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Abstract

Background: Diabetes mellitus is a severe disease characterized by high blood glucose levels resulting from dysregulation of
the hormone insulin. Diabetes is managed through physical activity and dietary modification and requires careful monitoring of
blood glucose concentration. Blood glucose concentration is typically monitored throughout the day by analyzing a sample of
blood drawn from a finger prick using a commercially available glucometer. However, this process is invasive and painful, and
leads to a risk of infection. Therefore, there is an urgent need for noninvasive, inexpensive, novel platforms for continuous blood
sugar monitoring.

Objective: Our study aimed to describe a pilot test to test the accuracy of a noninvasive glucose monitoring prototype that uses
laser technology based on near-infrared spectroscopy.

Methods: Our system is based on Raspberry Pi, a portable camera (Raspberry Pi camera), and a visible light laser. The Raspberry
Pi camera captures a set of images when a visible light laser passes through skin tissue. The glucose concentration is estimated
by an artificial neural network model using the absorption and scattering of light in the skin tissue. This prototype was developed
using TensorFlow, Keras, and Python code. A pilot study was run with 8 volunteers that used the prototype on their fingers and
ears. Blood glucose values obtained by the prototype were compared with commercially available glucometers to estimate
accuracy.

Results: When using images from the finger, the accuracy of the prototype is 79%. Taken from the ear, the accuracy is attenuated
to 62%. Though the current data set is limited, these results are encouraging. However, three main limitations need to be addressed
in future studies of the prototype: (1) increase the size of the database to improve the robustness of the artificial neural network
model; (2) analyze the impact of external factors such as skin color, skin thickness, and ambient temperature in the current
prototype; and (3) improve the prototype enclosure to make it suitable for easy finger and ear placement.

Conclusions: Our pilot study demonstrates that blood glucose concentration can be estimated using a small hardware prototype
that uses infrared images of human tissue. Although more studies need to be conducted to overcome limitations, this pilot study
shows that an affordable device can be used to avoid the use of blood and multiple finger pricks for blood glucose monitoring in
the diabetic population.

(JMIR Form Res 2022;6(8):e38664) doi: 10.2196/38664
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Introduction

Background
Diabetes affects approximately one out of every 10 people in
the United States [1]. Its prevalence has increased from 23.4
million Americans in 2015 to 30.3 million in 2021 and continues
to rise at an alarming rate [2].

Successful management of diabetes involves monitoring blood
glucose levels multiple times per day. The standard method for
monitoring blood glucose concentration is through the use of a
glucometer [3]. This device determines glucose concentration
from a droplet of blood obtained from a finger prick or a

laboratory blood draw. Taking repeated finger pricks over the
course of a day is painful and creates a risk of infection at the
collection site [4]. Therefore, noninvasive methods are an
attractive alternative, however, those that are available today
have several limitations.

Three main types of noninvasive glucose monitoring devices
are currently available: (1) noninvasive optical glucose
monitoring (NIO-GM), based on optical glucose monitoring,
(2) noninvasive fluid sampling (NIFS-GM), based on fluid
sample glucose estimation, and (3) minimally invasive devices
(MI-GM), which use a sensor inserted into the subcutaneous
tissue [5]. Figure 1 illustrates an example of each type of
noninvasive and minimally invasive blood glucose monitoring.

Figure 1. Examples of (A) NIO-GM (adapted from Lubinski et al [6]), (B) MI-GM (adapted from Sjö [7], published under Creative Commons
Attribution-Share Alike 4.0 International License [8] and (C) NIFS-GM (adapted from Park et al [9] published under Creative Commons Attribution
NonCommercial License 4.0 International License [10]). MI-GM: minimally invasive device; NIFS-GM: noninvasive fluid sampling; NIO-GM:
noninvasive optical glucose monitoring.

