the cough class if and only
if

P (noncough∣x)⋅Cnoncough≤P(cough∣x)⋅Ccough (1)

From the fact that P (noncough∣x) = 1–P(cough∣x), a
threshold th for classifying an instance x as belonging to a
positive class (ie, cough) can be obtained if P(cough∣x)≥th,
where

From equation (2), it follows that cost-sensitive learning can
be used by moving the decision threshold of the pretrained
model to convert it into a cough or noncough decision. Hence,
we optimized the threshold in a previous work to adapt the
detection model, which was trained on mostly well-controlled
patients with asthma, that is, we used thAsthma=0.95 [20]. We
determined the adapted threshold by maximizing the Matthews
correlation coefficient (MCC) between the automated and
annotated cough counts of patients with asthma [20]. The
on-device cough detection algorithm is illustrated in Figure 4.

Figure 3. Convolutional neural network architecture. The annotations “Dep. Sep. Conv. 1 × 7, 16” refer to a depthwise separable convolutional layer
with a 1 × 7 convolutional filter and 16 channels. “R” and “S” stand for the rectifying linear unit and the sigmoid activation function, respectively.
P(cough∣x) refers to the predicted probability of the model. Such architecture represents one of the 5 models that make up the ensemble model.
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Figure 4. On-device (left) and on-computer (right) cough detection on 6.5-second-long audio file (from top to bottom): First, extraction of windows
(extraction of 6 windows with maximal absolute amplitudes (left); continuous extraction of overlapping windows); second, the computation of Mel
spectrograms; third, the computation of the prediction probability of cough by the convolutional neural network ensemble; last, segmentation of cough
probabilities into cough counts (thresholding, left; postprocessing rules including thresholding). k= number of detections per file.

On-Computer Cough Detection
The on-computer cough detection was conducted after the
recording of the patient was complete and was executed on the
recordings, which have been produced by the recording and
filtering steps described in the On-Device Cough Detection
section. It represents a similar mode of use as other
commercially available solutions [21-25,27,29,31], which do
not offer on-device analysis capability. It follows the algorithm
described by Barata et al [20]. First, continuous overlapping
windows from the continuous audio recordings were extracted.
We extracted 650-millisecond-long windows with an overlap
of 585 milliseconds. Second, Mel spectrograms were computed.
Third, the prediction probability of cough was computed using
the CNN ensemble. Finally, cough counts were generated by
applying the following postprocessing rules: only consecutive
probabilities above the predefined threshold were labeled as
coughs to reduce the number of false detections; single
probabilities above the threshold were then considered when
the following probability was also above a second predefined
threshold; and when >8 consecutive detections occur, 2 coughs
were counted. Because the models were applied in a different
context compared with the previous work, the thresholds were
optimized to fit a different application context and differ from
previous work [20], that is, we used the following thresholds:
0.66, 0.62. Figure 4 shows the application of the on-device
cough detection algorithm in comparison with the on-computer
cough detection algorithm. We found the adapted threshold by
maximizing the MCC between the automated and annotated
cough counts of the collected data set.

Validation
In the validation, we compared automated cough counts with
those identified by manual sound analysis in 8-hour-long
recordings of patients with pneumonia. Manual analysis of
sound recordings consisted of 2 blinded rater counts (rater1 and
rater2). We compared the hourly cough counts generated through
the proposed system with the annotated cough counts of one
randomly selected rater. In this way, we can analyze the
discrepancies between the proposed system and the rater. We
argue that the selection bias of the results by choosing one of
the raters can be neglected, provided that the 2 raters are in
excellent agreement.

As performance metrics, we chose previously established
metrics to compare a new measurement technique, such as the
repeated measures correlation [37] and Bland-Altman plots
[38]. Repeated measures correlation denoted by rm (with error
degrees of freedom in parentheses) is a statistical technique for
determining the common association within a patient for paired
measures assessed on ≥2 occasions for multiple patients [37].
In addition, we used a scatter diagram to visualize the metrics
[39]. The Bland-Altman plot analysis is a simple way to assess
bias between mean differences and estimate an agreement
interval into which 95% of the differences from the second
method fall compared with the first method [40]. In our case,
we wanted to evaluate the agreement between a continuous
random variable X (eg, the proposed system cough counts) and
a random variable Y (eg, human rater cough counts), both
measuring the same underlying variable D within-individual,
that is, cough counts per hour. Therefore, to compute the limits
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of agreement, we followed the procedure proposed by Zou [41]
and modeled the difference between the counts measured by
the proposed system and the rater for each pair of measurements
as a one-way random effects model.

