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Abstract

Background: Natural language processing (NLP) is thought to be a promising solution to extract and store concepts from free
text in a structured manner for data mining purposes. This is also true for radiology reports, which still consist mostly of free
text. Accurate and complete reports are very important for clinical decision support, for instance, in oncological staging. As such,
NLP can be a tool to structure the content of the radiology report, thereby increasing the report’s value.

Objective: This study describes the implementation and validation of an N-stage classifier for pulmonary oncology. It is based
on free-text radiological chest computed tomography reports according to the tumor, node, and metastasis (TNM) classification,
which has been added to the already existing T-stage classifier to create a combined TN-stage classifier.

Methods: SpaCy, PyContextNLP, and regular expressions were used for proper information extraction, after additional rules
were set to accurately extract N-stage.

Results: The overall TN-stage classifier accuracy scores were 0.84 and 0.85, respectively, for the training (N=95) and validation
(N=97) sets. This is comparable to the outcomes of the T-stage classifier (0.87-0.92).

Conclusions: This study shows that NLP has potential in classifying pulmonary oncology from free-text radiological reports
according to the TNM classification system as both the T- and N-stages can be extracted with high accuracy.

(JMIR Form Res 2023;7:e38125) doi: 10.2196/38125
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Introduction

Background
Staging patients with cancer is of utmost importance to
determine the most appropriate treatment regime to ensure the
best outcome for the patient. The tumor, node, and metastasis

(TNM) is an internationally accepted clinical classification
system and a standard for the proper staging of patients with
cancer [1]. Radiological imaging by means of a chest computed
tomography (CT) scan is an important pillar for the TNM
classification in clinical practice. Because the radiological report
is the way to communicate observations to referring clinicians,
the content of the report needs to be complete and accurate
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[2-4]. Specifically, the tumor (T), the node (N), and the
metastasis (M) status should be known. However, the
radiological report is in most cases still a free-text report, in
which layout, structure, readability, and accuracy largely depend
on the reporter.

Prior Work
Natural language processing (NLP) can be applied to extract
specific information from free text. This can also be applied to
radiological reports when, for instance, specific coding and
structured reporting are not used [5,6]. Already several studies
have been performed using NLP in radiology, and
implementation in clinical practice seems just a matter of time
[7-9]. Existing NLP implementations in radiology are often
related to extracting data for cancer registries, such as
oncological follow-up, tumor recurrence rates, and follow-up
of critical oncological findings [10-13]. In addition,
nononcological studies have been performed using NLP to
search for specific statements from pulmonary angiography
reports, and imaging reports of subdural hematoma in the acute
setting or, more generally, to extract recommendations from
radiology reports [14-16].

NLP has also been used in a recent and ongoing transnational
project to extract the stage in pulmonary oncology from free-text
radiological chest CT scan reports [17,18]. The overall goal is
to build a language-independent algorithm that can extract
pulmonary oncology staging according to the TNM
classification.

In prior work, a rule-based NLP algorithm was trained and
validated on Dutch radiological reports before it was translated
and validated on English reports, which showed an accuracy
rate for T-stage ranging between 0.84 and 0.87 [18] The
rule-based approach is thought to be the easiest way to
accurately determine the oncological stage, as TNM is already
a rule-based system. When, for instance, only machine learning
(ML) strategies for staging were used, apart from the issue of
correctly finding the specific concepts, the algorithm also needs
to extract the set of rules of each concept from the training data,
which requires a very large amount of data.

Goal of This Study
This paper describes the process of training and validation of
extraction of the N-stage of pulmonary oncology of Dutch

free-text radiological chest CT reports and discusses whether
this is a feasible tool in addition to the already validated
rule-based T-stage algorithm.

Hypothesis
For adequate staging, the N-stage should also be known. We
hypothesize that, as the items to build the N-stage should be
mentioned in the same radiological staging report as used to
classify the T-stage, it should be possible to accurately extract
the N-stage from the report using a similar process as previously
used for the T-stage.

Methods

Corpus Description
For this study, radiological reports of diagnostic chest CT scans
used for the staging of pulmonary oncology were used. The
training and validation sets consisted of, respectively, 95 and
97 reports to provide sufficient variety for training and detail
for validation.

Reports were included when a primary pulmonary malignancy
was described by a radiologist. The included free-text
radiological reports have been constructed by several different
radiologists, other than the authors, using a speech recognition
tool (G2 Speech). Exclusion criteria were (1) restaging and
follow-up reports, (2) cases with 2 primary tumors, and (3)
incomplete reports. The included reports were independently
classified by 2 authors (MN and SP) according to the eighth
TNM classification system [1]. For every report, the T-stage
and N-stage were labeled. Because TNM-stage was not specified
in the radiological report, this had to be done manually.
Annotation guidelines were set for proper and consistent
labeling, see annotation guidelines in Multimedia Appendix 1.
Tumor stage characteristics of both groups are shown in cohort
composition of the training and validation set (Table 1). The
layout of the included reports differed and contained one or
more of the following subheadings: clinical details, description
of the modality, report, body part, and impression.

