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Abstract

Cognitive decline can be observed due to a myriad of causes. Clinicians would benefit from a noninvasive quantitative tool to
screen and monitor brain function based on direct measures of neural features. In this study, we used neuroimaging data from
magnetoencephalography (with a whole-head Elekta Neuromag 306 sensor system) to derive a set of features that strongly
correlate with brain function. We propose that simple signal characteristics related to peak variability, timing, and abundance can
be used by clinicians as a screening tool to investigate cognitive function in at-risk individuals. Using a minimalistic set of features,
we were able to perfectly distinguish between participants with normative and nonnormative brain function, and we were also
able to successfully predict participants’Mini-Mental Test score (r=0.99; P<.001; mean absolute error=0.413). This set of features
can be easily visualized in an analog fashion, providing clinicians with several graded measurements (in comparison to a single
binary diagnostic tool) that can be used for screening and monitoring cognitive decline.
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Introduction

The expanding cohort of older people with deteriorating
cognitive functions poses a burden to the affected individual,
the individual’s family, and society [1]. Standardized
neuropsychiatric tests are helpful, but getting a view of the
actual brain function of each individual would be better. For
example, do all individuals with a similar cognitive test score
have the same cognitive deficits? Does brain function remain
stable in all individuals over a very short time horizon? Is the
response to a stimulus the same for each repetition of the
stimulus? The answers to these questions may be important to
monitor therapeutic interventions as diverse as drug treatment
and counseling.

To date, several techniques have been used to interrogate human
brain function. They range from neurocognitive tests [2] to
neuroimaging techniques [3-5] and viral vectors [6], among

others. Although neurocognitive tests have been the golden
standard for clinical diagnosis, they do not measure brain
function directly, and therefore, there has been a need for more
applicable monitoring tools.

Among neuroimaging techniques, functional magnetic resonance
imaging is a noninvasive technique that measures changes in
blood flow to different areas of the brain [7]. This can be used
to create a map of brain activity and identify which areas of the
brain are active during different tasks. Functional magnetic
resonance imaging offers superior spatial resolution, but it is
dependent on the time scale of blood deoxygenation, and
therefore, cannot offer the millisecond resolution seen in
magnetoencephalography (MEG). Conversely,
electroencephalography (EEG) measures the electrical activity
of the brain using electrodes placed on the scalp [8]. This can
be used to identify abnormal patterns of brain activity and
diagnose conditions such as epilepsy. Although it does offer
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temporal resolution comparable to MEG, the electrical currents
are damped by the skull, making it harder to assess the location
of the sources of brain signals. Finally, positron emission
tomography is a brain imaging technique that uses radioactive
tracers to measure brain activity [9]. This can be used to identify
changes in brain metabolism or blood flow, which can be
indicative of different conditions. Positron emission tomography
can be used to interrogate a myriad of metabolic disorders, but
one of its downsides is the invasive nature of the procedure,
which is not the case for the previously mentioned imaging
techniques.

Viral vectors have recently emerged as a powerful tool for
investigating the neural circuits underlying human cognition
and possibly developing new treatments for neurological and
psychiatric disorders [10]. By introducing genetic material into
specific populations of neurons, viral vectors can be used to
manipulate neural activity and study the functional connectivity
between different brain regions. Different types of viral vectors,
such as lentiviruses and adeno-associated viruses, offer different
advantages and limitations for gene delivery. Recent studies
have used viral vectors to manipulate the activity of specific
brain regions involved in cognitive processes, such as
decision-making and memory formation [11,12]. However, the
use of viral vectors in human studies presents several ethical
and practical challenges that must be carefully considered [13].

In this work, we recognize the vast clinical experience with
electrocardiogram (ECG) in the analysis of human heart
function, which shows that the examination of timing and
fidelity of individual depolarizations is useful in establishing
normative versus nonnormative heart electrical function [14].
We applied similar metrics and their correlates to brain function
in a cohort of older people with normative and nonnormative
heart electrical function using MEG, a clinically established
neurophysiologic technique [15] that offers superior time and
spatial resolution to comparable modalities.

