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Abstract

Background: The COVID-19 pandemic represents the most unprecedented global challenge in recent times. As the global
community attempts to manage the pandemic in the long term, it is pivotal to understand what factors drive prevalence rates and
to predict the future trajectory of the virus.

Objective: This study had 2 objectives. First, it tested the statistical relationship between socioeconomic status and COVID-19
prevalence. Second, it used machine learning techniques to predict cumulative COVID-19 cases in a multicountry sample of 182
countries. Taken together, these objectives will shed light on socioeconomic status as a global risk factor of the COVID-19
pandemic.

Methods: This research used exploratory data analysis and supervised machine learning methods. Exploratory analysis included
variable distribution, variable correlations, and outlier detection. Following this, the following 3 supervised regression techniques
were applied: linear regression, random forest, and adaptive boosting (AdaBoost). Results were evaluated using k-fold
cross-validation and subsequently compared to analyze algorithmic suitability. The analysis involved 2 models. First, the algorithms
were trained to predict 2021 COVID-19 prevalence using only 2020 reported case data. Following this, socioeconomic indicators
were added as features and the algorithms were trained again. The Human Development Index (HDI) metrics of life expectancy,
mean years of schooling, expected years of schooling, and gross national income were used to approximate socioeconomic status.

Results: All variables correlated positively with the 2021 COVID-19 prevalence, with R2 values ranging from 0.55 to 0.85.
Using socioeconomic indicators, COVID-19 prevalence was predicted with a reasonable degree of accuracy. Using 2020 reported

case rates as a lone predictor to predict 2021 prevalence rates, the average predictive accuracy of the algorithms was low (R2=0.543).
When socioeconomic indicators were added alongside 2020 prevalence rates as features, the average predictive performance

improved considerably (R2=0.721) and all error statistics decreased. Thus, adding socioeconomic indicators alongside 2020
reported case data optimized the prediction of COVID-19 prevalence to a considerable degree. Linear regression was the strongest

learner with R2=0.693 on the first model and R2=0.763 on the second model, followed by random forest (0.481 and 0.722) and
AdaBoost (0.454 and 0.679). Following this, the second model was retrained using a selection of additional COVID-19 risk
factors (population density, median age, and vaccination uptake) instead of the HDI metrics. However, average accuracy dropped
to 0.649, which highlights the value of socioeconomic status as a predictor of COVID-19 cases in the chosen sample.

Conclusions: The results show that socioeconomic status is an important variable to consider in future epidemiological modeling,
and highlights the reality of the COVID-19 pandemic as a social phenomenon and a health care phenomenon. This paper also

JMIR Form Res 2022 | vol. 6 | iss. 9 | e35114 | p. 1https://formative.jmir.org/2022/9/e35114
(page number not for citation purposes)

Winston et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

mailto:L00162644@student.lyit.ie
http://www.w3.org/Style/XSL
http://www.renderx.com/


puts forward new considerations about the application of statistical and machine learning techniques to understand and combat
the COVID-19 pandemic.

(JMIR Form Res 2022;6(9):e35114) doi: 10.2196/35114
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Introduction

Background
The COVID-19 pandemic represents the most unprecedented
global challenge in recent times. Originally identified in the
city of Wuhan, China, the SARS-CoV-2 virus spread across the
world, and the situation escalated into an international
emergency. Despite widescale containment efforts in 2020, as
well as the largest vaccine rollout in history [1], the pandemic
continued to challenge the global community in 2021. Research
is being conducted to analyze the trajectory of the virus, and to
understand why particular populations or countries have been
more severely impacted than others [2,3]. This has been
supported by increases in data availability, which has enabled
researchers to investigate a large range of potential COVID-19
risk factors. These risk factors can be categorized as clinical or
nonclinical. Clinical risk factors include obesity [4-6], diabetes
[7,8], and smoking [9]. Examples of nonclinical risk factors are
cultural differences [10], government containment measures
[11], vaccination attitudes [12], and socioeconomic status
[13-15].

This paper focuses on the nonclinical risk factor of
socioeconomic status as a determinant of COVID-19 prevalence.
To provide a reliable empirical metric for socioeconomic status,
the Human Development Index (HDI) of the United Nations
Development Programme (UNDP) was selected. The HDI
calculates the overall socioeconomic status or “well-being” of
inhabitants in a country by aggregating its life expectancy,
education, and per capita income metrics [16]. It has been
applied successfully in previous epidemiological research to
map prevalence rates of various diseases [17-20]. Despite its
popularity in statistical analysis, the HDI has not yet been widely
applied in machine learning COVID-19 modeling. This presents
an opportunity to apply statistical and machine learning
techniques to examine whether the HDI can be used to
accurately predict prevalence rates of COVID-19.