The training set was used to identify the content of the
radiological report to find the appropriate synonyms used for
reporting N-stage. These synonyms were used to build new
N-staging rules that were incorporated in the existing T-stage
rule-based algorithm.
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Table 1. Class label distribution on the training and validation set. Reports were independently classified by 2 authors (MN and SP) according to the

eighth TNMa classification system.

Validation (N=97), nTraining (N=95), nTNM-stage

00T1aN0

00T1aN1

01T1aN2

00T1aN3

27T1bN0

02T1bN1

11T1bN2

10T1bN3

97T1cN0

30T1cN1

52T1cN2

13T1cN3

10T2N0

00T2N1

34T2N2

11T2N3

54T2aN0

22T2aN1

32T2aN2

13T2aN3

24T2bN0

20T2bN1

64T2bN2

23T2bN3

55T3N0

01T3N1

96T3N2

64T3N3

87T4N0

20T4N1

1113T4N2

69T4N3

aTNM: tumor, node, and metastasis.

Ethical Considerations
This research was submitted to the Medical Ethical Board of
the Maastricht University Medical Center. They confirmed that
this research is not subjected to the Medical Research Involving
Human Subjects Act (non-WMO). Therefore, approving this
research and waiving informed consent. Only retrospective and
anonymized data were used.

Determining T-Stage
In this study, the same rule-based TNM-stage algorithm was
used as published earlier, with preprocessing steps, such as
sectionizing, text cleaning, extracting numbers, and accurate
sentence splitting [17]. The processing steps were based on the
extraction of 3 items that are important for T-staging using
regular expression (RegEx): size, presence, and involvement
(Figure 1). After extracting all relevant findings items for tumor
staging, a separate rule-based classifier is used for final
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classification. Outcomes were used for T-staging the tumor (Multimedia Appendix 2).

Figure 1. Schematic overview of the rule-based T- and N-staging algorithm. In the preprocessing step, raw data of the report are prepared for actual
processing. The processing is divided into T-stage and N-stage in which several subtasks are displayed to finally stage the pulmonary tumor and
pulmonary lymph nodes. N: node; POS: part-of-speech; T: tumor.

Determining N-Stage
For extracting the N-stage of pulmonary oncological cases, the
eighth TNM classification was analyzed in detail, and 4 items
were recognized as important: (pathological) lymph node, lymph
node level, lymph node side, and tumor side, see the schematic
overview of the rule-based T- and N-staging algorithm in Figure
1. To accurately stage the N-stage, the described lymph nodes
had to be found and matched with their potential context first

to know whether or not the lymph node was a pathological
lymph node. Therefore, synonyms of N-specific concepts, such
as “lymph nodes” and “pathological,” had to be found to build
a specific RegEx per concept. Therefore, lymph node–specific
rules had to be built.

For N-staging, it was necessary to look more extensively at the
relation between “context target” and the “context modifiers”
because it appeared that a pathological lymph node was less
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specifically mentioned in the report than the primary tumor. A
target could, for instance, be the concept for the word “lymph
node” and the modifier the adjective, stating it is “enlarged.”
Additionally, an enlarged lymph node could be described not
only by text but can also be highlighted by quantifying its
enlarged size. This resulted in finding three distinct ways of
mentioning the pathological lymph node in which, (1) “lymph
node” and “pathological lymph node” had to be extracted, (2)
“lymph node” and its pathological size had to be extracted, and
(3) “lymph node” and the word “pathological” had to be
matched, and a specific RegEx had to be built per item. Regular
expressions related to the context that indicates the presence or
absence of target concepts (context validation), such as negations
and uncertainty, could be reused from the T-staging process,
but the additional category for “pathological” had to be added.

Subsequently, the lymph node level had to be found and, since
there are 14 different thoracic levels, a RegEx was built per
level. Furthermore, the side of the tumor and the pathological
lymph node had to be extracted to define the lymphadenopathy
to be ipsilateral, contralateral, or bilateral. This was not
necessary for extraction of the T-stage, and specific rules for
sentence analysis had to be set. The size of the lymph node was
extracted by the measurement extractor component, which uses
the number category of the open-source part-of-speech tagger
as input. The measurement extractor extracts and normalizes
measurements from text, which is, for example, required for
expressions such as 12×44×29 mm. Finally, the tumor side was
matched to the side of the pathological or enlarged lymph node
and used for definitive N-staging, see concept synonyms in
Multimedia Appendix 2.

Statistical Analysis
For both the training and the validation sets, the substage
accuracy scores were calculated separately for the T-stage and
the N-stage. T-substage is a subdivision of the T-stage to provide
more detail, for example, stage T1 (≤3 cm) contains substage
T1c (2 to ≤3 cm) [1,18]. Next to the T- and N-stage, the

combined accuracy score (TN-stage) was scored for the training
and validation sets. To find out whether the N-stage extension
in this TN-classifier compromised the T-stage outcomes, the
earlier version of the algorithm, which was a T-stage classifier
only, was also run on the training and validation sets. In
addition, the accuracy score was calculated when only tumor
size was taken into account.