dij = xij–yij = d + ai + eij (3)

where d is an unknown true difference between the 2 methods,
ai and ei are mutually independent normal variables with a mean

of 0 and variances σ2
b and σ2

dw, respectively. The limits of
agreement, in this case, are defined by the sum of the true
difference d, random variability between (ai) and within-subject
variability (eij) Hence, the limits of agreement are as follows:

LoAlower = μd – zβ\/2 σd (4)

LoAupper = μd + zβ\/2 σd (5)

where zβ/2 is the upper β/2 quantile of the standard normal
distribution, which is usually set to 1.96. We computed the mean
of the difference between methods for each pair of
measurements per patient following the method described by
Zou [41].

We further reported the average number of false positives per
hour per patient and the average number of false negatives per
hour per patient. To do so, we modeled the limits of agreement
by the sum of true false positive or false negatives (d), the
random variability between (ai) and within-subject variability
(eij) as in equations (4) and (5) and follow the same calculations
as proposed by Zou [41]. We have also reported the
classification metrics over all recordings, such as precision,
recall (true positive rate [TPR]; also known as sensitivity),
specificity (true negative rate [TNR]), negative predictive value
(NPV), MCC, and cumulative distribution function of the error
of the proposed system.

Results

User Statistics
A total of 10 participants with pneumonia (1/10, 10% female
and 9/10, 90% males), 4 (40%) of whom were infected with
SARS-CoV-2, were recruited for this validation study. The
mean age of the participants was 66 (SD 11; range 52-85) years.
None of the participants required ventilator support during the
study. However, a ventilator was always available in case one
was needed. We excluded 1 (10%) male participant from the
analysis because the smartphone was erroneously placed (ie,
not following the protocol; in direct proximity to the ventilator,
masking patient sounds with constant background noise). We
confirmed this observation empirically by randomly selecting
twenty 1-second–long sequences of background noise for each
participant and comparing the average energy of the signals per
participant. We computed the energy of the signals by
computing the power spectral density using Welch method [42]
and integrating over the duration of the signal. The results
yielded an energy of 777 for the excluded participants and 60,
104, 102, 92, 92, and 166 for the included participants. Hence,
this test showed an approximately 5- to 8-fold increase in the

background noise signal energy for the excluded participants
compared with the other participants.

Consequently, we analyzed a total of 72 hours (ie, 9 × 8 h) of
recordings. All recordings were manually analyzed by 2 blinded
raters, hereafter referred to as rater1 and rater2. We calculated
the intraclass correlation coefficient based on all nights, yielding
a value of 98.8%. We interpret this value as excellent.

In the following section, we refer to the annotations made by
rater1 as the reference for our analysis and compare the
predictions made by the proposed system to the cough counts
made by rater1. Cough counts per hour ranged from 0 to 33
coughs with a mean of 7.8 (SD 8.5) coughs.

Evaluation Outcomes
For analyzing the same amount of data as the human raters, the
on-device system produced 8298 predictions and the
on-computer system produced 134,492 predictions. As shown
in Table 2, the cough classification of the proposed on-device
system yielded an MCC of 75%, a recall (TPR) of 71%, a
specificity (TNR) of 99%, a precision (PPV) of 83%, and an
NPV of 98%. The on-computer algorithm yielded an MCC of
86%, a TPR of 82%, a TNR of 99%, a PPV of 92%, and an
NPV of 99%.

The proposed on-device system and rater1 cough counts yielded
a mean difference of −1.2 (95% CI −12.8 to 10.3) coughs per
hour within subject and a within-subject correlation of
rm62=0.82; P<.001; 95% CI 0.72 to 0.89. Figures 5 and 6 show
the corresponding Bland-Altman plot and the correlation
diagram between the hourly cough counts of the proposed
system and rater1, respectively. Furthermore, the proposed
system achieved a mean false positive rate of 1.2 (SD 3.31; 95%
CI 0.0-7.7) coughs per hour within subject and a mean false
negative rate of 2.4 (SD 4.22; 95% CI 0.0-10.7) coughs per hour
within subject.