NIO-GM estimates glucose concentration from energy
absorption, reflection, or scattering of a light beam directed
through the tissue [11]. These devices have the advantage of
being both portable and inexpensive. NIO-GM technology
includes fluorescence spectroscopy, which may lead to toxicity
from fluorophores [12,13]; Raman spectroscopy, criticized for
its lengthy spectral acquisition time and poor signal-to-noise
ratio [14,15]; photoacoustic spectroscopy, which introduces
noise from its sensitivity to environmental factors [15,16];
optical coherence tomography, which is overly sensitive to skin
temperature [17]; and occlusion spectroscopy, known to result
in signal drift [18]. In contrast, we have developed a NIO-GM
device using near-infrared absorption spectroscopy, which is
more practical and cost-efficient than those described above
[19-23].

Objectives
Here, we describe the development of a novel noninvasive
glucose monitoring system that uses the computing power of
sensors and Internet of Things devices to continuously analyze
blood glucose from a microcomputer and a sensor embedded
within a clip positioned on the finger or ear. The prototype uses
infrared spectroscopy to create images of the rotational and
vibrational transitions of chemical bonds within the glucose
molecule, and incident light reflection to measure their
corresponding fluctuation. The images are converted into an
array list, which is used to provide entries for an artificial neural
network (ANN) to create an estimate of blood glucose
concentration. The prototype is easy to use and is paired with
a mobile app for free-living environments. Figure 2 shows an
overview of the proposed system.
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Figure 2. Overview of the proposed noninvasive blood glucose monitoring system.

Methods

Physical Theory
Our prototype detects blood glucose concentration using
noninvasive absorption spectroscopy optical glucose monitoring
[24]. It is based on the Beer-Lambert law of absorption that is
shown in equation 1 [24].

where I0 is the initial light intensity (W/cm2), I is the intensity

of the ith at any depth within the absorption medium in W/cm2,
l is the absorption depth within the medium in centimeters, e is
the molar extinction coefficient in L/(mmol cm), and c is the
concentration of absorbing molecules in mmol/L. The product

of and c is proportional to the absorption coefficient (µa).

The concentration of absorbing molecules is based on the above
equation. However, the effect of other blood components and
absorbing tissue components affects the amount of light
absorbed. As a result, the total absorption coefficient is the
summation of the absorption coefficients of all the absorbing
components [25]. Then, to minimize the absorption due to all
the other components, the wavelength of the light source should

be chosen so that the light source is highly absorbed by glucose
and is mostly transparent to blood and tissue components.

Hardware Configuration
We used Internet of Things technologies to leverage power
computing and low energy consumption of sensor devices and
a Raspberry Pi camera for building the glucose-monitoring
prototype [26]. Although the Raspberry Pi camera captures
images, a laser light captures absorption. The specifications of
the laser light can be found in Table 1.

A small clip that can be positioned on a finger or earlobe holds
the laser on the top half and the camera on the bottom. Figure
3 depicts the elements of the prototype (Raspberry Pi, camera,
and laser light). The prototype has been named GlucoCheck.

The Raspberry Pi camera captures one image every 8 seconds
over 2 minutes, for a total of 15 images. Brightness and contrast
levels are set to 70 cycles/degree, camera ISO sensitivity is set
to 800, and resolution is set to 640 × 480. Figures 4 and 5 show
the prototype attached to the finger and ear, respectively.

The materials for the GlucoCheck prototype cost approximately
US $79-$154 in 2022, depending on the availability of chips,
which has been an ongoing issue in recent months. Typically,
computer boards are abundant, but 2022 saw a shortage of chips,
leading to inflated prices compared to previous years.

Table 1. Light laser specifications.

IcstationBrand

KY-008 5mW Red Laser TransmitterModel number

InfraredModule

276810Part number

5 mWWorking voltage

>650 nmWavelength

24 × 15 mm or 0.94 × 0.59 inches (length × width)Size
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Figure 3. GlucoCheck device.

Figure 4. Prototype clipped to the finger.

Figure 5. Prototype clipped to the ear.