Related Work

Socioeconomic Status in Health Research
Pandemics are as much a social problem as a health care
problem [21]. As such, socioeconomic status is an important
determinant to consider in pandemic research. The term
socioeconomic status is an umbrella term used to describe
empirically measurable social or economic factors, such as
social class, education, income, and health [22,23]. These factors
are applied in a variety of ways to investigate or control their
effects on given outcomes, such as health outcomes, and have
consistently been found to be statistically significant [24-26].
In terms of health outcomes, higher socioeconomic status has
typically been associated with better health. Conversely, lower

socioeconomic status is associated with poorer health outcomes
[27]. In the literature, lower socioeconomic status has been
associated with higher rates of illnesses, such as osteoarthritis,
chronic diseases, hypertension, and cervical cancer [28,29].

In relation to COVID-19, socioeconomic status has also been
associated with higher prevalence and more severe outcomes.
In the United States, the Distressed Communities Index has
been used to analyze the impact of socioeconomic status on
COVID cases and mortality [30]. Results from this study
indicated that lower education and racial differences were
associated with poorer COVID-19 outcomes. Another study
argued that lower socioeconomic populations are more likely
to live in overcrowded accommodation and have less access to
outdoor space, making them more vulnerable to COVID-19
infection [31]. Evidently, socioeconomic status is an important
determinant of COVID-19 outcomes, which can uncover how
the virus affects particular populations.

HDI
The HDI is a composite measure of overall socioeconomic status
at the national level, which is annually calculated by the UNDP.
The HDI indices include life expectancy, expected years of
schooling, mean years of schooling, and gross national income
(GNI). Calculating a country’s HDI for a given year requires 2
steps. First, values from each of the 4 indices are normalized
to an index value between 0 and 1. Maximum and minimum
limits for each metric are set by the UNDP. Using the actual
value, maximum value, and minimum value, the dimension
index can be calculated with the following formula:

Dimension index = (actual value − minimum value)
/ (maximum value − minimum value)

Second, once each individual dimension has been calculated,
the equally weighted mean is calculated to provide the overall
HDI score of a country [32].

The HDI has been used in health research to analyze both the
prevalence rates and mortality rates of specific diseases, which
helps to identify disparities in terms of outcome within a country
or between countries. It has been applied to understand a range
of epidemiological research problems, such as malaria [17],
various cancer distributions [19,33,34], hypertension [20],
Blastocystis parasites [35], and dental health [36]. To provide
a specific example, research investigating the relationship
between the HDI and thyroid cancer suggested that although
higher HDI countries have a higher prevalence of the disease,
lower HDI countries have higher mortality rates [34].

The HDI has also been applied to analyze the ongoing
COVID-19 pandemic, generating important insights about the
disproportionate impact of the pandemic cross-nationally. For
example, a study analyzing the HDI and COVID-19 mortality
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reported that countries with high HDI scores recorded higher
COVID-19 mortality rates [13]. Another study reported
significant correlations between the HDI scores of 166 countries
and their confirmed cases on March 27, 2020 [14]. Elsewhere,
a study focusing on municipal differences in COVID-19 impact
in Brazil (using a recalibrated index to analyze municipal
differences rather than national differences) found that
municipalities with high HDI scores had the highest COVID-19
incidence rate and mortality per 100,000 population as of May
2020 [15]. The index has therefore been recognized as a valuable
framework in COVID-19 research.

Multicountry COVID-19 Research
Multicountry COVID-19 research is important for the following
2 reasons: (1) the ability to identify country-specific points of
interest, and (2) the ability to uncover common trends or risk
factors across countries. In a study of lockdown-associated
mental health problems in Egypt, Pakistan, India, Ghana, and
the Philippines, it was reported that although lockdowns
negatively affected the mental health of respondents in each
country, they did so in different ways. For example, respondents
from the Philippines coped with lockdowns by increasing
self-destructive behaviors, while those from Pakistan sought
comfort in religion. Respondents from the 3 remaining countries
tended to accept the lockdowns [37]. A similar study in a larger
sample of 101 countries analyzed the loneliness and social
isolation associated with the pandemic [38]. Other studies have
been conducted to analyze cross-national vaccination attitudes
[39], the success of containment measures [11,40], and cultural
behaviors that impacted cross-national COVID-19 mortality
rates [10]. Therefore, multicountry COVID-19 research helps
to identify “global risk factors” relating to the pandemic,
subsequently aiding evidence-based public health interventions
[38]. It also opens up new research questions as to why certain
populations behaved or were impacted a certain way during the
pandemic.

Modeling Outbreaks Using Machine Learning
When modeling outbreaks, a popular method in epidemiology
is the susceptible, infected, recovered (SIR) approach. The SIR
approach simplifies the transmission dynamics of infectious
diseases by dividing the population into groupings of
susceptible, infected, and recovered individuals and analyzes
the interaction between these groups over the course of an
outbreak. This method has also been deployed to analyze the
COVID-19 pandemic [41,42]. However, SIR modeling assumes
that complete herd immunity is possible through infection [43],
which limits its efficacy in COVID-19 research. It is not yet
understood if COVID-19 herd immunity is achievable due to
the complex nature of the virus, the questionable long-term
efficacy of available vaccines, the emergence of new variants,
and the cases of reinfection [44]. Subsequently, the predictive
benefits of machine learning may yield better results in relation
to this pandemic.