Finally, as shown in Figure 7 for the cumulative distribution
function, 56% of the absolute errors fall under 2 coughs; 68%
fall under 4 coughs; and 92% fall under 8 coughs, with a
maximum of 21 coughs for the on-device cough monitoring
system. In total, rater1 counted 594 coughs. The proposed
system counted a total of 506 coughs.

The on-computer and rater1 cough counts yielded a mean
difference of −0.9 (95% CI 95% −6.5 to 4.8) coughs per hour
within subjects and a within-subject correlation of rm57=0.95;
P<.001; 95% CI 0.92-0.97. Figures 8 and 9 show the
corresponding Bland-Altman plot and the correlation diagram
between the hourly cough counts of the on-computer system
and rater1.

Furthermore, the on-computer mode achieved a mean false
positive rate of 0.6 (SD 1.45; 95% CI 0.0-3.5) coughs per hour
within subjects and a mean false negative rate of 1.46 (SD 2.05;
95% CI 0.0-5.5) coughs per hour within subjects. In the
on-computer system, 58% of absolute errors fall under 2 coughs;
85% fall under 4 coughs; and 100% fall under 8 coughs, with
a maximum of 7 coughs (Figure 10).
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Table 2. Classification performance over all recordings.

MCCeNPVdTNRcPPVbTPRa

75%98%99%83%71%On device

86%99%99%92%82%On computer

aTPR: true positive rate.
bPPV: positive predictive value.
cTNR: true negative rate.
dNPV: negative predictive value.
eMCC: Matthews correlation coefficient.

Figure 5. Bland-Altman plot of the rater1 and the on-device automated cough counts per hour.

Figure 6. Correlation diagram of the rater1 and the on-device automated cough counts per hour.
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Figure 7. Cumulative probability distribution plot of the absolute error between rater1 and the on-device automated cough counts per hour.

Figure 8. Bland-Altman plot of the rater1 and the on-computer automated cough counts per hour.

Figure 9. Correlation diagram of the rater1 and the on-computer automated cough counts per hour.
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Figure 10. Cumulative probability distribution plot of the absolute error between rater1 and the on-computer automated cough counts per hour.

Discussion

Principal Findings
From the results discussed in the Evaluation Outcomes section,
we conclude that the 2 modes of the proposed system can detect
nocturnal cough counts per hour that correlate strongly with
human raters in a clinical setting. In particular, the on-computer
monitoring system yielded a repeated measures correlation and
mean cough count differences close to those encountered in the
analysis of measurements by human raters. The on-device
system performed worse in terms of recall yet demonstrated a
strong correlation between automated and human rater hourly
cough counts, with the advantage that it was notably more
efficient. The on-device cough monitoring system required only
about 5% of the number of predictions needed to perform cough
detection on all recordings compared with the on-computer
cough monitoring system. Although both modes of the proposed
system do not reach the levels of agreement of human raters, it
must be emphasized that this is not a fair comparison, as this
does not constitute the standard that a human can reproduce
under real conditions with her or his abilities. Rather, by “human
raters,” we mean computer-aided, trained human raters who
had the advantage of being able to mark silence in the recordings
using Audacity software, the ability to save their current work
status, and the ability to pause at will during the annotation
process. The discrepancy in performance between the 2 systems
can be best explained by first, the number of predictions, which
is limited to 6 predictions per 6 seconds for the on-device system
and limits the ability to recognize true positives, and second,
the postprocessing rules on the on-computer system, which can
eliminate single false positives. We explain the drop in recall
in comparison with our findings in previous work [20] not only
by the differences in the algorithm but also by the cough type
and frequency. Because the CNN-based classifier was trained
on data from patients with asthma and recorded at home, most
of whom lived under controlled conditions, in this study, we
applied the classifier to older patients who were hospitalized
because of a lower respiratory tract infection. We also
selectively listened to the original recordings and believe that
the differences in the automated and human rater cough counts
stem from errors caused by strong background noise, throat
clearing, and strong abrupt breath sounds among others;

improving the model is certainly indicated in such cases. With
its dual functionality of recording and detection, the proposed
system identifies these noises and provides a systematic
approach for closing the gap in detection errors. In addition,
our system successfully enabled continuous monitoring of the
patient by medical staff through the continuous transmission of
cough counts and visualization on the web server (Figure 1).