ANN Model
Due to the large number of images used by our prototype, we
use a convolutional neural network (CNN/ConvNet) approach.
The convolutional layer is the first layer of a CNN network and
is the main building block that handles most of the
computational work. We imported necessary libraries including

Tensor Flow, Keras, MobileNetV2, Matplotlib, and Numpy.
The image data set was converted into arrays with preprocessing,
then stored in a list format with assigned labels. Finally, the
images were appended to a single data array with a
corresponding label array and data augmentation techniques
were used to train our model, including cropping, zooming,
height and width shift, and horizontal flipping.
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Our base model, MobileNet-v2, is a lightweight, 53-layer deep
CNN method used to improve the classification of images with
a limited data set. The next step was to build the head model,
which sits on top of the base model. The next layer is the
activation layer, which uses the rectified linear unit (ReLu)
activation function [27]. The ReLu is a piecewise linear function
that will output the input directly if it is positive; otherwise, it
will output zero. It has become the default activation function
for many types of neural networks because a model that uses it
is easier to train and often achieves better performance [28].
The next layer is the pooling layer, which incorporates
feature-down sampling. It is applied to each layer in the 3D
volume. The fully connected layer, which involves flattening,

is the final step. The entire pooling feature map matrix is
transformed into a single column, which is then supplied to the
neural network for processing. We put these attributes together
to make a model using the fully linked layers. Finally, we
classified the output using a “Softmax” activation function. The
ANN model was trained using the Adam technique, which
included a total of 20 epochs, a batch size of 1, and an initial
learning rate of 1e-4, and a 0.5 dropout was considered. The
next step was to train and test the model; 80% of the data was
used for training the model, and 20% was used for testing the
model. Figure 6 shows the ANN used for our glucose estimation
process.

Figure 6. Artificial neural network model used for glucose estimation. ReLu: rectified linear unit.

Cloud Integration for Real-time Measures
The glucose concentration obtained from the ANN model is
sent to the cloud using HTTPS. Next, we configure an InfluxDB
[29] database in the cloud to store the data. InfluxDB is an
open-source time-series database developed by the company
InfluxData. It is written in the Go programming language for
storing and retrieving time series data in fields such as
operations monitoring, application metrics, Internet of Things
sensor data, and real-time analytics. InfluxDB is flexible enough
to store data from each subject separately using tags. The
integration with the cloud uses the Raspberry Pi, which is
connected in real time, and the computed values are displayed
on a mobile app for the user.

Model Testing
Glucose data from 8 individuals were used to train and test the
model. Each participant was asked to fast for one hour following

an unstructured meal prior to the testing visit. Blood glucose
concentration was estimated using a commercially available
glucometer (FORA 6 Connect BG50 Blood Glucose Starter
Testing [17]), according to manufacturer instructions. The
GlucoCheck prototype was used to capture images from each
participant at two positions: the index finger and the earlobe.
As mentioned previously, 80% of the data was used for training
the model and 20% of the data was used for testing. The
LabelBinarizer module of the Python library sklearn was used
to convert the image data to a binary format and store it in an
array associated with its corresponding labels/categories (85-95
mg/dL, 96-110 mg/dL, 111-125 mg/dL). Data augmentation
(cropping, zooming, height and width shift, horizontal flipping)
was used to enlarge our data set for training and testing the
model. The data were then passed to our model for glucose
estimation. Separate models were developed for images from
the finger and images from the earlobe. Figure 7 illustrates the
workflow of the protocol.
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Figure 7. Method workflow.

Ethical Considerations
For this pilot study, the following ethical considerations were
in place. First, the Institutional Review Board of Kennesaw
State University approved the study (IRB-FY22-318). In
addition, participation in the study was voluntary. Participants
were free to opt in or out of the study at any time. Informed
consent was required to inform the participant about the study’s
purpose, risks, and funding before they agreed or declined to
join. Finally, any personally identifiable data were anonymized
and kept confidential for the research group.

Results

Experimental Data
Figure 8 shows images collected from a finger. The images
were taken after the finger prick at seconds 8 (top left), 16 (top
right), 24 (bottom left), and 32 (bottom right). Figure 9 shows
images collected from an earlobe at seconds 8, 16, 24, and 32
after the finger prick.