Methods

Recruitment and Scanning Protocol
A total of 10 participants had cognitively normal brain function,
and 10 age-matched participants had nonnormal cognitive
function (mean age 75.1, SD 6.4 years). All participants were
right-handed and tested for hearing preservation as a requirement
for participation. Participants underwent 2 MEG scans (using
whole-head Elekta Neuromag 306 sensor system) approximately
45 minutes apart (run 1 and run 2) as well as a battery of
neuropsychological assessments. In the scanner, participants
were presented with a random series of standard and deviant

tones (50-ms tone duration, every 2.5 seconds; 5:1 proportion)
for a total of 250 tones.

Ethical Considerations
The protocol was approved by the Institutional Review Board
of the University of Pittsburgh. The study data were deidentified
prior to the analysis.

Signal Processing and Channel Selection
For each participant, the data in all 306 MEG sensors were
band-pass filtered between 1 Hz and 30 Hz to keep most of the
variance in the power of the recordings and also to remove any
slow drifts in the data, normally related to recording artifacts.
The timing of the presentation of each standard tone was
determined, and data beginning 100 milliseconds prior to
presentation to 500 milliseconds after the presentation
represented 1 epoch. All signal processing analysis was
conducted using the MNE-Python package (version 0.23.0) and
scikit-learn (version 0.24.1).

We analyzed data from the ipsilateral sensor that showed the
most stable response to the tones across epochs, as the ipsilateral
response to simple sound stimuli has been shown to display
significant delays in different peaks of the neural response [16].
Within a predetermined pool of 12 gradiometers that commonly
capture auditory responses, we selected the sensor with the least
variability across epochs. Specifically, variability was calculated
by computing the evoked response (ie, response averaged over
epochs) after randomly splitting all epochs into 2 halves and
calculating the correlation between the 2 evoked responses. We
repeated this process thousands of times and defined the most
stable sensor to be the one with the highest median correlation
between the 2 evoked responses.

Feature Estimation
With a single channel selected, the first step was to determine
the timing of each of the 3 peaks (Figure 1). Peak time windows
are defined by their onset and offset and are calculated using
the averaged response (ie, an individual has peak onset and
offset times for a single run, not single epochs). We defined
peak latency as the time point in which the peak reaches its
maximum absolute value. As noticed in Figure 1A, inferring
peak properties in a single epoch basis is challenging due to
signal variability. Although timing features can be estimated
using the average over epochs (Figure 1B), much information
is lost. The heatmap (Figure 1C and Figure 1D) offers an
alternative way to visualize and analyze the data. For example,
when epochs are sorted on B peak similarity, the percentage of
epochs with B peaks and the variability among epochs can be
a distinguishing feature between participants with normative
and nonnormative brain function.
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Figure 1. Data for representative participants with normative and nonnormative brain functions (P23 and P16, respectively). (A) the first 5 epochs for
that run. (B) the average of all epochs. In the heatmap (C and D), individual epochs are placed on the vertical axis, and color indicates the normalized
signal amplitude (red for positive and blue for negative).

Using the averaged response, the method starts by finding the
B peak latency, which is the maximum absolute value of the
signal within the 110- to 190-millisecond window. From that
point, it goes back in time (toward 0 ms, when the stimulus was
presented), until it finds the time point in which the signal first
reaches a value lower than twice the baseline standard deviation
(where baseline is the signal 100 ms before the stimulus
presentation). The algorithm then repeats the same procedure
going forward in time from B peak latency, again looking for
the time point in which the signal first returned to twice the
baseline standard deviation.

The onset of the A peak was fixed at 50 milliseconds due to the
instability of the signal relative to the peak magnitude, and the
A peak offset was defined the same as the B peak onset.
Similarly, C peak onset was chosen to be the same as the B peak
offset. Finally, the C peak offset was chosen as the time point
in which the signal recovered to the same value seen at the B
peak offset plus 2 baseline standard deviations or to the most
positive value if the signal never gets back to that amplitude.