Advancements in machine learning have enabled
epidemiological researchers to use a robust data-driven approach
facilitated by high-precision algorithms. This has helped to
process ever-increasing volumes of data, and to analyze a wider
range of factors that impact patient health outcomes [45,46].

For example, naïve Bayes, logistic regression, random forest,
and artificial neural network models have been developed to
predict hypotension in patients after receiving an anesthetic
[47]. Elsewhere, gated recurrent unit neural networks have been
designed to identify individuals at risk of in-hospital mortality.
This model allows practitioners to map the probability of death
longitudinally, and to provide targeted interventions based on
the model predictions [48].

Another advantage of machine learning in epidemiology is that
it can predict and map disease occurrences and health outcomes
in situations where data are limited [49]. Specifically, boosted
regression tree models have been used to analyze environmental
factors that affect the transmission of diseases, such as dengue
fever, Ebola, Crimean-Congo hemorrhagic fever, and Zika virus
[50-53]. Another type of machine learning model, the Ensemble
Adjustment Kalman Filter, has been used to forecast seasonal
outbreaks of influenza [54]. Additionally, several retrospective
forecasting studies have been conducted to reconstruct past
pandemics, including Ebola, West Nile Virus, and Respiratory
Syncytial Virus, by mapping their transmission patterns [55-57].

Regarding COVID-19, epidemiological research using machine
learning is emerging in the literature at pace. Generally, studies
have involved the design of one or more machine learning
models to predict COVID-19 case prevalence [11,58,59],
severity [60,61], and mortality/risk of mortality [62,63]. In 1
study, 5 non–time series supervised learning models using
random forest and AdaBoost regression were trained to predict
the confirmed infection growth (the 14-day growth of the
cumulative number of reported COVID-19 cases) of COVID-19
in 114 countries, using nonpharmaceutical containment measures
and cultural dimensions as features. Results indicated that
confirmed infection growth was predicted to a considerable

degree with moderate to high R2 values (>0.50) [11]. Lastly, a
systematic review of machine learning techniques in the

prediction of COVID-19 cases found that R2 values ranged
between 0.64 and 1, suggesting that machine learning is a highly
valuable method for predicting COVID-19 prevalence, which
could support policy makers in shaping future interventions
[64].

Description of the Study
This study analyzed the statistical relationship between HDI
scores and cumulative COVID-19 cases (total recorded cases
up to December 31, 2021) in a sample of 182 countries. It then
attempted to predict 2021 COVID-19 cumulative cases in the
sample using the previous year’s cumulative cases (total
recorded cases up to December 31, 2020) and HDI scores.
Cumulative cases per million of the population was selected as
it provides the number of reported infections proportionate to
the population size. Crude rate metrics, such as cases per million,
are the most effective for multicountry samples [65]. For
example, Afghanistan and Albania reported a similar absolute
number of COVID-19 cases in 2020, with values of 51,526 and
58,316, respectively. However, Afghanistan’s cases per million
was 1324, while Albania’s was 20,264. This shows the viral
prevalence relative to both populations and indicates that
Albania actually had higher case rates in 2020.
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To measure socioeconomic status, the HDI indices of life
expectancy, expected years of schooling, mean years of
schooling, and GNI were used. For the purposes of this study,
individual metrics were selected rather than the aggregated HDI
value. This approach was used because aggregation can lose
important information in the data, which can lead to less accurate
predictions [66].

Two predictive models were designed using the open-source
integrated development environment Jupyter Notebook, which
is compatible with Python programming language. Each model
was trained using the following 3 supervised learning regression
algorithms: basic linear regression, random forest, and
AdaBoost. All algorithms were evaluated using k-fold

cross-validation and then compared by calculating their R2

scores and error statistics. The first model attempted to predict
2021 COVID-19 prevalence using 2020 case numbers to
establish a baseline for the performance of the second model.
The second model included 2020 case numbers and each
country’s life expectancy, expected years of schooling, mean
years of schooling, and GNI metrics. Due to the uneven progress
of the pandemic on a country-by-country basis, this study
focused on cross-sectional data rather than time-series data. All
data for this study are secondary and publicly available,
highlighting the commendable global effort to collect and share
data concerning the pandemic.

Methods

Data Preprocessing
COVID-19 case data were downloaded from the COVID-19
OurWorldInData database [65], which in turn retrieves data
from the John Hopkins Center for Systems Science and

Engineering Data Repository. The OurWorldInData database
contains comprehensive COVID-19 metrics for 190 countries,
including infection rates, hospitalization numbers, mortality
rates, and vaccination uptake figures. Data are uploaded daily,
which allows users to track the evolution of the pandemic with
up-to-date statistics. This research required each country’s
“cases per million” figure for December 31, 2020, and the same
metric for December 30, 2021. HDI data were extracted from
the 2020 Human Development Report Data Center [67]. The
report provides each country’s overall HDI score and the score
for each individual metric.

These data sets were combined so that each observation
(country) contained the following metrics: (1) life expectancy,
(2) expected years of schooling, (3) mean years of schooling,
(4) GNI, (5) COVID-19 cases per million in 2020 (January
1-December 31), and (6) COVID-19 cases per million in 2021
(January 1-December 31).