Confusion matrices were created for the training and the
validation sets to visualize the performance of the T-stage,
N-stage, and TN-stage classification. In addition, the precision
(ie, specificity), recall (ie, sensitivity), and F1-score (ie,
combined metric for precision and recall) for the combined
TN-stage classifier were calculated for the training and
validation sets. Weighted scores were used, metrics were first
calculated by label, and then averaged using the addition of
weights corresponding to the number of true instances for each
label. Different types of errors were grouped by category for
further analysis: data selection, context extraction, concept
extraction, and reporter errors. In category data selection, errors
are grouped related to extracting relevant sections and sentences,
as executed by the sectionizer. Concept errors are related to
extracting concepts; entities are linked to ontologies (Multimedia
Appendix 2). Concept errors are split into missing synonyms,
ambiguation, and complexity errors. Failing to extract implicit
information is an example of a complexity error. Context errors
are divided into missing synonyms and matching errors, a
matching error occurs when the context is linked to the wrong
concept. Reporter errors are related to user-or-speech input.

Graphical User Interface
A graphical user interface (GUI) was extended to highlight the
TN-stage of the report in the staging screen, see graphical user
interface MedStruct in Figure 2. When the N-rules were set,
they have been implemented in this tool to help with the staging
check by visualizing the scored TN-stage by the algorithm and
comparing those with the manually extracted TN-stage.
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Figure 2. Graphical user interface MedStruct. M: metastasis; N: node; T: tumor; TNM: tumor, node, and metastasis.

Results

The accuracy rates for the T-stage score were 0.84 and 0.92,
respectively, for the training (N=95) and validation (N=97) set.
N-stage accuracy scores were 0.96 and 0.92, respectively, for
the training and validation sets. The combined accuracy
TN-stage scores were 0.84 and 0.85, respectively, for the
training and validation sets, see T-, N-, and TN-stage classifier
accuracy in Table 2. Confusion matrices are created for the
N-stage (Figure 3), T-stage (Figure 4), and the combined
TN-stage (Figure 5) on both training and validation sets.
Looking at the combined outcomes of the training and validation
confusion matrices, it can be observed that the N-stage outcome

was understaged in 7 cases and overstaged in 5 cases. T-stage
outcome was understaged in 9 cases and overstaged in 11 cases
out of the grand total of 192 cases. The TN-stage confusion
matrices show that in both sets 15 cases were wrongly classified,
and that in total, 14 cases were understaged and 16 overstaged.
In addition, the errors made were equally divided between both
sets. The weighted precision, recall, and F1-score for the
combined TN-stage classifier are shown in Table 3. The errors
found were categorized into specific subcategories as shown in
TN-stage errors by category (Table 4). In total, 16 errors were
made in the training set and 16 in the validation set leading to
15 classification errors, with 1 error in both T- and N-stage and
1 case in both the training and the validation set.

Table 2. T-,a N-,b and TNc-stage classifier accuracy. Accuracy scores of the training and validation sets of the separate T-stage and N-stage and the
combined TN-stage. For comparison, the T-classifier outcomes are shown for the current sets as well as the T-stage for only tumor size.

T-classifierTN-classifierTNMd-subclassification

Validation (N=97)Training (N=95)Validation (N=97)Training (N=95)

N/AN/Ae0.920.87Accuracy T-stage (T-substage)

N/AN/A0.920.96Accuracy N-stage

N/AN/A0.850.84Accuracy TN-stage

0.790.760.810.80Accuracy T-stage (size only)

0.860.820.930.89Accuracy T-stage (T-stage)

aT: tumor.
bN: node.
cTN: tumor and node.
dTNM: tumor, node, and metastasis.
eN/A: not applicable.
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Figure 3. Confusion matrices of the N-stage classification only on the (left) training set and (right) validation set. N: node.

Figure 4. Confusion matrices of the T-stage classification only on the (left) training set and (right) validation set. T: tumor.

JMIR Form Res 2023 | vol. 7 | e38125 | p. 7https://formative.jmir.org/2023/1/e38125
(page number not for citation purposes)

Puts et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Confusion matrices of the TN-stage classification on the (left) training set and (right) validation set. N: node; T: tumor; TN: tumor and node.

Table 3. Weighted precision, recall, and F1-scores of the TNa-stage.

F1-scoreRecallPrecisionPartition

0.860.840.89Training (overall)

0.840.850.87Validation (overall)

aTN: tumor and node.
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Table 4. TNa-stage errors by category.

