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Abstract

Background: Recently, rich computational methods that use deep learning or machine learning have been developed using
linguistic biomarkers for the diagnosis of early-stage Alzheimer disease (AD). Moreover, some qualitative and quantitative studies
have indicated that certain part-of-speech (PoS) features or tags could be good indicators of AD. However, there has not been a
systematic attempt to discover the underlying relationships between PoS features and AD. Moreover, there has not been any
attempt to quantify the relative importance of PoS features in detecting AD.

Objective: Our goal was to disclose the underlying relationship between PoS features and AD, understand whether PoS features
are useful in AD diagnosis, and explore which PoS features play a vital role in the diagnosis.

Methods: The DementiaBank, containing 1049 transcripts from 208 patients with AD and 243 transcripts from 104 older control
individuals, was used. A total of 27 PoS features were extracted from each record. Then, the relationship between AD and each
of the PoS features was explored. A transformer-based deep learning model for AD prediction using PoS features was trained.
Then, a global explainable artificial intelligence method was proposed and used to discover which PoS features were the most
important in AD diagnosis using the transformer-based predictor. A global (model-level) feature importance measure was derived
as a summary from the local (example-level) feature importance metric, which was obtained using the proposed causally aware
counterfactual explanation method. The unique feature of this method is that it considers causal relations among PoS features
and can, hence, preclude counterfactuals that are improbable and result in more reliable explanations.

Results: The deep learning–based AD predictor achieved an accuracy of 92.2% and an F1-score of 0.955 when distinguishing
patients with AD from healthy controls. The proposed explanation method identified 12 PoS features as being important for
distinguishing patients with AD from healthy controls. Of these 12 features, 3 (25%) have been identified by other researchers
in previous works in psychology and natural language processing. The remaining 75% (9/12) of PoS features have not been
previously identified. We believe that this is an interesting finding that can be used in creating tests that might aid in the diagnosis
of AD. Note that although our method is focused on PoS features, it should be possible to extend it to more types of features,
perhaps even those derived from other biomarkers, such as syntactic features.

Conclusions: The high classification accuracy of the proposed deep learner indicates that PoS features are strong clues in AD
diagnosis. There are 12 PoS features that are strongly tied to AD, and because language is a noninvasive and potentially cheap
method for detecting AD, this work shows some promising directions in this field.

(JMIR Form Res 2023;7:e36590) doi: 10.2196/36590
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Introduction

Background
Alzheimer disease (AD) is a serious and the most common form
of dementia worldwide. In the United States, more than 5 million
individuals are living with AD and AD-related dementia, which
costed the nation US $244 billion in 2019. The National
Academy of Sciences, National Plan to Address Alzheimer’s
Disease, and Affordable Care Act through the Medicare Annual
Wellness identify earlier detection of AD-related dementia as
a core aim for improving brain health for millions of Americans.

Traditionally, brief cognitive screening tests and biological
marker methods (usually neuroimaging [1-4] or cerebrospinal
fluid examination [5]) have been used for identification.
However, these approaches tend to be invasive, be expensive,
and trigger patient compliance problems. Alternatively, spoken
language is a rich and inexpensive source of information in the
detection of cognitive status, even at the early stage.

Robinson et al [6] showed that patients with AD are more likely
to have a reduction in vocabulary size and difficulty in correctly
using verbs and nouns. Croisile et al [7] showed that patients
with AD give a shorter speech, more implausible details, and
syntactically simplified descriptions.

Recently, machine learning– or deep learning–based automated
early-stage AD detection using linguistic features has been
proposed and has demonstrated outstanding diagnosis accuracy.
Eyigoz et al [8] demonstrated that a patient’s language
performance in naturalistic probes can expose subtle early
linguistic signs of progression to AD much before a clinical
diagnosis of the impairment. Khodabakhsh et al [9] studied the
diagnosis of AD using speech features extracted from a
spontaneous conversation and obtained 90% AD detection
accuracy. Machine learning– or deep learning–based methods
allow for the use of latent features that go beyond handcrafted
features and represent more sophisticated concepts. For example,
word or sentence embeddings map words or sentences from a
vocabulary to a vector of real numbers. Good embeddings will
encode concepts similar to the adjacent vectors. Studies that
used word embeddings for AD diagnosis include the studies by
Karlekar et al [10], Wang et al [11], Palo and Parde [12], and
Mahajan and Baths [13]. In addition to word embeddings, the
study by Karlekar et al [10] used part-of-speech (PoS) features;
the study by Wang et al [11] used PoS features and sentence
embeddings; the study by Palo and Parde [12] used targeted
psycholinguistic, sentiment, and demographic features; and the
study by Mahajan and Baths [13] used recurrent neural networks
to capture the temporal dynamics in speech recordings for
improving the diagnosis accuracy.

However, most previous studies were performance oriented and
constructed more complex models with an increasing number
of features and modalities. Although these models achieve better
diagnostic accuracy, they usually sacrifice transparency in the
diagnosis-making process. This is because most of these
complex models are deep learning based, which makes them
inherently opaque, and not all the features are human
interpretable. This is especially true if their influence on the

prediction is not well understood. This opaqueness and lack of
understanding of the contributions of individual features to the
prediction has resulted in reluctance among the clinical
community to use these methods in practice [14].

Explainable artificial intelligence (XAI) refers to methods that
can reduce the opaqueness of deep learning models. XAI
methods can be classified according to various criteria. One of
the taxonomies is based on the format of explanation. Local or
example-based explanation explains an individual prediction,
whereas the global explanation explains the model behavior
(eg, feature importance).

Beyond explaining the model’s internal mechanism, recent
studies have used XAI methods for scientific discovery.
XAI-based scientific discovery enables the discovery of
insightful scientific concepts from model explanations obtained
through XAI methods. Ginsburg et al [15] proposed Feature
Importance in Nonlinear Embeddings for the analysis of cancer
patterns in breast cancer tissue slides. Feature Importance in
Nonlinear Embeddings automatically determines the important
features that revealed previously unknown scientific attributes.
Li et al [16] showed that concepts similar to Kepler laws of
planetary motion and the Newton law of universal gravitation
can be obtained through XAI methods.