Countries with missing data were omitted; therefore, the final
data set contained data for 182 countries. It was then imported
to Jupyter and converted into dataframe format (see Table 1)
to begin analysis.

Following this, exploratory data analysis was conducted to
explore the distribution of the data and the statistical
relationships between the variables. A data scaling method was
then selected depending on the distribution of the data. Data
scaling is important in machine learning modeling as it prevents
measurement differences from negatively affecting the final
results [68]. The interquartile range was then calculated to
identify outliers in the target variable (2021 COVID-19 cases).

Figure 1 summarizes the workflow for this study, from data
preprocessing to model design and exploratory data analysis.

Table 1. Sample of the data set using Human Development Index metrics and COVID-19 cases.

Cases 2021 (per million)Cases 2020 (per million)Gross national income
per capita (US$)

Mean years of
schooling

Expected years
of schooling

Life expectancyCountry

3968.4271323.61222393.910.264.8Afghanistan

73,173.97520,264.09113,99810.114.778.6Albania

4895.7532271.55411,1748.014.676.9Algeria

306,900.742104,173.94756,00010.513.381.9Andorra

2404.489534.07361045.211.861.2Angola
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Figure 1. A flowchart illustrating the data pipeline, from the collection of COVID-19 and Human Development Index (HDI) data to the cross-validation
training and testing process. In addition to designing the predictive models, exploratory data analysis was also conducted to identify trends in the data
set. GNI: gross national income.

Machine Learning Algorithm Selection
Supervised machine learning models are trained to make
predictions by learning from a data set where the value of the
output (dependent variable) is known for each observation.
Supervised machine learning produces decisions or “outputs”
based on input data during the training process. Implementing
different supervised algorithms on a set of data allows for the
results to be compared and for the best fitting model to be
identified [69,70]. Evaluating a supervised learning model
requires robust validation measures [71]. These can be calculated
using a variety of accuracy and error metrics, such as the

coefficient of determination (R2), mean absolute error (MAE),
mean squared error (MSE), root mean squared error (RMSE),
or max error. This research compared the performances of linear
regression, random forest, and AdaBoost supervised techniques.

Linear Regression
Linear regression is one of the most common machine learning
algorithms [72]. Regression in machine learning differs from
traditional statistical regression as it partitions the data set into
a training set and a test set. Using the input and output data from
the training set, algorithms attempt to predict output data in the
test set using input data only. This process indicates how
accurately a model can make predictions on new data. Linear
regression is calculated as follows:

y = a0 + a1x + ε

where y is the target variable (output), x is the predictor variable
(input), a0 is the intercept, a1 is the coefficient, and ε is random
error.

Random Forest
Random forest is an ensemble of decision tree algorithms that
can be used for either classification or regression problems. It
is based on the concept of bagging or bootstrap aggregation,
which creates an ensemble of learner trees [73]. Each learner
tree (K) is trained on separate samples drawn from the original
data set (input vector x), and the overall prediction is obtained
by calculating the mean of K regression trees as follows:

Random forest is beneficial for reducing model variance
compared to individual decision trees. It also helps to prevent
model overfitting (when a model fits too closely to training data
and poorly to test data) [74].

AdaBoost
AdaBoost or adaptive boosting is a sequential ensemble
technique that is based on the principle of developing several
weak learners using different training subsets drawn randomly
from the original training data set. Using this technique, the
training algorithm begins with 1 decision tree, identifies the
observations with the highest error, and adds more weight to
these. The weights are recalculated after every iteration so that
incorrectly classified observations by the previous decision tree
receive higher weights [75]. Using Python programming
language, the number of trees that the algorithm will deploy
can be chosen, with the default set at 50 iterations.

Model Design and Evaluation
Two feature models were created (Feature Model 1 and Feature
Model 2). Feature Model 1 was trained to predict 2021
COVID-19 prevalence using 2020 cases only. Feature Model
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2 was trained to predict 2021 COVID-19 prevalence using 2020
case data as well as life expectancy, expected years of schooling,
mean years of schooling, and GNI per capita. Each feature
model was trained using linear regression, random forest, and
AdaBoost techniques. Hyperparameters were set for each
algorithm, and results were evaluated using a 10-fold (k=10)
k-fold cross-validation.

Model Hyperparameters and Validation
Rather than partitioning the data into training and test sets using
the train/test split, this research used k-fold cross-validation.
K-fold cross-validation has a single parameter called k that
represents the number of subsets or “folds” that a data set will
be split into, which the user selects. As shown in Figure 2, each
fold uses a different grouping of data as the test set, and the
process is then repeated k number of times (for example, 5 times
in Figure 2). It is evaluated by the cross-validation score, which
is the mean of all scores from each k-fold subset. K-fold
cross-validation provides a more generalizable and less biased
performance estimate when working with smaller data sets
[76,77]. This is because it maximizes the number of observations
that can be used for both training and testing. In other words, a
model using cross-validation does not depend on a single
train/test split.