Validation (N=97), nTraining (N=95), nError group and error type and description

Data selection—Sectionizer

2 (2T)2 (1T,b 1Nc)Subheadings not present or falsely not found—falsely correlation tumor or nodal description

Context extraction—Missing

3 (2T, 1N)1 (1T)Context not matched because of missing modifier in configuration

3 (2T, 1N)1 (1T)Stated uncertainty not found accurately

Context extraction—Complexity

04 (3T, 1N)Context mismatch, wrong modifier detected

1 (1N)0Abdominal para-aortal lymph node

Concept extraction—Missing

1 (1N)0Pathological synonym

Concept extraction—Ambiguity

02 (1T, 1N)Nodal description or station

02 (2T)Tumor-dependent atelectasis

01 (1T)Pulmonary vein

Concept extraction—Complexity

1 (1T)1 (1T)Size description

1 (1T)1 (1T)T4 multiple lobes—implicit mentioning

1 (1N)0Side implicit mention

01 (1N)Mention nodal status

Reporter—Wrong input

2 (1T, 1N)1 (1T)Typing or speech error

3 (3N)0Incomplete node mentioning (location or pathological)

1 (1T)0Inconsistent tumor location

16d16dTotal errors

aTN: tumor and node.
bT: tumor.
cN: node.
d16 errors in total, leading to 15 wrong classification scores.

Discussion

Principal Results
The aim of this research was to build an NLP algorithm to
classify pulmonary oncology as reported in free-text radiological
CT chest staging reports according to the eighth TNM
classification. In addition to previously developed T-staging
rules, specific N-staging rules were added to the algorithm in
order to find 4 additional items necessary for proper N-staging:
(pathological) lymph node, lymph node level, lymph node side,
and tumor side.

The accuracy scores for the N-stage were 0.96 and 0.92,
respectively, in the training and validation set. This shows that
this rule-based approach and the rule’s set are viable for
extraction of the items necessary for proper N-staging. From
the combined TN-stage accuracy scores for the training and
validation set, 0.84 and 0.85, respectively, it can be observed

that outcomes are a bit lower. However, taking into account
that both the T-stage and the N-stage had to be correct, accuracy
is still reasonably high and comparable with outcomes of the
T-stage alone (0.87-0.92, see Table 2). The outcomes of the
accuracy score of the TN-classifier are comparable or slightly
better than the accuracy score of the T-classifier only, showing
that the addition of the N-stage rules did not interfere with the
overall outcome.

When looking at the error categories, a total of 20 errors were
made in the T-stage classification and 12 in the N-stage
classification. One case in both groups, the N-stage and the
T-stage, was falsely staged. Overall, many different errors
occurred, which shows the heterogeneity of the reports, and
hence, the extent of the task to tackle and optimize this
rule-based approach. The T-stage classifier is validated in
another language at an external institute [18]. From the external
validation and the current N-stage validation, we can conclude
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that the rules do not seem to under or overfit, and the
performance on all training and validation sets is similar.

The difference between the high N-stage accuracy scores and
the low TN-stage accuracy scores is slightly compromised by
difficulties still experienced by the T-staging rather than by
N-staging difficulties (Table 4). This can be explained by the
fact that the T-staging process is more difficult to accurately
perform with a rule-based approach and may therefore be less
reliable than the N-staging. This is not surprising when looking
at the number of substages used in the T-stage compared to the
N-stage, with 8 substages for the T-staging (T1a-T4) versus 4
substages for the N-staging (N0-N3). In addition, the T-staging
rules include several exceptions and are therefore more extensive
than the N-staging rules [19]. This is illustrated by the fact that
only the location of the pathological lymph node is different in
the N-staging process, whereas for the T-staging, tumor size,
presence, and involvement differ per stage. Furthermore, to
accurately T-stage the tumor, the size is of utmost importance
leading to accuracy scores of 0.80 and 0.81 when only finding
the accurate tumor size. The additional scores of 0.07 and 0.11
are achieved by setting multiple rules, which is a laborious
process.

Rules Versus ML
Although rule-based algorithms are in general inflexible and
difficult to generalize, a rule-based approach has been chosen
over an ML approach. First, the classification problem is
multiclass (8 T-stages and 4 N-stages), which requires a large
amount of data to cover all classes. Where an ML approach
learns from examples, a rule-based approach does not require
examples for each class, as knowledge from other sources such
as a knowledge expert (eg, radiologist) can be implemented.
Next to the number of classes, numerous combinations of
findings can result into a single class. The N-stage, for example,
depends on the combination of tumor laterality and lymph node
location. Additionally, the free-text reports contain medical
jargon, context, and writing styles, all contributing to the variety
of the data. Learning such a complex classification task by an
ML approach requires, and therefore a large, annotated data set,
which is unfortunately difficult to obtain. TNM-stages registered
in the electronic health record are determined by a
multidisciplinary team. The staging outcome of the
multidisciplinary team can differ from staging exclusively based
on imaging; therefore, all reports need to be manually labeled.
Retrieving reports from the electronic health record meeting
inclusion criteria and labeling radiology reports with TNM-stage
require expert knowledge and are very time-consuming. As the
rule-based algorithm is mainly “learned” from knowledge
experts and only partly from data, an equal data split ratio is
selected. For both sets, approximately 100 reports were
annotated to provide variety for training and detail for validation.

Second, as the official TNM-staging system is a rule-based
classification system, rules are known by forehand, and the
implementation of the algorithm can almost be a one-to-one
translation of the official rules. Learning rules, such as size
thresholds for T-stage classification, is counterintuitive if the
thresholds are already predefined. Adapting the rule-based
algorithm between TNM versions is straightforward, as

differences between versions are often minor alterations of the
rules [20]. A rule-based approach can be easily adapted to those
differences, while a data-dependent ML approach would require
relabeling a large amount of data.