Objectives
Our goal was to disclose the underlying relationship between
PoS features and AD. Ours is the first study to explore the
predictive power of PoS features for AD diagnosis by using a
well-performing transformer-based [17] model, which is trained
to use PoS features for AD diagnosis. If a feature does not
impact the decision of this predictor, then it stands to reason
that this feature does not have much predictive power. Note that
although PoS features were used in previous works for AD
diagnosis, and impressive accuracies were achieved, they were
usually combined with other features as inputs; hence, the effect
of PoS features alone is unclear. In our study, we found that
using only PoS features can still yield a high AD diagnosis
performance with 92.2% accuracy. Hence, we believed that it
would be interesting to discover which PoS features play vital
roles in this prediction.

To understand the importance of any given feature for a
particular problem, it is important to study the effect this feature
has globally on all samples. To achieve this goal, we used an
example-based explanation called counterfactual explanation
(CFE) [18] on our predictor. Example-based explanation gives
explanations for individual data samples. Then, we analyzed
the statistical summary of the CFEs of a group of data samples
to show the global effect of each input feature.

Conventionally, CFE aims to answer “Why” questions such as
“Why the model’s decision is Y” or “What would have
happened to Y, had I not done X?” The first step in obtaining
CFE is to search for counterfactual examples, which are defined
as the examples obtained by applying minimal changes to the
features of the original example and having the predefined
outputs. Then, CFEs can be extracted by comparing the
differences between the original example and its counterfactual
examples. For example, if the model’s prediction is changed

JMIR Form Res 2023 | vol. 7 | e36590 | p. 2https://formative.jmir.org/2023/1/e36590
(page number not for citation purposes)

Wen et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


from a patient with AD to healthy control as we manually
increase the appearance of nouns by the minimal unit (eg, 1) in
a data sample, then the CFE would indicate that the number of
nouns used is an important factor for classifying the sample as
data collected from a patient with AD.

However, when generating counterfactual examples, the
conventional CFEs assume that features are independent of each
other. This can result in counterfactual examples that are not
feasible in the real world. For example, an infeasible CFE can
suggest that the number of nouns decreased whereas the number
of adjectives increased, which is anticausal because adjective
words are usually used to modify noun words; hence, its
appearance is supposed to increase or be unchanged as the
number of noun words increases.

It is clear that conclusions drawn from potentially infeasible
counterfactuals cannot be reliable. Hence, it is important to
develop a causally away counterfactual intervention method for
our purposes. We argue that the key to making the generated
counterfactual examples feasible is ensuring that the generation
process of counterfactual examples obeys causal rules. That is,
as counterfactual examples are generated by making changes
to some features, the causal consequences of these changes (eg,
an increase in the number of nouns causes an increase in the
number of adjectives) have to be considered.

To generate feasible counterfactual examples, we propose using
a causal model that contains a directed graph that models the
random variables by nodes and their causal relation by directed
edges. Each edge in the causal model also encodes the causal
function f: P→C, where C represents any variable that is
modeled in the causal model, and P represents the variables that
cause variable C. Then, one can generate counterfactual
examples of the original example by performing interventions
in the causal model. Performing interventions is the process in
which some variables within a sample are changed to fixed
values, and the rest of the variables are generated according to
the causal functions (eg, f). A counterfactual sample can be
regarded as a CFE if it can yield the predefined output.

To understand the importance of a single feature, we intervened
on only one feature at a time for counterfactual generation.
Hence, we named our proposed method one-intervention causal
explanation (OICE). We then used the one-intervention causal
examples to explain the importance of each feature by asking,
“What would have happened to the output, had I intervened on
feature A?” Moreover, using one intervention allowed us to
systematically study the impact of the different features. Each
feature (and its descendants) that is impacted by the parent
feature in this one-intervention approach could be further
analyzed using the structural causal model (SCM). Finally, we
defined 3 metrics for quantifying the importance of the features
in the decisions.

Related Work: CFE Method
CFEs are a widely used method for generating explanations of
a model’s decision and aim to answer “How the world would
have to be different for a desirable outcome to occur” [18]. By
studying these counterfactual instances, that is, by examining
the difference between the original scenarios and the hypothesis

or a possible suggestion about how the desired outcome can be
obtained by changing some of the features, one can explain why
a model arrives at a specific outcome. Generally, CFEs are
generated by finding the minimal changes required to change
the classification of this instance to the desired class. Wachter

et al [18] formulated a general form for finding the CFEs xCF:

where x is the query instance, fw is the classifier, y’ is the desired
output, and d (•,•) is a distance function. In practice,
maximization over λ is done by iteratively solving for x’ and
increasing λ until a sufficiently close solution is found.

The quality of CFEs is measured in terms of actionability,
feasibility, diversity, and sparsity. The meaning of each metric
is stated as follows:

• Actionability: refers to the extent a suggested alternative
scenario or action is practical and feasible to implement.
In contrast, a CFE that changes any immutable features (eg,
gender: male → female) is unactionable.

• Feasibility: features that are changed by a CFE should be
within a reasonable range or population. An infeasible CFE
could be changing the number of credit cards from 5 to –1.

• Diversity: this refers to the ability to generate diverse CFEs.
• Sparsity: this refers to the number of features that are

changed in CFEs. Fewer changes or high sparsity is
favorable because humans can only extract limited
information.

Most existing approaches in the literature on CFEs are dedicated
to improving the aforementioned metrics. Recent studies [19,20]
considered the distribution of data and generated counterfactual
instances from the relatively high-density region of the input
space. This method improves feasibility by avoiding unlikely
or unrealistic counterfactual instances under the data
distribution. Ustun et al [21] improved actionability and
feasibility by allowing the counterfactual instances that optimize
a user-specified cost function and prevent counterfactuals from
changing immutable variables such as age, sex, and gender.
Russell [22] proposed a mixed-integer programming formulation
to handle mixed data types and offered CFEs for linear
classifiers that respect the original data structure. This
formulation is guaranteed to find coherent solutions by only
searching within the “mixed-polytope” structure defined by a
suitable choice of linear constraints.