Using sklearn, the mean cross-validation score defaults to the
scoring metric for the specific algorithm being cross-validated.
For each algorithm in this study, the default scoring metric was

the coefficient of determination (R2). Therefore, the mean

cross-validation score computed was the average R2 for each

algorithm across all k-folds. R2 represents the goodness of fit
of a regression model and explains how much variance in the
dependent variable can be explained by one or more independent
variables. It is calculated by dividing the residual sum of squares
by the total sum of squares and subtracting the derivation from
1, as follows:

R2 = 1 – (residual sum of squares / total sum of
squares)

R2 was the primary measure under observation in this study. In

machine learning, R2 is the most informative validation measure
with the least interpretive limitations [78].

Table 2 presents the hyperparameters unique to each algorithm.
A 10-fold validation was selected for the k-fold cross-validation,
which is a generally recommended number of subsets to apply
[76,77].

Alongside R2, 4 error metrics were also calculated to assess
performance. First, MAE provides the average of the absolute
error between the predicted values and true values. It is
calculated as follows:

where yi is the prediction value, xi is the actual value, and n is
the number of observations.

Second, MSE measures the average squared difference between
the predicted values and true values. It is calculated as follows:

where n is the number of data points, Yi is the actual value, and
Ŷi is the predicted value.

Third, RMSE calculates the square root of the mean of squared
errors of a model. It is calculated as follows:

where i is the variable i, N is the number of data points, xi is the
actual value, and x̂i is the predicted value.

Finally, max error computes the maximum residual error, which
captures the worst case error between the predicted value and
the true value. It is calculated as follows:

where ŷ is the predicted value of the i-th sample, and yi is the
corresponding true value.

Figure 2. An example of the 5-fold k cross-validation method where k=5. The overall accuracy score is calculated as the mean value of each fold’s
accuracy score.
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Table 2. Supervised learning model hyperparameters using cross-validation.

HyperparametersAlgorithm

Folds: 10; random state: 1Basic linear regression

Folds: 10; random state: 1; estimators: 100Random forest

Partitions: 10; estimators: 50; random state: 0AdaBoost

Results

Exploratory Data Analysis
Exploratory data analysis was carried out to identify and
visualize trends in the data, and to statistically analyze the
variables. In 2020, the mean number of COVID-19 cases per
million in the sample was 15,880.41, with a median of 6822.98.
In 2021, the mean number of COVID-19 cases per million was
64,479.58, with a median of 50,764.73. Table 3 presents the
key descriptive statistics of all variables in the study.

Distplots were created to inspect the distribution of all variables.
The resulting plots showed that all variables, with the exception
of expected years of schooling, were skewed in the sample. The
distribution of 2021 COVID-19 prevalence was positively

skewed in the sample (see Figure 3). Calculation of the
interquartile range revealed that 4 countries (Andorra,
Montenegro, Serbia, and Seychelles) were statistical outliers,
which had recorded unusually high rates of COVID-19
(>250,000 per million population). The Seychelles recorded the
highest prevalence with 217,096.35 cases per million.

To investigate the statistical relationship between the features
and the target variable, a Pearson correlation matrix was
implemented (see Figure 4). All chosen features correlated
statistically with 2021 COVID-19 prevalence, with R values
ranging from 0.55 to 0.85. Moreover, 2020 COVID-19 cases
had the strongest correlation with 2021 case data (R=0.85),
followed by mean years of schooling (R=0.66), life expectancy
(R=0.61), expected years of schooling (R=0.58), and GNI
(R=0.55).

Table 3. Statistical measurements (mean and median) of all variables in the study.

Median valueMean valueVariable

6822.9815,880.412020 COVID-19 cases per million

50,764.7364,479.582021 COVID-19 cases per million

74.2072.72Life expectancy

13.1513.31Expected years of schooling

8.958.63Mean years of schooling

13,112.5020,453.40Gross national income per capita (US$)
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Figure 3. A series of density plots illustrating the distribution of each variable under observation (the target variable). The target variable 2021 COVID-19
cases per million is right-skewed in the sample. Expected years of schooling is the only variable with a normal distribution in the sample. CASES_2020:
2020 COVID-19 cases per million; CASES_2021: 2021 COVID-19 cases per million; EXP_SCHOOLING: expected years of schooling; GNI: gross
national income per capita; LIFE_EXP: life expectancy; MEAN_SCHOOLING: mean years of schooling.

Figure 4. Pearson correlation matrix mapping the correlation between all variables. Results show that all features have a statistical correlation with
2021 COVID-19 cases. CASES_2020: 2020 COVID-19 cases per million; CASES_2021: 2021 COVID-19 cases per million; EXP_SCHOOLING:
expected years of schooling; GNI: gross national income per capita; LIFE_EXP: life expectancy; MEAN_SCHOOLING: mean years of schooling.