Third, explainability is often required for usage in a clinical
setting. To explain the classification, the outcome of each
TNM-rule feature should be explained. For example, N-staging
depends on the laterality of the tumor; to determine the N-stage,
tumor laterality should be provided.

When an ML approach would be used for explainability, it
would likely be better to divide the classification tasks into
subtasks (no end-to-end classification). The outcome of the
subtasks could be used as an input for a rule-based system.
Several ML approaches extract named entities from radiology
reports [21,22]. Named entity recognition could be seen as a
subtask for staging, although errors made by our approach in
extracting concepts (entities) are limited (see Table 4).

Finally, external validation has shown that the rule-based
T-staging algorithm is generic enough to be easily translated to
another institute and language [18]. Language and other content
differences can be managed by editing the configuration and
without altering the implemented rules.

Future Research Suggestions
To increase the overall TN-outcome, both T-staging and
N-staging processes should be improved. However, it is thought
that the accuracy of the T-staging is limited, even with finding
more synonyms using this single rule-based approach. At this
point, changing the rules of the classification process is a
tradeoff between improving one rule while decreasing the
outcome of the other. Instead, it may be better to improve the
T-staging outcomes with ML by, for instance, specific training
to find difficult-to-extract concepts or match the right context.
For example, accuracy may then be improved better by
identifying gravity-dependent atelectasis, matching uncertainty
mentions to the correct concepts, or finding specific T4
exceptions.

In a single radiological report, often several (pathological) lymph
node stations are described. This is beneficial for an NLP
algorithm, since, even when a pathological lymph node is
missed, another pathological lymph node (in the same level or
leading to the same stage) may be picked up by the algorithm,
thereby not changing the final outcome. Additionally, the word
“lymphadenopathy” is highly specific for pathological lymph
nodes, and so are its modifiers (location, ipsilateral,
contralateral, or bilateral). Such “backups” and specific terms
are less present in primary tumor staging.

Fortunately, the combination of concepts for “pathological
contralateral lymph node” or “enlarged supraclavicular lymph
node” is quite specific for the N3-stage, which, in turn, allows
for better extraction. When a pathological lymph node in this
specific location is found, other lymph node stations are of less
importance as the highest N-stage is reached. This can be the
explanation for the high combined accuracy score of 97.2% in
the N2-stage, in which N2 harbors the most lymph node levels.
The same may be true for the high combined N0-stage accuracy
score of 98.5%, in which the accurate distinction is to properly
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match negations, and the rules set to not match any of the
pathological concepts, enlarged sizes, or the word
“lymphadenopathy” to the lymph node levels. Although this
“backup” may be beneficial for the final results, the algorithm
still needs to highlight all pathological lymph nodes correctly
to increase the accuracy of the radiological report.

However, the abovementioned is not true when only 1
pathological lymph node is present in a random (nonspecific)
location. Perhaps, this more specific task or option is the reason
that relatively many errors are present in the N1- and N3-staging
groups with overall 0.71 and 0.87 accuracies compared to 0.99
and 0.97 for the N0- and N2-stages. In addition, for N3 nodes,
the contralateral side needs to be accurately distinguished.
Another challenging problem occurs when several lymph nodes
are described within a single sentence, which complicates the
correct matching of contextual information (eg, uncertainty and
negation) even more.

To increase specific N-stage accuracy scores, dependency
relations could be used to have a better idea of which contextual
property belongs to which lymph nodes; in case multiple lymph
nodes are present in a single sentence, this may improve the
accuracy score further. In addition, also ML-based NLP
implementation might be helpful to find specific terms and
mentions. This seems less difficult to train than the T-staging
because the rules are less difficult. This implementation of ML
should be targeted at full matching between the lymph node
and all its mentioned properties such as pathological state, level,
and nodal size.

The implementation of TN-algorithm should be externally
validated in a different institute as well as in different languages
as done for the T-stage algorithm [18]. The system is currently
deployed in the authors’ institute for evaluation purposes on a
voluntary basis, a prospective study could result in more insights
on the clinical value of the approach.

Standardization
An approach to increase accuracy, without artificial intelligence
tooling and without IT interference, can be through
standardization of the report. This standardization step, which
is specifically not a template or a structured report, represents
a set of simple rules on how to report. This can be as simple as
stating the size of the tumor or the pathological lymph node
directly after the stated concept, perhaps between brackets. A
different option is to only give sizes for pathological lymph
nodes and tumors, or mention only 1 lymph node level per
sentence. Alternatively, the primary tumor or specific lymph
node with all its highlights is reported in 1 sentence. This way,
the set of rules will result in higher accuracy scores. In addition,
the readability of the reports will improve as well even without
difficult and extensive interventions during the reporting
process. The GUI that has been developed allows real-time
analysis, and feedback to the reporter may also be beneficial
here. As mentioned earlier, this overall quality report–enhancing
step can also be achieved by ML only but requires a vast number
of reports to train all variants. Also, more annotated data are
then needed and, as this is laborious for training purposes, hence
not desirable.