The study most similar to ours is that of Karimi et al [23], which
shifted the paradigm from the nearest CFEs to minimal
interventions. Specifically, in the study by Karimi et al [23],
counterfactual examples were generated by the predefined SCM
and a set of possible interventions to achieve the desired
outcomes. The optimal intervention set is obtained by choosing
the optimal intervention set is the one that induces the minimum
cost, where the cost is measured by a predefined cost function
on the intervention sets. In addition, they proved the necessity
of considering all intervariable causal dependencies and
demonstrated efficiency on some toy data sets. We used a more
complex SCM known as Causal Generative Neural Network
(CGNN) [24] to capture the intervariable causal dependencies
and generate CFEs using the intervention. In addition, we
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statistically analyzed the derived explanations to inspect the
global behavior of the model.

Methods

Overview
For scientific discovery purposes, our method incorporated 3
phases: knowledge learning, knowledge extraction, and
knowledge verification. As shown in Figure 1, in the knowledge
learning phase, we used a transformer-based classifier to learn
the underlying association between PoS features and AD. In
the knowledge extraction phase, we used our proposed XAI
method, OICE, to extract the learned mechanism. In particular,

OICE quantitatively indicated the importance of PoS features
used by the model in AD classification, and the extracted
knowledge (ie, feature importance) was verified with the
findings of previous studies in phase 3. A model that is verified
to have high consistency with previous findings is more
plausible and, hence, is more likely to provide reliable insights
into the underlying mechanism among PoS features and AD.

In the following sections, first, we introduce the data set and,
subsequently, the structure of the transformer-based classifier.
Then, we introduce the proposed model explanation method,
OICE. Finally, we describe the details of implementing the
introduced methods.

Figure 1. Method overview: procedures for using explainable artificial intelligence for scientific discovery. AD: Alzheimer disease; OICE: one-intervention
causal explanation.

Data Set Description
The DementiaBank [25] is a database of multimedia interactions
for the study of communication in patients with dementia. This
data set comprises the transcripts of individuals (individuals
with dementia and control individuals) who were given four
tasks: (1) cookie theft description, in which the participants in
both the control group and dementia group were given a picture
of a child attempting to steal a cookie and asked to describe
what they saw; (2) word fluency, in which the fluency of the
participants in the dementia group was measured; (3) recall, in
which the participants in the dementia group were tested on
their memory recall; and (4) sentence construction, in which

the participants in the dementia group were tested on sentence
construction. In total, the corpus contains 1049 transcripts from
208 patients with AD and 243 transcripts from 104 older control
individuals, amounting to a total of 1292 transcripts. Two
examples from the DementiaBank data set are presented in
Table 1. In this study, we used all the transcripts described
earlier.

The transcripts were tokenized into single-word tokens, and
each token was computed with PoS tags using the Natural
Language Toolkit [26]. Upon each transcript, we generated a
PoS feature vector with the counts of 27 PoS tags. The names
and the meanings of the 27 PoS features are presented in Table
2.

Table 1. Two examples from the DementiaBank data sample. In our experiment, we analyzed the part-of-speech features that were extracted from the
speech records.

Speech recordLabel

Okay, well the mother is drying the dishes, the sink is overflowing, um the little girl’s reaching for a cookie, and her brother’s
taking cookies out of the cookie jar, and the stool is going to f knock him on the floor laughs, he’s going to fall on the floor because
the stool’s not uh what, with gravity, whatever, uh the uh curtains are blowing I think, that’s all I can see

Healthy control

I would like to have a lead pencil, the tree is blossoming, I hope my child doesn’t hafta go to the hospital, I hope my child doesn’t
hafta go to the hospital, I shouldn't say that because we have a daughter who’s pregnant, and I do want her to go to the hospital,
okay then, this winter has been a very cold one, the doctor said I, I sat in the chair by a the doctor, brief, I'm not, I forgot to try
make them brief, the bureau drawer stands open

Patient with
Alzheimer disease
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Table 2. Part-of-speech features and meanings.

MeaningTag

Common nounNN

Personal pronounPRP

Verb in gerund or present participle formVBG

InterjectionUH

Plural nounNNS

Modal verbMD

Comparative adjectiveJJR

Verb in base formVB

Preposition or subordinating conjunctionIN

AdjectiveJJ

ParticleRP

Possessive pronounPRP$

Coordinating conjunctionCC

Cardinal numberCD

PredeterminerPDT

Singular proper nounNNP

ToTO

DeterminerDT

AdverbRB

Verb in third-person singular present formVBZ

Verb in past participle formVBN

Wh-pronounWP

Verb in non–third person singular present formVBP

Superlative adjectiveJJS

Verb in past tenseVBD

Existential thereEX

Possessive wh-pronounWP$

Ethical Considerations
We used the DementiaBank data set, which is archived by
TalkBank. TalkBank is subject to its own Code of Ethics
(detailed in the Code of Ethics page of the TalkBank website
[27]), which supplements but does not replace the generally
accepted professional codes of the American Psychological
Association Code of Ethics and the American Anthropological
Association Code of Ethics.

Transformer-Based AD Classification Model
Recently, we proposed a transformer-based [11] classifier to
exploit PoS features, as shown in Figure 2. In our architecture,
we used the multihead attention (MHA) module and the encoder
structure of the transformer to process these features. Our
motivation for this is stemmed from the success of this
architecture in creating state-of-the-art language embeddings,

as demonstrated in the study by Wang et al [11]. This
architecture comprises a self-attention module that captures the
intrafeature relationships, an attention layer together with a
following 1-D Convolutional Neural Network layer. The MHA
module is the same as that proposed in the study by Wang et al
[11] for the popular transformer architecture. If R = {r1, r2, I,
rn} is the set of records, then ri is the ith record in the data set.
We computed PoS features for each record. Let P = {p1, p2, I,
pn} be the set of PoS feature vectors and pi be the ith vector in
the PoS matrix. We used 6 MHA layers on P = {p1, p2, I, pn}
to capture the relationship between the PoS features. The MHA
transformed P into another matrix of n-dimensional vectors A
= {a1, a2, I, an}. The MHA module was followed by a 1-layer
Convolutional Neural Network and a softmax layer to obtain
the final classification.
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Figure 2. The proposed transformer-based classifier that uses the part-of-speech (PoS) features of the patient’s or control’s description. C: CNN; FT:
feature.