Supervised Learning Models
Tables 4 and 5 summarize the performances of all regression
algorithms in both feature models, while Figure 5 visualizes
their performances. Feature Model 1 was trained to predict 2021
COVID-19 cases per million using 2020 cases per million

(n=182). Feature Model 2 was trained to predict 2021
COVID-19 cases per million using 2020 cases per million as
well as life expectancy, mean years of schooling, expected years
of schooling, and GNI (n=182). Both data sets were divided
into 10 folds for cross-validation (k=10).
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In Feature Model 1, linear regression was the most accurate

learner with a mean R2 of 0.693, followed by random forest
(0.481) and then AdaBoost (0.454). The variation in
performance was considerable, with a 23.9% difference between
the most precise and least precise algorithms. In Feature Model
2, the basic linear regression model was also the strongest

learner (R2=0.762), followed by random forest (0.722) and
AdaBoost (0.679). The MAE, MSE, RMSE, and max error
statistics of the algorithms were all lower in Feature Model 2
than in Feature Model 1. Feature Model 2 also exhibited closer
performances between the algorithms than Feature Model 1,
with the strongest learner being 8.4% more precise than the
least.

Although it was the best learner on the data in both models,
linear regression showed the least improvement with the

inclusion of socioeconomic indicators in Feature Model 2 (R2

improved by 7%). Additionally, its error statistics did not
improve as significantly as those of random forest or AdaBoost.
For example, the MAE of linear regression decreased by 0.009
(0.079 in Feature Model 1 and 0.070 in Feature Model 2)
compared to decreases of 0.026 in random forest and 0.014 in
AdaBoost.

Tables 6 and 7 outline the performance accuracy of each

individual fold. The widely varying R2 scores indicate that the
cross-validation approach used in this study yielded the most
reliable results.

Table 4. Evaluation of Feature Model 1 using linear regression, random forest, and AdaBoost.

AdaBoostaRandom forestaLinear regressionaEvaluation measure

0.4540.4810.693R2

0.1040.0960.079MAEb

0.0200.0210.014MSEc

0.1420.1430.117RMSEd

0.3550.3590.315Max error

aAll results were evaluated using k-fold cross-validation (k=10).
bMAE: mean absolute error.
cMSE: mean squared error.
dRMSE: root mean squared error.

Table 5. Evaluation of Feature Model 2 using linear regression, random forest, and AdaBoost.

AdaBoostaRandom forestaLinear regressionaEvaluation measure

0.6790.7220.763R2

0.0900.0700.070MAEb

0.0150.0130.011MSEc

0.1240.1140.107RMSEd

0.3000.3080.265Max error

aAll results were evaluated using k-fold cross-validation (k=10).
bMAE: mean absolute error.
cMSE: mean squared error.
dRMSE: root mean squared error.

JMIR Form Res 2022 | vol. 6 | iss. 9 | e35114 | p. 9https://formative.jmir.org/2022/9/e35114
(page number not for citation purposes)

Winston et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. A series of subplots showing the predictive performances of the linear regression, random forest, and AdaBoost algorithms in both Feature
Models 1 and 2. Each observation represents a prediction of 2021 COVID-19 cumulative cases per million, with the regression line being the true value.

With the addition of Human Development Index metrics, the linear regression algorithm improved from R2=0.693 to 0.763. The random forest algorithm

improved from R2=0.481 to 0.722. The AdaBoost algorithm improved from R2=0.454 to 0.679. Data points were calculated using cross_val_predict,
which shows the predicted output from each test set within each k fold.
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Table 6. Accuracy for each algorithm’s individual fold (k=10) in Feature Model 1.

AdaBoostRandom forestLinear regressionIteration

0.7590.7990.877Fold 1

0.3420.6870.768Fold 2

0.5840.4640.657Fold 3

0.6290.5300.803Fold 4

-0.6960.1530.747Fold 5

0.7660.5530.733Fold 6

0.6520.6280.804Fold 7

0.083-0.2870.035Fold 8

0.6960.6270.767Fold 9

0.7220.6570.742Fold 10

Table 7. Accuracy for each algorithm’s individual fold (k=10) in Feature Model 2.

AdaBoostRandom forestLinear regressionIteration

0.6790.7960.774Fold 1

0.4850.4570.595Fold 2

0.8820.9070.946Fold 3

0.5510.6220.602Fold 4

0.8240.8690.833Fold 5

0.7200.7760.780Fold 6

0.6260.6360.627Fold 7

0.5360.6590.850Fold 8

0.8510.7940.780Fold 9

0.6290.5940.844Fold 10

Discussion

Principal Findings
Results from exploratory data analysis yielded a number of
interesting insights. First, the positively skewed distribution of
2021 COVID-19 cases resulted in a mean greater than the
median in the sample. In the 182 countries sampled, COVID-19
prevalence was asymmetrical and revealed that a minority of
countries recorded very high case numbers. Second, the
distribution of 2020 COVID-19 cases was positively skewed
and similar visually to the 2021 distribution. This shows that
the trajectory of the virus in the sample was relatively consistent
in 2020 and 2021 in terms of cumulative reported cases. Third,
the 4 outlier countries identified shared an interesting pattern;
all had higher than average life expectancy, mean years of
schooling, and GNI compared with the means in the sample.
This indicates that the outliers can be considered above average
socioeconomically. Finally, all HDI metrics correlated positively
with COVID-19 cases per million, which points to an important
statistical relationship between socioeconomic status and
COVID-19 prevalence. Education (expected/mean years) shared
the highest correlation, followed by life expectancy and then
GNI. This correlation is noteworthy and highlights the unique
nature of the COVID-19 pandemic. Typically, lower

socioeconomic status is associated with poorer health outcomes,
but the results from this study suggest that countries with higher
socioeconomic status recorded higher rates of COVID-19 in
2021. This could be because more developed countries tend to
have older populations, as well as higher prevalence of known
COVID-19 clinical risk factors, such as diabetes and
cardiovascular disease [79].