With the onset and offset of each of the 3 peaks determined
(Figure 2), we then established what percentage of the epochs

displayed the given peak using heatmaps. A heatmap is
organized such that the epochs (vertical axes) are arranged on
the basis of a specific feature. For example, Figure 1D shows
a heatmap where individual epochs are sorted based not on data
acquisition sequence but on signal similarity within the B peak
time window for that individual. The epoch with the strongest
signal within that time window is at the bottom of the heat map.
The epoch with the most similar signal within the time window
to that bottom epoch is just above it and so on. Signal similarity
between epochs can be calculated in a variety of ways. Here we
used a nonlinear spectral embedding to reduce the signal of one
epoch (t time points representing a t-dimensional space) into a
single dimension. Specifically for spectral embedding, we
constructed a k-nearest neighbors graph with n nodes (for n
observations) and projected it to a single dimension by
calculating a spectral decomposition of the graph Laplacian.
Nodes that are connected in the original graph are clustered
together. The procedure effectively summarizes the n by t data
into n values, which can then be further sorted based on their
Euclidean distance in that single-dimensional space to organize
the heatmap.
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Figure 2. Schematic from single sensor signal to heatmap. A single sensor out of a pool of 12 ipsilateral gradiometers is selected based on signal
stability. Epochs are amplitude normalized prior to display in heatmap. Purple marks in heatmap mark time 0, when stimulus is presented.

Once organized based on peak similarity, we counted the epochs
with that given peak used in sorting (Figure 3). We first sorted
the heatmap based on the peak window. That actual heatmap
was then spatially correlated with every possible ideal heatmap,
representing possible heatmaps where 0%-100% of the epochs
have the B peak. Each ideal heatmap has a linear gradient within
the peak window, where the bottom epoch has a value of 1 and

the last epoch is 0. The ideal heatmap with the highest
correlation to the actual heatmap estimates the percentage of
epochs with the peak. In other words, we looked for the ideal
heatmap most similar to the actual heatmap within that time
window. We then repeated the same procedure for the remaining
2 peaks.

Figure 3. Features placed on a diagram of an idealized averaged response and heatmaps. Latency corresponds to the time point in which the peak
reaches it maximum absolute value. B peak onset is the time in which the B peak surpasses 2 standard deviations of the baseline signal (time <0), and
the offset is when the signal returns to a value below that same threshold. C peak offset is the time when the signal returns to the amplitude at B peak
offset or when it reaches its most positive value (if that return does not happen). Variability features measure the degree of dissimilarity across epochs
within a time window.

Finally, a similar procedure to how channel stability is calculated
was also used to calculate B peak variability, except that the
correlation between the two averaged responses was computed
using only the signal between the B onset and offset for the

individual. In addition, variability was defined as 1 minus the
median correlation to better illustrate the concept (ie, higher
variance in the signal corresponding to higher feature value).
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Feature Evaluation
To evaluate this set of features, we used both a classification
and a prediction approach. First, we used a Gaussian Naive
Bayes classifier to define the most concise, but yet intuitive, set
of features that could differentiate between participants with
normative and nonnormative brain function. We conducted a
progressive evaluation of prediction models with an increasing
number of features. Specifically, we started with all possible
models with 2 features and calculated how well a Gaussian
Naive Bayes model could predict a left-out subject
(leave-one-out cross validation). We further increased the model
requirements to 3 all the way to the 13 possible features. Then,
we used a Partial Least Squares model (version 2.7-3; R package
PLS) to predict the Mini-Mental Test scores using the set of 13
features. The absolute value of each feature was used in this
prediction model.

Results

We report finding a simple MEG-derived metric that accurately
distinguishes between the subject groups. We found 3 distinct
peaks (ie, A, B, and C) in the averaged neural response to the
tone (Figures 1-3). By using the heatmaps for visualization
(Figure 4), the percentage of epochs with B peaks and the
variability among epochs in the B-peak time window can be
distinguishing features between participants with normative and
nonnormative brain function. Specifically, while the variability
remains similar across both runs for P23, it increases for P31
and decreases for P11. Forward-leaning slashes for P31 indicate
a significant increase in variability between runs, and
backward-leaning slashes for P11 indicate a decrease, with the
red color representing values outside the normative range.

Figure 4. Run-to-run differences in B peak variability. Although the variability remains similar across both runs for P23, it increases for P31 and
decreases for P11. The slash angle over the B peak in averaged response (bottom row) indicates the amount and direction of B peak variability difference
between runs. Apct: A peak; Bpct: B peak; Cpct: C peak; N: normative; NN: nonnormative; r1: run 1; r2: run 2.