OICE Method

Overview
To derive an explanation, OICE first calculates the CFEs for
each sample. Each CFE can simply be seen as a vote for the
importance of the features of each sample. Then, OICE groups
these CFEs to summarize the global explanation about feature
importance. In this subsection, we first outline the preliminary
information on SCM, which is an essential element for obtaining
CFEs. We then describe how we learn an SCM from the data.
Next, we discuss how we formulated OICE and how OICE
generates individual CFEs using the pretrained SCM. Then, we
introduce the metrics that we propose to measure feature
importance (global explanation) according to a group of CFEs.

The Concept of SCM
In this section, we review the concepts of SCMs and
interventions. An SCM, M, can be represented by a triplet, M
= (X, F, U) that contains a set of endogenous variables, X =
{X1, X2, I, Xd}; a set of causal mechanisms, F = {F1, F2, I, Fd};
and a set of exogenous variables, U = {U1, U2, I, Ud}, where
each Ui is independently drawn from distribution U. Any
endogenous variable Xi can be obtained by its causal mechanism
Fi as Xi = Fi (PAi, Ui), where Ui ~ U and PAi denote the parent
nodes of Xi and PAi εX\Xi.

In our case, the endogenous variables are the random variables
of PoS features. The causal effect between 2 PoS features is,
hence, encoded in the causal relationships between them (can
be null if there is no causal relationship between them). The

exogenous variables are seen as the set of unknown factors that
can cause PoS features.

We denote an intervention in SCM by a do-operator do (•).
Intervening the set of X to the value α can then be described as
do ({Xi = a}iεI) where I is a set of indices of the subset of
endogenous variables to be intervened upon. By intervention,
causal relations and causal mechanisms defined in the original
SCM can be changed. Endogenous variables from I can be
obtained through do (Xi = a) rather than Xi = Fi (PAi, Ui).
Therefore, by performing the intervention, the original SCM M
can be changed to a postintervention SCM MI.

SCM via Generative Network
We used the CGNN proposed in the study by Goudet et al [24]
to represent SCM because it does not limit the types of causal
mechanisms (eg, linear or nonlinear). Given a causal graph, a
CGNN can be trained to learn the causal mechanisms underlying
the causal graph by reducing the maximum mean discrepancy
[28] between the ground-truth data and the generated data.

CGNN generates each endogenous variable through Xi = Fi
θi

(PAi, Ui), where Fi
θi is a generative neural network

parameterized by θi. For simplicity, we use Fi to represent Fi
θi

in the rest of this paper. Ui are random samples drawn from
Gaussian distribution. Figure 3 illustrates an example of SCM
construction using CGNN.

The weights of causal mechanisms (ie, θi) are updated to
minimize the maximum mean discrepancy between the
ground-truth samples and the samples generated by the CGNN.
In our experiment, we discovered the causal relations in the
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DementiaBank data set using the PC algorithm [29]. The PC
algorithm is a constraint-based causal discovery method, under
the assumption of causal sufficiency (ie, no latent confounders).
We discovered causal relations among PoS features from the

DementiaBank data set rather than using generic PoS causal
rules, as the former would better capture the causal relations
among PoS features in the dementia group.

Figure 3. Example of a structural causal model. Left: causal graph. Right: causal mechanisms. X, U, and F stand for the endogenous variables, the
exogenous variables, and the causal mechanisms, respectively. As for the Causal Generative Neural Network, each causal mechanism is implemented
with a generative neural network.

Explanation by Minimal Intervention
We now introduce some notations and discuss the formulation

of OICE. Let xF ε Rd denote the original factual sample and xCF

ε Rd denote the counterfactual sample obtained by a set of
interventions I. Here, we redefine I = {I1, I2,…, Id} to be an

intervention set that has the same length as the sample xF. For
each element Ii, if Ii = 0, it denotes that no intervention was

performed on xi
F (the ith element of xF), otherwise it means that

we performed the intervention xi
F = Ii. Generally, any sample

x (both factual and counterfactual) can be generated by SCM

(X, F, U) using the equation: x = G (UF, I; F), where G
represents a sequence of processes to generate x. G contains a
causal graph and the corresponding causal mechanisms between
variables. The variables of a sample, x, are generated in sequence
from the root to the leaf of the causal graph. The factual sample

xF can be generated by setting all the elements in I to zero. For

a given xF, its corresponding exogenous variable UF can be

obtained by inverting the generating process: UF = G–1 (xF;

F–1).

We formulated the problem of OICE as searching for the optimal

I* that results in a counterfactual example xCF, which would
flip the outcome from y to y’. One intervention was implemented
by fixing the ||I||0 to be 1. It was formulated as follows:

where h denotes the predictive model. In most cases, the model
h is a probabilistic model; we then select the optimal solutions
I* as those that result in counterfactual examples that can

achieve a particular degree of certainty to be y’ (eg, h (G (UF,
I; F)) is 80% certain to be y’). Thus, multiple optimal solutions
were obtained, which contain different intervened features. Note
that the same type of intervened features may have different
intervention values. Consequently, we further distilled our
optimal solutions set by keeping only one solution for each

subset with the same intervention that causes the minimum
distance weighted by the median absolute deviation [18].

Note that OICE implicitly assumes the causal relation from

variables xF to outcomes y by the predictive model h. However,
OICE does not rely on this relation to generate counterfactual

examples xCF. The model h in OICE only helps solve the
optimization problem stated in Equation 1.