The results from machine learning analysis suggest that 2021
COVID-19 prevalence could be predicted with a reasonable
degree of accuracy using the previous year’s prevalence rates
and the socioeconomic indicators of life expectancy, mean years
of schooling, expected years of schooling, and GNI per capita.

With socioeconomic indicators included, the R2 of each learning
algorithm was higher than that when trained on only 2020
COVID-19 data, and the error statistics were lower. Including
the HDI indices as predictors alongside the previous year’s
COVID-19 cases in each country improved the predictive
accuracy of 2021 cases by an average of 18% across the 3
chosen algorithms. Given that predictive algorithms can struggle
with smaller data sets [59], the results of this study (n=182) are
noteworthy.

The linear regression algorithm was the strongest learner on the
data, but also showed the least improvement (7% increase in
mean cross-validation) once the HDI metrics were added. Given
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that the other algorithms improved considerably when HDI
indices were added, this result represents an interesting outlier.
The varying performances between the algorithms may be due
to the statistically linear relationships between the variables (as
discovered in the Pearson correlation matrix in Figure 4).
Despite the strong correlation between 2021 COVID-19
cumulative cases per million and case data from the previous
year (R=0.84), Feature Model 1 did not make accurate
predictions using random forest or AdaBoost. Unlike linear
regression models, which excel at fitting to data where linear
correlation exists, decision tree algorithms like random forest
and AdaBoost may perform more effectively with nonlinear
data [80,81]. Lastly, the widely varying performance of each
k-fold iteration justified the use of cross-validation to evaluate
the models. In Feature Model 2, for example, the highest scoring
fold of the linear regression algorithm had a result of 94.6, a

highly accurate R2 result. However, the lowest scoring fold had

an R2 of 59.5. The cross-validation R2 score of 76.3 was
therefore the most reliable score for the data set.

Follow-Up Analysis
Following the primary analysis, 4 follow-up analyses were
conducted. First, Feature Model 2 was trained again without
2020 COVID-19 case data as a feature to analyze how well the
HDI metrics could predict COVID-19 cases alone. Without the

previous year’s case data, the accuracy was low (R2=0.438 for
the best performing algorithm, which was again linear
regression). This result highlights the significant importance of
2020 case data in predicting the following year’s COVID-19
prevalence. Second, Feature Model 2 was trained again using
1 HDI metric at a time to analyze which was the most important
for the prediction of COVID-19 cases. The results showed that
expected years of schooling and mean years of schooling had

the highest scores (R2=0.755 for each), followed by life

expectancy (R2=0.739) and then GNI (R2=0.712). This suggests
that education was the most predictive socioeconomic indicator
(the education HDI metrics were also the most statistically
correlative). However, the results also showed that using all
HDI indices is more effective than using them separately for
COVID-19 case prediction in this data set. The third follow-up

experiment removed the 4 previously identified outlier countries
(Andorra, Montenegro, Serbia, and Seychelles) from the data
set and implemented both feature models again, using the same
cross-validation method as the initial analysis. This yielded
interesting results (see Tables 8 and 9). Most notably, random
forest became the strongest learner in Feature Model 2

(R2=0.777). Despite being generally less sensitive to outliers
[82], random forest benefitted from outlier removal in this data
set. Removing outliers also reduced the gap in performance
between the algorithms. With outliers included, Feature Model
1 displayed a 23.9% difference between the best and worst
performing algorithms, and with outliers removed, this
difference reduced to 19.5%. This reduction was more apparent
in Feature Model 2, with just a 2.1% difference between the
best and worst performing algorithms with outliers removed
(compared with an 8.4% difference in the original sample with
outliers included). However, the results indicated that removing
the outliers did not significantly improve overall predictive
accuracy.

The fourth follow-up experiment sought to compare
socioeconomic status as a COVID-19 predictor with a selection
of other COVID-19 risk factors. Subsequently, each country’s
median age, population density (individuals per square
kilometer), and percentage of vaccinated individuals were
sourced and added to the data set. Each of these variables has
been shown to predict COVID-19 prevalence in certain samples
[83-85]. Most of the required data were also available in the
OurWorldInData database, though a small number of entries
had to be sourced from Worldometers and IndexMundi [86,87].