Human Input Errors
When looking at the total errors in the training and validation
sets, the reporter error group “reporter” is responsible for 21.9%
of the total errors. These errors are caused by incomplete or
inaccurate information, or speech or typing errors when, for
instance, adjusting the report. It is difficult for a rule-based
algorithm to find these errors because staging information can
be implicated in the text rather than explicit mentioning, and
typographical errors or speech errors occur in many different
ways. Even with manually determining classification from the
reports, it was sometimes difficult to interpret the correct
classification. Knowledge of the reporting and staging process,
for instance, order-specific information, overall contextual
information, or knowing what item to prioritize in wrongly
stated concepts or context, made it possible to determine the
correct stage. These errors cannot be solved with a rule-based
approach, and it is questionable whether ML will do better, as
these errors may not occur systematically—even in a vast
number of reports—hampering the ability of ML to recognize
these.

Real-Time Feedback
It is very interesting to see whether reporter-induced errors can
be diminished when the report is staged live, and outcomes are
displayed using a GUI, as these errors are relatively easy to
prevent. From the grand total of 192 scans, 7 staging errors
could have been prevented. It seems that an improvement in
reporting skills, combined with the implementation of specific
ML, would increase accuracy outcome scores the most.

Benefits of the Approach
Doctors can, if they prefer, use free text over structured
reporting, while structured data can be stored. Free text allows
nuances and the possibility to provide additional information,
which would not be captured by structured reporting. NLP
combined with live feedback to the end user could result in
additional quality assurance (QA) steps. The QA step could
stimulate the use of a standardized vocabulary, which makes
reports more consistent and comprehensible. A QA step could
enforce the end user to provide certain required information.
Finally, the structured output of the algorithm could be used
(live) as an input for other algorithms; for example, algorithms
that provide suggestions or decision support.

Limitations
One of the limitations of this study is that there were only 192
cases included. The cohort composition of the training and
validation set (Table 1) shows that only a subset of the 32
TN-stages was present in the training and validation set. The
relatively few reports included in these groups induced
heterogeneity. Another limitation is that the outcomes of the
additional N-stage were only based on reports from 1 institution.
Future work requires its external validation. In addition, positron
emission tomography (PET)-CT reports were not included in
this study, in which possibly important tracer uptake information
is missed. This is mainly important to exclude enlarged lymph
nodes without uptake and include small lymph nodes with tracer
uptake.
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To complete fully assisted TNM-staging, M-stage is also needed.
This is, however, expected to be much more difficult or may
be even not feasible at all. For instance, brain metastasis can
only be seen with high accuracy on brain magnetic resonance
imaging. In addition, whole body PET-CT is used as a screening
tool to search for distant metastasis. However, suggested distant
metastasis on PET-CT mostly requires additional, specifically
targeted imaging to confirm metastasis. As such, only metastasis
located in the chest can be found on a staging chest CT, and
only those can be staged. In future research, PET-CT reports
need to be validated. Merging information from different
radiological staging reports is needed for accurate full

TNM-staging. Perhaps, such an algorithm can be useful for and
applied to oncology staging forms or multidisciplinary meetings.

Conclusions
NLP shows its potential in classifying pulmonary oncology
from free-text radiological reports according to the TNM
classification system, as both the T- and N-stages can be
extracted with high accuracy. Integration with ML approaches
to perform specific tasks should improve accuracy scores even
more. However, standardization of the reporting manner and a
visual check by the reporter before finalizing the report may be
relatively easy implementations in clinical practice to increase
accuracy.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Annotation guidelines.
[DOCX File , 14 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Concept synonyms.
[DOCX File , 20 KB-Multimedia Appendix 2]

References

1. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The eighth edition lung cancer stage classification. Chest
2017;151(1):193-203. [doi: 10.1016/j.chest.2016.10.010] [Medline: 27780786]

2. Lukaszewicz A, Uricchio J, Gerasymchuk G. The art of the radiology report: practical and stylistic guidelines for perfecting
the conveyance of imaging findings. Can Assoc Radiol J 2016;67(4):318-321 [FREE Full text] [doi:
10.1016/j.carj.2016.03.001] [Medline: 27451909]

3. Goergen SK, Pool FJ, Turner TJ, Grimm JE, Appleyard MN, Crock C, et al. Evidence-based guideline for the written
radiology report: methods, recommendations and implementation challenges. J Med Imaging Radiat Oncol 2013;57(1):1-7.
[doi: 10.1111/1754-9485.12014] [Medline: 23374546]

4. Bosmans JML, Peremans L, Menni M, De Schepper AM, Duyck PO, Parizel PM. Structured reporting: if, why, when,
how-and at what expense? Results of a focus group meeting of radiology professionals from eight countries. Insights
Imaging 2012;3(3):295-302 [FREE Full text] [doi: 10.1007/s13244-012-0148-1] [Medline: 22696090]

5. Ranschaert ER, Morozov S, Algra PR, editors. Artificial Intelligence in Medical Imaging: Opportunities, Applications and
Risks. Cham: Springer Nature; 2019.