Metrics for Measuring Importance
So far, we have introduced how we obtained explanations for
individual instances using OICE. We then made inference of
the model’s global behavior (ie, importance of features) by
statistically analyzing the explanations derived from a batch of
samples. In this section, we introduce some metrics to measure
the impact of intervening a feature to cause a flip in the outcome.
The impact of features can be further associated with their
importance for a machine learning model in making a decision.

Let S = {S (1), S (2),…, S(n)} represent a set of n samples that

belong to class y (ie, h (Si) = y, for I = 1, 2,…, n). In our case,
the problem is a binary classification problem, and the classes

are “control” or “Alzheimer’s.” Let Ck
(i) denote the CFE of the

ith sample obtained by intervening on the feature k and, hence,

h (Ck
(i)) ≠ y. To measure the impact on the flip in the outcome

caused by the intervening feature k, we introduce our first
metric, impact score (IS).ISk can be interpreted as the proportion
of counterfactual samples for which the feature k must be
intervened to flip the outcome and is defined as follows:

where Ik = {i: h (Ck
(i)) ≠ y, i = 1, 2,…, n} is a set that contains

the indices of samples in S that have a CFE obtained by
intervening on the feature k. The IS score describes the overall
impact and does not consider the cost of the intervention (ie,
how much a feature has been increased or decreased).
Accordingly, we introduce another metric, weighted IS (wIS),
to measure the impact made by changing the unit value of a
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feature. This measure trades off the impact with the cost of
impact (CI). wIS can be used to draw comparisons among the
features. Features with higher wIS values have more importance
in flipping the outcome. To define wIS, we first introduce the
parameter CI to measure the average absolute change that must
be made to achieve the impact (ie, IS). Using subscript j to index

the jth feature of a sample S(i) or Ck
(i) the CI for the feature k

can be defined as follows:

where Rk is the range of feature k. Next, we define the wIS as
follows:

Note that the wIS defined in Equation 5 does not consider the
trends of change in a feature (ie, increasing or decreasing). To

address this, we separated wISk into wISk
+ and wISk

– to represent
the wIS for increasing and decreasing the value of the feature
k, respectively. They are calculated using the following rules:

(1) if all the trends of change (ie, sign(Ck,j
(i) – Sj

(i))) are same,

then wISk
δ is calculated using Equation 5, where δ is + if the

changes are positive and − for negative; and (2) if both positive

and negative changes exist, first, the wISk
+ and wISk

– are
calculated separately. Then the final wISk is calculated by taking

the average of the wISk
+ and wISk

–. In addition, the IS introduced
earlier measures the overall importance of changing both the
intervened feature and its descendant features (caused by
intervention on this feature).

It is important to understand how much each changed feature
contributes to flipping the outcome. Consequently, we introduce
another metric called pure IS (PIS) to quantify the importance
of every changed feature within the CFEs obtained by the same
intervention.

Hence, the PIS for a feature is calculated by subtracting the
impact (on flipping the outcome) caused by its child nodes from
the IS score of this feature. As the wIS represents the change in
IS per unit change in the value of the feature, the impact of each

child node is m and can, hence, be quantified as the average of
the changes in m’s values multiplied by the wIS of m. The impact
caused by the feature m when m is causally affected by the
feature k is defined as follows:

The PIS for the intervened feature k, PISk
k, is defined as follows:

where CHk is the set of indices of the child nodes of the feature

k. The value of PISk
m is then normalized over ISk to represent

the percentage of effort for flipping the outcome.

Implementation Details

Model Settings
In our experiments, we used 6 layers for the MHA module. We
used stochastic gradient descent + momentum (SGD +
Momentum) as the optimizer for training. Because
DementiaBank is an unbalanced data set, we added a class
weight correction by increasing the penalty for misclassifying
the less frequent class during model training to reduce the effect
of data bias. The class weight correction ratio used in this study
is 7:3. We randomly split the original data into 81% training
set, 9% validation set, and 10% testing set over multiple seeds.
Our proposed model achieved a high accuracy of 92.2%,
F1-score of 0.952, precision of 0.935, recall of 0.971, and area
under the receiver operating characteristic curve of 0.971 on
the DementiaBank data set.

PoS Feature Causal Relation Discovery
As mentioned earlier, we used the PC algorithm [29] to discover
the intrafeature dependencies. The causal graphs returned by
the PC algorithm contained undirected edges. Hence, we further
revised the returned graph by orienting the undirected edges.
The edges were oriented according to our knowledge of the
linguistic features. For example, we made the causal direction
noun (NN) → adjective (JJ) because NN causes the use of JJ.
The full causal graph for the 27 linguistic features used in our
experiment is illustrated in Figure 4.
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Figure 4. Causal graph for 27 linguistic features. The starting variable of each directed edge represents the cause, and the ending variable represents
the effect. CC: coordinating conjunction; CD: cardinal number; DT: determiner; EX: existential there; IN: preposition or subordinating conjunction;
JJ: adjective; JJR: comparative adjective; JJS: superlative adjective; MD: modal; NN: common noun; NNP: singular proper noun; NNS: plural noun;
PDT: predeterminer; PRP: personal pronoun; PRP$: possessive pronoun; RB: adverb; RP: particles; TO: to; UH: interjection; VB: verb in base form;
VBD: verb in past tense; VBG: verb in gerund or present participle form; VBN: verb in past participle form; VBP: verb in non–third person singular
present form; VBZ: verb in third-person singular present form; WP: wh-pronoun; WP$: possessive wh-pronoun.

Problem Solver
Solving the l0 norm constraints in Equation 2 is a nontrivial
task. However, the PoS features used by the proposed classifier
are all integers and within narrow ranges. This makes it possible
to solve the problem by exhausting all the solutions and then
selecting the optimal ones. In addition, we set the certainty
parameter to 80%; this implies that all solutions, I, that satisfy

||h (G (U{F}, I; F)) – y’||2 < α, where α=.04, are considered
optimal. The value of α is chosen to reflect 80% certainty.