When Feature Model 2 was trained again using these new
metrics alongside 2020 case data, predictive accuracy dropped
to an average of 0.649 across all 3 algorithms. Using these new
features, the most accurate algorithm was 10% less accurate
than the most accurate learner in the model with socioeconomic
features (see Table 10). This is a significant finding, which
suggests that socioeconomic status was more effective in
predicting 2021 cumulative cases than a country’s median age,
population density, and vaccination uptake, highlighting its
unique importance as a nonclinical predictor of COVID-19 in
the sample of countries.

Table 8. Feature Model 1 comparison (outliers included versus excluded).

Mean R2 in the sample with outliers excluded
(n=178)

Mean R2 in the sample with outliers included
(n=182)

Algorithm

0.6890.693Linear regression

0.4930.481Random forest

0.4940.454AdaBoost

Table 9. Feature Model 2 comparison (outliers included versus excluded).

Mean R2 in the sample with outliers excluded
(n=178)

Mean R2 in the sample with outliers included
(n=182)

Algorithm

0.7540.763Linear regression

0.7770.722Random forest

0.7330.679AdaBoost
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Table 10. Feature Model 2 performance comparison of socioeconomic metrics versus other risk factors using linear regression.

Feature Model 2 with population density, median age, and vaccination
uptake

Feature Model 2 with HDIa indicatorsMeasure

0.6610.763R2

0.0750.070MAEb

0.0160.011MSEc

0.1280.107RMSEd

0.3120.265Max error

aHDI: Human Development Index.
bMAE: mean absolute error.
cMSE: mean squared error.
dRMSE: root mean squared error.

Significance of the Results
In order to put the machine learning results of this study into
perspective, we compared the best performing algorithm

(R2=0.763) with similar machine learning COVID-19 case
predictions. Overall, it fits within the accepted range of
COVID-19 predictive modeling studies in the systematic review
mentioned earlier, which ranged from 0.64 to 1 [64]. Results
from this study align with the findings from another study that
attempted to predict COVID-19 cumulative cases in 3109
counties in the United States using a multilayer perceptron
neural network. In this previous study, the socioeconomic
indicator of median household income ranked fifth among 57
clinical and nonclinical predictor variables of COVID-19
prevalence [88]. Studies, such as this, portray the importance
of socioeconomic indicators as determinants of COVID-19
prevalence rates, which further supports the use of HDI in this
study to more accurately and precisely predict COVID-19
prevalence in 2021.

This research has a number of implications. First, it showcases
the utility of combining statistical and machine learning
approaches in pandemic research. Although statistical tests can
determine correlations between variables, they cannot provide
specific predictions of the target variable. Each method thus
addresses a shortcoming of the other. Second, this study
indicates that socioeconomic status is an important variable to
consider in future epidemiological modeling, and reveals the
complex social nature of the COVID-19 pandemic.
Socioeconomic status was a better predictor of COVID-19
prevalence than median age, population density, and vaccination
uptake. Third, the accuracy of these results in a multicountry
sample is noteworthy. Owing to the data taken from 182
countries, this research suggests that socioeconomic status can
be considered a “global risk factor” rather than a
country-specific factor [38]. This will support evidence-based
policy and interventions by decision makers. Fourth, the results
indicate that although socioeconomic factors aid in the
prediction of COVID-19, there could be other important factors
that could further optimize prediction. Finally, the importance
of historically reported COVID-19 case data cannot be

understated in attempting to predict future COVID-19
prevalence. The 2020 COVID-19 case data correlated strongly
with 2021 COVID-19 case data and could be considered the
most important machine learning feature.

Limitations
As with all research studies, there are inherent limitations in
this study. First, when analyzing COVID-19 cross-nationally,
it must be noted that some countries have underreported their
number of cases more than others for reasons, such as limited
testing capacity [89]. Second, there are other socioeconomic
factors that the HDI does not account for, including levels of
financial inequality, social exclusion, or discrimination within
countries [90]. These factors are worthy of inclusion in future
research to assess their impact. Third, national COVID-19
prevalence rates give an overall measure of how severely a
country is impacted, which is suitable for cross-country research,
but they do not capture the full complexity of transmission
patterns within each country. It is recommended that further
research be conducted at the regional and municipal levels to
assist pandemic forecasting. Lastly, it can be challenging to
train reliable machine learning models using small data sets
[59]. Cross-validation was used to address this limitation, as it
maximizes the data set and minimizes the potential bias of a
traditional partitioning approach.

Conclusions
A better understanding of population-level predictors is of
crucial importance to better understand and respond to public
health crises caused by COVID-19 [91]. This study contributes
to the growing corpus of COVID-19 predictive modeling
research by showing that socioeconomic status is an important
nonclinical risk factor. Using HDI and historical case rates, it
was observed that 2021 cross-national COVID-19 cumulative
cases could be predicted with a reasonable degree of accuracy.
Although COVID-19 represents a long-term challenge for the
global society, the data-driven approach of machine learning
will continue to support decision makers in understanding the
pandemic, formulating response strategies, and predicting future
outcomes [92].
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HDI: Human Development Index
MAE: mean absolute error
MSE: mean squared error
RMSE: root mean squared error
SIR: susceptible, infected, recovered
UNDP: United Nations Development Programme
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