Overall, 13 features describing peak variability, percentage, and
timing were used to quantify the response (Figure 5). Features
were computed using the average signal over epochs and also
the heatmap, a visual representation of all individual epochs.
Single features showed participants with nonnormative brain
function as significant outliers when compared to normative
participants (Figure 5) (outlier Grubb score >3 [17]). A model
with as few as 4 specific features could perfectly classify
between left-out participants with normative and nonnormative
brain function: (1) run-to-run difference in B peak variability,
(2) percentage of epochs with A peaks, (3) interval between A
peak latency and B peak onset, and (4) interval between B peak

latency and offset. It is important to note that these 4 critical
features do not have the same weight in the model. For instance,
run-to-run difference in B peak variability has twice as much
weight as the second ranked feature (percentage of epochs with
A peaks). Finally, using a Partial Least Squares model to reduce
dimensionality, the original set of 13 features was also able to
predict subjects’ Mini-Mental Test scores (Figure 6; r=0.99;
P<.001; mean absolute error=0.413). Results for the model with
12 components are displayed, but even the simplest Partial Least
Squares model with a single component yielded highly
significant results (r=0.83; P<.001; mean absolute error=1.62).
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Figure 5. Barplots showing subjects and features. Each column shows the subject values for that feature, and the bar color indicates the outlier Grubb
score (number of standard deviations from normal subjects). Subjects are presented in alphabetical order within group, and features are organized based
on the information they carry. Alat: A peak latency; Apct: A peak; Boff: B offset; Bon: B onset; Bpct; B peak; Bvar: B peak variability; Cpct; C peak; r1r2:
run 1 run 2 (eg, r1r2Apct stands for the difference in percentage of A peaks between run 1 and run 2).

Figure 6. Predicting Mini-Mental Test score (MMS) using partial least squares regression (12 components, mean absolute error=0.413; r=0.99; P<.001).
The absolute value of the set of 13 features was used to train the model; predicted scores are displayed against their actual MMS values for each individual
subject.
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Discussion

This study measured the neural response to a tone, and 3 distinct
peaks (A, B, and C) were identified. A total of 13 features were
used to quantify the response, and a model with 4 specific
features was able to perfectly classify between left-out
participants with normative and nonnormative brain function.
Using a Partial Least Squares model to reduce dimensionality,
the original set of 13 features was also able to predict subjects’
Mini-Mental Test scores. Overall, these findings demonstrate
the potential for using MEG-derived metrics to accurately
identify cognitive impairments in individuals.

It has been recently proposed that complex cognitive disorders,
such as Alzheimer Disease, could be conceptualized as multiple
subtypes [18], reflecting a lack of common and systematic
pathology. The features described in this work can help
characterize such subgroups. In fact, this lack of a single
overarching feature that was present in all participants with
nonnormative brain function is one of the key findings in our
data set.

The strongest feature in separating participants with normative
and nonnormative function was the variability of B signal shape
between the 2 runs. Participants with normative function showed
very little change between the 2 runs. For participants with
nonnormative brain function, there was a subgroup with more
variability in run 2 compared to run 1, consistent with fatigue
between the runs. There was a second subgroup with decreased
variability in run 2, suggesting increased cognitive engagement
from the rest period for these participants.

Other features of participants with nonnormative brain function
might also have readily identifiable behavioral correlates, such
as a loss of adaptation response to the stimulus with increased
percentage of epochs with A peaks [19] and consequent neural
fatigue evident in loss of run-to-run difference in percentage of
epochs with A peaks and B peaks variability in these
participants, as noted above. In addition, the only 2 participants
in this category with a prolonged interval from A peak latency
to B peak onset were among the 4 nonnormative group
participants with normal percentage of epochs with A peaks, a
result consistent with a possible protective effect from the delay
on cognitive fatigue and representative of the compounded
interactions of complex systems captured in the MEG response
[20].

Although the clinical use of MEG has seen a steady increase in
medical hospitals [21], especially in the localization of seizures,
the authors recognize that the need for an MEG machine is a
limitation of the proposed screening tool. The development of
more mobile MEG devices is promising [22] and would indeed
accelerate the adoption of the proposed tool by clinicians. It is
also possible that similar features as the ones identified in this
work would be present in the signal of more practical measuring
devices, such as ECG caps, which would further expand the use
of this monitoring method among the clinical community.

Similar to how ECG is used to assess heart function, the
combination of features identified here provides an objective
and subject-specific clinical tool for clinicians to monitor an
older patient’s cognitive status. Such a screening device may
prove useful in assessing response to therapies as well as
cognitive function in at-risk individuals.
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