Results

Predictive Power of PoS Features
All PoS features described in Table 2 were used for model
training. The model exhibits a high degree of performance, as
evidenced by an accuracy rate of 92.2% and favorable precision,
recall, and F1-scores of 0.935, 0.971, and 0.955, respectively,
on the testing data set. In addition, the model yields a strong
discriminatory capacity, as indicated by the Area under the
receiver operating characteristic curve (AUC) of 0.971. The
high performance illustrates that PoS features extracted from
speech can help distinguish patients with AD from healthy
controls. This finding encouraged us to move forward to explore
which PoS features play a vital role.

Knowledge Extracted From Model Explanation
In this section, we continue to reveal the important PoS features
that direct the model’s decision. We analyzed the counterfactual
examples from a statistical perspective and analyzed the
important features derived from this analysis. We studied the
CFEs for a control sample (ie, an individual without AD). The
important features were derived by analyzing which feature
plays a vital role in misclassifying a control sample as a patient
with AD. In this paper, we report the results of 210 of the 243

controls. These 210 control samples were classified correctly
by the classifier. The optimal CFE for all the 210 results could
be achieved by intervening only one feature. Other samples
were excluded because of misclassification.

We report both the IS and wIS for all PoS features in Tables 3
and 4. We regard the top 12 features (preposition or
subordinating conjunction [IN], personal pronoun [PRP], particle
[RP], verb in gerund or present participle form [VBG],
predeterminer [PDT], singular proper noun [NNP], JJ, NN, verb
in past tense [VBD], adverb [RB], verb in base form [VB], and
wh-pronoun [WP]) as important PoS features in AD diagnosis.
The selection considers PoS features that have both high IS
scores and wIS scores. Features with low IS scores indicate that
few samples adopt them for flipping the model’s output, which
is less reliable owing to the lack of agreement by the majority.
In Figure 5, we illustrate examples of patients with AD and
healthy controls from the original data set and the counterfactual
examples (explanation) in a spider plot. It shows that the
generated counterfactual examples capture the difference in
PoS features between patients with AD and healthy controls.
The PoS features we used in this study are listed in Table 2.
Further information on these features can be found in the Google
Sites PoS tutorial [30] and the study by Toutanova et al [31].

We then analyzed the important features to answer the following
question: how exactly does intervening a feature cause the
outcome to flip? To answer the above question, we considered
the children features of the intervened feature given by SCM.
More specifically, knowing that the counterfactual examples
have moved across the decision boundary (ie, the outcome has
flipped), we examined how each changed feature (ie, intervened
features and their children) affects this movement of the original
examples toward or away from the decision boundary. We used
the normalized PIS (in terms of percentage) to quantify this
effect. A positive PIS denotes the movement of the original
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examples toward the decision boundary and vice versa. In Figure
6, we illustrate how changes in each feature contribute to
flipping the outcome and show 4 representative features as
examples. First, we consider features to be “cooperative”
(Figures 6A-6D) if both the intervened feature and its descendant
features contribute to flipping the outcome. Second, we define
the feature as “dominant” (Figures 6E-6H) if the intervened
feature significantly contributes to flipping the outcome, while
its descendant features make either no or an opposing
contribution. Third, we classify the intervened feature as “idling”
(Figures 6I and 6J) if it only slightly contributes to flipping the
outcome, while the child features make a substantial
contribution. Finally, we introduce the term “inverse” (Figures
6K and 6L) to describe a feature that moves the original
instances away from the decision boundary upon intervention
but causes other features to substantially push the original
instances toward the decision boundary.

To complete the explanation that we promised at the beginning
of this section, we use CI to quantitatively describe the average
minimal changes that must be done to flip the outcome. In Table
5, we report CI and the changing direction (an up arrow means
an increase in the value is required, whereas a down arrow
means a decrease is required). For example, reducing the use
of NN by 16.88% of the total range of NN feature will make
the classifier flip the final decision.

Now, we combine the results from both Tables 4 and 5 to offer
explanations for all important features. For clarity, in the
following explanation, we do not use the words “increase,”
“decrease,” and “change” to denote the actions that can modify
the values of features. These 3 words are used to represent the
pattern of how much the divergence of a feature from its real
value can affect the decision of the model. We use
“contribution” or “contribute” to denote the positive effort
(measured by PIS) or process to flip the outcome. As opposed
to “flip the outcome,” we use the terminology “consolidate the
outcome” to denote that changing a feature causes the outcome
to move further away from the decision boundary.

• VBG: decreasing the value of VBG by 20.7% causes the
values of both determiner (DT) and verb in third-person
singular present form (VBZ) to decrease. The decrements
of VBG, DT, and VBZ contribute to flipping the outcome.

• PDT: increasing PDT by 20.2% causes VBG, DT, and RP
to decrease or remain unchanged. VBG and DT contribute
substantially to flip the outcome, whereas PDT makes only
partial contributions.

• NNP: increasing NNP by 29.5% will cause DT to decrease.
Increasing NNP contributes substantially to flipping the
outcome, whereas the resulting decrements in DT make a
partial contribution.

• VB: increasing VB by at least 69.3% will cause RB and WP
to change or remain unchanged and cause “to” (TO) to
increase. The changes in VB, RB, and TO contribute
substantially to flip the outcome. The changes in WP make
small contributions.

• JJ: increasing JJ by at least 16.5% will cause NNP and
interjection (UH) to increase or remain unchanged and
cause RB to change or remain unchanged. Even though the
changes in NNP and RB consolidate the outcome, increasing
JJ can substantially contribute to flipping the outcome. In
addition, the change in UH makes a negligible contribution
compared with the increment in JJ.

• PRP: increasing PRP by at least 18.1% will cause VB, IN,
RB, verb in non–third person singular present form (VBP),
and VBD to change or remain the same. However, by
analyzing the PIS for the changes in these features, we
conclude that PRP contributes substantially to flipping the
outcome

• VBD: increasing VBD by at least 37.1% will not cause
changes in PRP and TO. We conclude that VBD solely
contributes to flipping the outcome.

• RB: RB does not have any descendants. We conclude that
increasing RB by 49.6% will cause a flip in the outcome.