6. Steinkamp JM, Chambers C, Lalevic D, Zafar HM, Cook TS. Toward complete structured information extraction from
radiology reports using machine learning. J Digit Imaging 2019;32(4):554-564 [FREE Full text] [doi:
10.1007/s10278-019-00234-y] [Medline: 31218554]

7. Pons E, Braun LMM, Hunink MG, Kors JA. Natural language processing in radiology: a systematic review. Radiology
2016;279(2):329-343. [doi: 10.1148/radiol.16142770] [Medline: 27089187]

8. Jungmann F, Kuhn S, Tsaur I, Kämpgen B. Natural language processing in der radiologie: weder trivial noch unerreichbare
magie [Natural language processing in radiology: neither trivial nor impossible]. Radiologe 2019;59(9):828-832. [doi:
10.1007/s00117-019-0555-0]

9. Sorin V, Barash Y, Konen E, Klang E. Deep learning for natural language processing in radiology—fundamentals and a
systematic review. J Am Coll Radiol 2020;17(5):639-648. [doi: 10.1016/j.jacr.2019.12.026] [Medline: 32004480]

10. Lee SJ, Weinberg BD, Gore A, Banerjee I. A scalable natural language processing for inferring BT-RADS categorization
from unstructured brain magnetic resonance reports. J Digit Imaging 2020;33(6):1393-1400 [FREE Full text] [doi:
10.1007/s10278-020-00350-0] [Medline: 32495125]

11. Zeng Z, Espino S, Roy A, Li X, Khan SA, Clare SE, et al. Using natural language processing and machine learning to
identify breast cancer local recurrence. BMC Bioinformatics 2018;19(suppl 17):498 [FREE Full text] [doi:
10.1186/s12859-018-2466-x] [Medline: 30591037]

JMIR Form Res 2023 | vol. 7 | e38125 | p. 12https://formative.jmir.org/2023/1/e38125
(page number not for citation purposes)

Puts et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=formative_v7i1e38125_app1.docx&filename=95fff11e2bb083ba62384125011e7c14.docx
https://jmir.org/api/download?alt_name=formative_v7i1e38125_app1.docx&filename=95fff11e2bb083ba62384125011e7c14.docx
https://jmir.org/api/download?alt_name=formative_v7i1e38125_app2.docx&filename=fb9960df417286f037be263eb3d4937a.docx
https://jmir.org/api/download?alt_name=formative_v7i1e38125_app2.docx&filename=fb9960df417286f037be263eb3d4937a.docx
http://dx.doi.org/10.1016/j.chest.2016.10.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27780786&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0846-5371(16)30003-1
http://dx.doi.org/10.1016/j.carj.2016.03.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27451909&dopt=Abstract
http://dx.doi.org/10.1111/1754-9485.12014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23374546&dopt=Abstract
https://europepmc.org/abstract/MED/22696090
http://dx.doi.org/10.1007/s13244-012-0148-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22696090&dopt=Abstract
https://europepmc.org/abstract/MED/31218554
http://dx.doi.org/10.1007/s10278-019-00234-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31218554&dopt=Abstract
http://dx.doi.org/10.1148/radiol.16142770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27089187&dopt=Abstract
http://dx.doi.org/10.1007/s00117-019-0555-0
http://dx.doi.org/10.1016/j.jacr.2019.12.026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32004480&dopt=Abstract
https://europepmc.org/abstract/MED/32495125
http://dx.doi.org/10.1007/s10278-020-00350-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32495125&dopt=Abstract
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2466-x
http://dx.doi.org/10.1186/s12859-018-2466-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30591037&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


12. Lou R, Lalevic D, Chambers C, Zafar HM, Cook TS. Automated detection of radiology reports that require follow-up
imaging using natural language processing feature engineering and machine learning classification. J Digit Imaging
2020;33(1):131-136 [FREE Full text] [doi: 10.1007/s10278-019-00271-7] [Medline: 31482317]

13. AAlAbdulsalam AK, Garvin JH, Redd A, Carter ME, Sweeny C, Meystre SM. Automated extraction and classification of
cancer stage mentions from unstructured text fields in a central cancer registry. AMIA Jt Summits Transl Sci Proc
2018;2017:16-25 [FREE Full text] [Medline: 29888032]

14. Spandorfer A, Branch C, Sharma P, Sahbaee P, Schoepf UJ, Ravenel JG, et al. Deep learning to convert unstructured CT
pulmonary angiography reports into structured reports. Eur Radiol Exp 2019;3(1):37 [FREE Full text] [doi:
10.1186/s41747-019-0118-1] [Medline: 31549323]

15. Pruitt P, Naidech A, Van Ornam J, Borczuk P, Thompson W. A natural language processing algorithm to extract
characteristics of subdural hematoma from head CT reports. Emerg Radiol 2019;26(3):301-306. [doi:
10.1007/s10140-019-01673-4] [Medline: 30693414]

16. Yetisgen-Yildiz M, Gunn ML, Xia F, Payne TH. A text processing pipeline to extract recommendations from radiology
reports. J Biomed Inform 2013;46(2):354-362 [FREE Full text] [doi: 10.1016/j.jbi.2012.12.005] [Medline: 23354284]