Limitations
There are limitations regarding the generalization of our results.
First, limited time was available for optimizing the on-device
processing pipeline because the system was deployed only a
month after starting the first COVID-19–related lockdown.
Hence, the results of the on-device system underestimated the
actual potential of the CNNs developed and trained by Barata
et al [20] for real-time and on-device detection of cough.
Second, we used only a specific smartphone model in this study.
We have shown that noisy or poor-quality recordings from a
different device can degrade the performance of the classifiers
[32]. At the same time, we have shown that the approach (which
is identical to the one used in this paper) is particularly well
suited to deal with interdevice variations compared with 2 other
approaches in the literature [32]. Moreover, the models used in
this validation study were trained on audio recorded data through
a different audio device than that used in this study, showing
further evidence that our approach produces stable results even
on other devices. We would also like to emphasize that for the
proposed use case and assuming that hospitals provide the
technology, hospitals can determine the hardware to be used,
which reduces variability between devices and, in turn, improves
prediction performance. Third, the cough type and frequency
encountered in the data may limit the generalizability of our
results, as we performed our validation only in data from patients
who were hospitalized with pneumonia overnight. Fourth, our
system is a stationary cough monitoring system designed to be
placed on a horizontal surface in the vicinity of the patient to
be monitored. It does not consider whether the patient leaves
the room or carries the smartphone in a pocket or bag. Fifth,
we did not address the problem of distinguishing the patient’s
cough from the coughs of other people, which is encountered
in contact-free audio recordings [43]. Sixth, even though the
placement of the smartphones was not standardized, it followed
roughly the same guideline for all participants as the

JMIR Form Res 2023 | vol. 7 | e38439 | p. 13https://formative.jmir.org/2023/1/e38439
(page number not for citation purposes)

Barata et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


smartphones were placed above the bed near the patients (Figure
1). Greater variation in smartphone placement would have
strengthened the generalizability of our study. At the same time,
there were several sources of variation for which we had no
control and could have a greater influence than the position of
the smartphone, for example, the general volume of the cough,
the exact position of the patient in bed, including head up or
down or to the side, people who enter the room and talk. Finally,
only 1 female participated in this study. However, the
CNN-based model used in this validation study was trained on
cough data from a study of 94 patients with asthma, 54 of whom
were female. In addition, evaluating the performance of our
system using 1 female participant resulted in a slightly improved
MCC value of 79%.

Comparison With Prior Work
Commercially available cough monitoring systems capable of
detecting cough in various sensor recordings have been proposed
in previous work [21-27]. Some studies have achieved recall
and specificity values of >90% [22]. However, these systems
operated on coughs recorded under different conditions with
different amounts and sensors applied in different contexts,
making a comparison with our work difficult. Only a few
approaches proposed modes of use comparable with ours in
which microphones were not attached to the patient [22,27,31].
According to Barry et al [31], Hull Automatic Cough
Counter has a classification performance similar to that of our
system. However, the Hull Automatic Cough Counter has not
been thoroughly investigated over longer periods and is not
supported by an independent validation study. The Cayetano
Cough Monitor [27] was validated in a total of 24.5 hours of
recordings in another cohort and reported similar classification
performance values for detecting cough episodes. Nevertheless,

the system performed notably worse than our proposed system
in detecting single coughs, with a recall of 51%. Although the
Leicester Cough Monitor outperforms our system notably in
recall (Table 1), it requires additional operator input for
calibration, which takes approximately 5 minutes for 24-hour
recordings [44]. Furthermore, none of these systems provide
dual functionality to record and detect coughs on devices. To
the best of our knowledge, this is the first validation study of a
continuous cough monitoring system for smartphones.

Finally, various cough detection approaches involving
smartphones and wearable recordings have been proposed and
developed in recent literature [18,19,45]. However, they are not
commercially available, have not been validated in independent
data sets, and have not reported the performance of their systems
on devices. Therefore, we have omitted these systems from this
discussion.

Conclusions
In this study, we validated a continuous smartphone-based cough
monitoring system for patients with pneumonia in the ward by
using 2 execution modes, on device and on computer. Using a
commodity device such as a smartphone, our system shows
results comparable with the cough monitors available on the
market. This research enables scalable and cost-efficient cough
monitoring in stationary settings, where the person to be
monitored lies flat, for example, in a hospital bed or overnight.
Our approach is particularly relevant for chronic diseases such
as asthma and chronic obstructive pulmonary disease as well
as in the current COVID-19 pandemic, as our proposed system
uses smartphones, a contact-free consumer-centric technology
that allows convenient, continuous, and remote tracking of
coughs.
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