• NN: decreasing NN by 16.9% can cause cardinal number
(CD), DT, and JJ to decrease or stay unchanged. Although
the change in NN does not contribute to flipping the result,
the resultant changes of CD and DT are sufficient to flip
the outcome.

• WP: increasing WP by 67.1% can cause RB and VBP to
increase, decrease, or remain unchanged. Although the
changes in WP and RB do not contribute to flipping the
result, the resultant changes in VBP are sufficient to flip
the outcome.

• RP: increasing RP by 16.7% causes VBG and verb in
third-person singular present form (VBZ) to decrease and
NNP to either decrease or remain unchanged. The changes
in RP consolidate the outcome. However, increasing RP
can still flip the outcome because intervening on RP will
cause the descendant features to change. These changes
substantially contribute to flipping the outcome.

• IN: on average, either increasing or decreasing IN by 5.5%
can cause CD, DT, existential there (EX), PRP, VBG, and
verb in past participle form (VBN) to change or remain
unchanged. Among all the descendants of IN, the changes
in CD, EX, PRP, and VBN make negligible contributions
to flipping the result. The change in IN consolidates the
outcome, and the major contributions to flipping the
outcome are influenced substantially by decreasing VBG
and slightly by decreasing DT.
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Table 3. Impact scores for the 27 part-of-speech features. Feature with a higher impact score value denotes more samples successfully flipping the
model’s outcome by intervening on it.

MeaningRankaTag

0.45712NNb

11PRPc

0.9484VBGd

0.02421UHe

0.24314NNSf

0.01923MDg

0.01025JJRh

0.7629VBi

11INj

0.55311JJk

0.8527RPl

0.04319PRP$m

0.29513CCn

0.02422CDo

0.9145PDTp

11NNPq

0.12416TOr

0.05718DTs

0.8248RBt

0.01924VBZu

0.06717VBNv

0.58110WPw

0.21415VBPx

0.01026JJSy

0.8866VBDz

0.03820EXaa

0.00527WP$ab

aRanking of the part-of-speech features based on their impact scores.
bNN: common noun.
cPRP: personal pronoun.
dVBG: verb in gerund or present participle form.
eUH: interjection.
fNNS: plural noun.
gMD: modal verb.
hJJR: comparative adjective.
iVB: verb in base form.
jIN: preposition or subordinating conjunction.
kJJ: adjective.
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lRP: particle.
mPRP$: possessive pronoun.
nCC: coordinating conjunction.
oCD: cardinal number.
pPDT: predeterminer.
qNNP: singular proper noun.
rTO: to.
sDT: determiner.
tRB: adverb.
uVBZ: verb in third-person singular present form.
vVBN: verb in past participle form.
wWP: wh-pronoun.
xVBP: verb in non–third person singular present form.
yJJS: superlative adjective.
zVBD: verb in past tense.
aaEX: existential there.
abWP$: possessive wh-pronoun.
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Table 4. Weighted impact scores for the 27 part-of-speech features. Features with higher values denote more importance for machine learning model
in making decisions.

MeaningRankaTag

2.718NNb

5.532PRPc

4.594VBGd

0.0522UHe

0.8113NNSf

0.2117MDg

0.0125JJRh

1.111VBi

14.521INj

3.357JJk

5.113RPl

0.0820PRP$m

0.6114CCn

0.0324CDo

4.525PDTp

3.396NNPq

0.2216TOr

0.4215DTs

1.6610RBt

0.1519VBZu

0.0820VBNv

0.8712WPw

0.2117VBPx

0.0125JJSy

2.399VBDz

0.0522EXaa

027WP$ab

aRanking of the part-of-speech features based on their weighted impact scores.
bNN: common noun.
cPRP: personal pronoun.
dVBG: verb in gerund or present participle form.
eUH: interjection.
fNNS: plural noun.
gMD: modal verb.
hJJR: comparative adjective.
iVB: verb in base form.
jIN: preposition or subordinating conjunction.
kJJ: adjective.
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lRP: particle.
mPRP$: possessive pronoun.
nCC: coordinating conjunction.
oCD: cardinal number.
pPDT: predeterminer.
qNNP: singular proper noun.
rTO: to.
sDT: determiner.
tRB: adverb.
uVBZ: verb in third-person singular present form.
vVBN: verb in past participle form.
wWP: wh-pronoun.
xVBP: verb in non–third person singular present form.
yJJS: superlative adjective.
zVBD: verb in past tense.
aaEX: existential there.
abWP$: possessive wh-pronoun.

Figure 5. Spider plot for samples of patients with Alzheimer disease (AD), for those of healthy controls, and for counterfactuals of healthy controls
(classified as those of patients with AD). IN: preposition or subordinating conjunction; JJ: adjective; NN: common noun; NNP: singular proper noun;
PDT: predeterminer; PRP: personal pronoun; RB: adverb; RP: particles; VB: verb in base form; VBD: verb in past tense; VBG: verb in gerund or present
participle form; WP: wh-pronoun.
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Figure 6. Explanations for the representative features. For an intervened feature, the red down arrow indicates that a decrease in value is required for
flipping the outcome. For a child node (feature), the red down arrow indicates the change in direction caused by the intervention. The same rule applies
to the green up arrow (an increase of value) and the orange horizontal line (no change of value). (A) Impact analysis for VBG; (B) Impact analysis for
PDT; (C) Impact analysis for NNP; (D) Impact analysis for VB; (E) Impact analysis for JJ; (F) Impact analysis for PRP; (G) Impact analysis for VBD;
(H) Impact analysis for RB; (I) Impact analysis for NN; (J) Impact analysis for WP; (K) Impact analysis for RP; (L) Impact analysis for IN. CD: cardinal
number; DT: determiner; EX: existential there; IN: preposition or subordinating conjunction; JJ: adjective; NN: common nouns; NNP: singular proper
noun; PDT: predeterminer; PIS: pure impact score; PRP: personal pronoun; PRPS: possessive pronoun; RB: adverb; RP: particles; TO: to; VB: verb in
base form; VBD: verb in past tense; VBG: verb in gerund or present participle form; VBN: verb in past participle form; VBP: verb in non–third person
singular present form; VBZ: verb in third-person singular present form; WP: wh-pronoun.
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Table 5. Cost of impact (CI) in percentage and the direction of change for all 27 part-of-speech (PoS) featuresa.