17. Nobel JM, Puts S, Bakers FCH, Robben SGF, Dekker ALAJ. Natural language processing in Dutch free text radiology
reports: challenges in a small language area staging pulmonary oncology. J Digit Imaging 2020;33(4):1002-1008 [FREE
Full text] [doi: 10.1007/s10278-020-00327-z] [Medline: 32076924]

18. Nobel JM, Puts S, Weiss J, Aerts HJWL, Mak RH, Robben SGF, et al. T-staging pulmonary oncology from radiological
reports using natural language processing: translating into a multi-language setting. Insights Imaging 2021;12(1):77 [FREE
Full text] [doi: 10.1186/s13244-021-01018-1] [Medline: 34114076]

19. Rami-Porta R, Eberhardt WEE. Clinical implications of the innovations in the primary tumour and metastasis of the 8th
edition of the TNM classification for lung cancer. J Thorac Dis 2018;10(suppl 22):S2682-S2685 [FREE Full text] [doi:
10.21037/jtd.2018.03.100] [Medline: 30345105]

20. Rami-Porta R, Asamura H, Travis WD, Rusch VW. Lung cancer—major changes in the American Joint Committee on
cancer eighth edition cancer staging manual. CA Cancer J Clin 2017;67(2):138-155 [FREE Full text] [doi:
10.3322/caac.21390] [Medline: 28140453]

21. Zhang H, Hu D, Duan H, Li S, Wu N, Lu X. A novel deep learning approach to extract Chinese clinical entities for lung
cancer screening and staging. BMC Med Inform Decis Mak 2021;21(suppl 2):214 [FREE Full text] [doi:
10.1186/s12911-021-01575-x] [Medline: 34330277]

22. Hu D, Zhang H, Li S, Wang Y, Wu N, Lu X. Automatic extraction of lung cancer staging information from computed
tomography reports: deep learning approach. JMIR Med Inform 2021;9(7):e27955 [FREE Full text] [doi: 10.2196/27955]
[Medline: 34287213]

Abbreviations
CT: computed tomography
GUI: graphical user interface
ML: machine learning
NLP: natural language processing
PET: positron emission tomography
QA: quality assurance
RegEx: regular expression
TNM: tumor, node, and metastasis

Edited by T Hao; submitted 20.03.22; peer-reviewed by H Xu; comments to author 01.08.22; revised version received 25.09.22;
accepted 22.12.22; published 22.03.23

Please cite as:
Puts S, Nobel M, Zegers C, Bermejo I, Robben S, Dekker A
How Natural Language Processing Can Aid With Pulmonary Oncology Tumor Node Metastasis Staging From Free-Text Radiology
Reports: Algorithm Development and Validation
JMIR Form Res 2023;7:e38125
URL: https://formative.jmir.org/2023/1/e38125
doi: 10.2196/38125
PMID: 36947118

JMIR Form Res 2023 | vol. 7 | e38125 | p. 13https://formative.jmir.org/2023/1/e38125
(page number not for citation purposes)

Puts et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/31482317
http://dx.doi.org/10.1007/s10278-019-00271-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31482317&dopt=Abstract
https://europepmc.org/abstract/MED/29888032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29888032&dopt=Abstract
https://europepmc.org/abstract/MED/31549323
http://dx.doi.org/10.1186/s41747-019-0118-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31549323&dopt=Abstract
http://dx.doi.org/10.1007/s10140-019-01673-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30693414&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(13)00003-8
http://dx.doi.org/10.1016/j.jbi.2012.12.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23354284&dopt=Abstract
https://europepmc.org/abstract/MED/32076924
https://europepmc.org/abstract/MED/32076924
http://dx.doi.org/10.1007/s10278-020-00327-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32076924&dopt=Abstract
https://europepmc.org/abstract/MED/34114076
https://europepmc.org/abstract/MED/34114076
http://dx.doi.org/10.1186/s13244-021-01018-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34114076&dopt=Abstract
https://europepmc.org/abstract/MED/30345105
http://dx.doi.org/10.21037/jtd.2018.03.100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30345105&dopt=Abstract
https://onlinelibrary.wiley.com/doi/10.3322/caac.21390
http://dx.doi.org/10.3322/caac.21390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28140453&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01575-x
http://dx.doi.org/10.1186/s12911-021-01575-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34330277&dopt=Abstract
https://medinform.jmir.org/2021/7/e27955/
http://dx.doi.org/10.2196/27955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34287213&dopt=Abstract
https://formative.jmir.org/2023/1/e38125
http://dx.doi.org/10.2196/38125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36947118&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Sander Puts, Martijn Nobel, Catharina Zegers, Iñigo Bermejo, Simon Robben, Andre Dekker. Originally published in JMIR
Formative Research (https://formative.jmir.org), 22.03.2023. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The
complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and
license information must be included.

JMIR Form Res 2023 | vol. 7 | e38125 | p. 14https://formative.jmir.org/2023/1/e38125
(page number not for citation purposes)

Puts et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