CI value (%)PoS feature name

16.9NNb ↓c

30NNSd ↑e

9MDf ↑

83.3JJRg ↑

18.1PRPh ↑

69.3VBi ↑

5.5INj ↑↓

16.5JJk ↑

16.7RPl ↑

30.3PRP$m ↑

48.7CCn ↑

75.6CDo ↑

20.7VBGp ↑

20.2PDTq ↑

33.3UHr ↑

29.5NNPs ↑

57.4TOt ↑

13.6DTu ↓

49.6RBv ↑

12.5VBZw ↓

86.7VBNx ↑

67.1WPy ↑

73.8VBPz ↑

100JJSaa ↑

37.1VBDab ↑

67.2EXac ↑

100WP$ad ↑

aA smaller CI value denotes that smaller changes are needed.
bNN: common noun.
cThe down arrow indicates decreasing the values.
dNNS: plural noun.
eThe up arrow indicates increasing the values.
fMD: modal verb.
gJJR: comparative adjective.
hPRP$: possessive pronoun.
iVBG: verb in gerund or present participle form.
jIN: preposition or subordinating conjunction.
kJJ: adjective.
lRP: particle.
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mPRP: personal pronoun.
nCC: coordinating conjunction.
oCD: cardinal number.
pVBD: verb in past tense.
qPDT: predeterminer.
rUH: interjection.
sNNP: singular proper noun.
tTO: to.
uDT: determiner.
vRB: adverb.
wVBZ: verb in third-person singular present form.
xVBN: verb in past participle form.
yWP: wh-pronoun.
zVBP: verb in non–third person singular present form.
aaJJS: superlative adjective.
abVB: verb in base form.
acEX: existential there.
adWP$: possessive wh-pronoun.

Discussion

Principal Findings
First, the high performance of the AD diagnosis model on PoS
features indicates that PoS features are rich clues of speech or
language impairments that happen in patients with AD. Later,
by explaining the model using our proposed OICE XAI method,
we reveal several important linguistic biomarkers for early-stage
AD detection. Some of the findings are consistent with the
previous findings in psychology and natural language
processing.

• RB is highly relevant to semantic impairment: the study by
Varley [32] claims that RB shows a deictic purpose, which
is more common in aphasics with a semantic impairment.
Furthermore, in the study by Fraser et al [33], RB was
proved to have higher correlations with a diagnosis of AD.
Our one-intervention method shows that increasing the use
of RB in the speech of a healthy control causes the same
speech to be classified as that of a patient (from a control).
Hence, our experiments align with previous findings that
the increased use of RBs is an indicator of AD.

• Increased PRP use is an important sign of semantic
dementia: the study by Almor et al [34] shows that patients
with semantic dementia produced an increased number of
PRPs than controls. The result is in line with our conclusion
that increasing the number of PRPs in a control’s speech
classifies it as a speech sample of a dementia patient.

• NN naming deficits indicate cognitive deficits: patients
with AD show graceful degradation of using living and
nonliving NNs [35]. We see the same decline in NN use
when shifting from a control sample to a dementia sample.

The consistency between the findings of this study and those
of previous studies implies that the model possibly learns useful
clues about PoS features. It somewhat supports the point that

the rest of the features that were not studied can offer new
insights. To sum up, 3 of 12 important features (25%; RB, PRP,
and NN) found by our method are consistent with previous
findings. We also found 8 other important features that have
not been reported yet, namely IN, RP, VBG, PDT, NNP, JJ,
VBD, VB, and WP. Our work also seems to suggest that the
most important feature may be IN or the use of prepositions.
Further clinical studies may be necessary to verify this insight.

Limitations and Further Study
For the scope of work considered here, we do not see any
limitations; however, we do believe that there is good scope for
further study in this area. More modalities can be used in
designing an AD predictor. These modalities could include brain
imagery and other traditional biomarkers. The OICE method
can then be applied to all the features used to detect AD, leading
to a much more nuanced understanding of the causal relations
of these biomarkers. This could then lead to clinical trials that
test these findings. A subset of noninvasive biomarkers may
then emerge as important in predicting AD, which might, in
turn, lead to easier-to-implement screens for the disease.

Conclusions
In this study, we propose a novel CFE method called OICE to
analyze the dominant linguistic features, specifically PoS
features, that can be used for AD disease detection. We propose
3 metrics to evaluate the contributions of these features to the
final decision of the model. We collected the explanations from
the AD detection model of high accuracy and analyzed these
explanations using the metrics we defined. The features declared
as important in the detection of AD by our methods, namely
RBs, pronouns, and NNs, are consistent with previous works
in psychology and natural language processing. We also found
a few other features that are important but have not yet been
reported. Finally, by leveraging SCM, we further explained how
these important features affect the decision-making process.
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Data Availability
The DementiaBank data set [25] used in this study is password protected and restricted to members of the DementiaBank
consortium group. Accessibility to this data set can be granted after joining the DementiaBank consortium group as a member.
For details about accessing the data set, please refer to the study by Boller and Becker [25].
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CFE: counterfactual explanation
CGNN: Causal Generative Neural Network
CI: cost of impact
DT: determiner
EX: existential there
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IS: impact score
JJ: adjective
MHA: multihead attention
NN: common noun
NNP: singular proper noun
NNS: plural noun
OICE: one-intervention causal explanation
PDT: predeterminer
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PIS: pure impact score
PoS: part-of-speech
PRP: personal pronoun
RB: adverb
RP: particle
SCM: structural causal model
TO: to
UH: interjection
VB: verb in base form
VBD: verb in past tense
VBG: verb in gerund or present participle form
VBN: verb in past participle form
VBP: verb in non–third person singular present form
VBZ: verb in third-person singular present form
wIS: weighted impact score
WP: wh-pronoun
XAI: explainable artificial intelligence
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