All the images were then appended to a single data array with
a corresponding label array. Then, we performed data
augmentation (cropping, zooming, height and width shift,
horizontal flipping), which allowed us to expand the variety of
data available for training the model as we had a minimal
amount of data. The data were then passed to our model for
glucose estimation.

Figure 8. Fingertip images collected from volunteers.
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Figure 9. Ear/earlobe images collected from volunteers.

Accuracy Evaluation
The accuracy of the model was assessed with a confusion matrix,
which illustrates the proportion of images that were correctly
classified. Blood glucose values were grouped as 111-125
mg/dL, 85-95 mg/dL, and 96-110 mg/dL, shown along the x
and y axes.

Figure 10 shows the confusion matrix for the glucose estimates
when worn on the finger, and indicates a 79% accuracy of the
ANN model. The ANN model classified 8 images correctly and
4 images incorrectly in the 111-125 mg/dL category. For the
85-95 mg/dL category, 18 images were correctly classified and

0 images were classified incorrectly. All 3 images in the 96-110
mg/dL category were incorrectly classified. This poor level of
accuracy is due to the limited data set for these values.

Figure 11 shows the results of the ANN model for the ear image
data set, which achieved around 62% accuracy. The model
classified 5 images correctly and 4 images incorrectly in the
111-125 mg/dL category. In addition, 6 images were correctly
classified and 0 images were classified incorrectly in the 85-95
mg/dL category. Finally, 2 images were correctly classified and
4 images were incorrectly classified in the 96-110 mg/dL
category.

Figure 10. Confusion matrix of finger artificial neural network model. The x-axis refers to the correct estimates, while the y-axis shows incorrect
estimates. The unit for all x and y values is mg/dL.
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Figure 11. Confusion matrix for ear artificial neural network model. The unit for all x and y values is mg/dL.

Mobile App
Our mobile app “GlucoCheck” is connected to our cloud
InfluxDB database and provides continuous glucose monitoring
and history data for users. Users can review their current glucose
measurement and also view a chart of their previous
measurements, allowing them to track glucose variation over a

specific period of time. Figure 12 shows the initial screen on
the app (left) and the display of glucose readings from the
prototype (right).

Users may also enter readings from a glucometer into the app
to track and compare measurements from other devices, as
illustrated in Figure 13.

Figure 12. Mobile app interface showing blood glucose level.
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Figure 13. Option to enter glucose level manually. GlucoCheck readings (left) can be compared with other glucometer measures, entered by the user
manually (right).

Discussion

Principal Findings
Here we detail and test a novel NIO-GM prototype that relies
on an ANN and camera-based technology and is associated with
an app that is user-friendly. Results indicate that these optical
techniques and machine learning methodologies can effectively
measure blood glucose when the light is transmitted and
absorptive through the skin tissue. GlucoCheck had an
acceptable 79% accuracy when images from fingers were

analyzed and 62% accuracy for images from the earlobe
position.

Table 2 compares GlucoCheck with previously tested
techniques. The potential of GlucoCheck is comparable with
other studies, but it has advantages over other technologies. The
use of an integrated computer board (Raspberry Pi) and
integration with the cloud gives GlucoCheck the unique ability
to display values in real time via a mobile app. Additionally,
the optional earlobe position of GlucoCheck is unique and
allows for the device to be developed as an earring.

Table 2. Comparison of this study with previous work.

YearMobile appReal-timeAccuracyNumber of sub-
jects

TechniqueBody partStudy

2022YesYes79%8Binary format of image and
convolutional neural network

Finger/earlobeThis study (Glu-
coCheck)

1992NoNoN/Aa3Infrared-multivariate calibra-
tion model

Finger[19]

2019YesNo90%514Histogram and artificial neu-
ral network

Finger[20]

2018NoNo86.3%131/414Attenuated total reflection and
hollow fibers

Oral mucosa[21]

2019NoNoCorrelation of
0.86

12Reflected optical signalFinger and wrist[22]

2003NoNo87.5%1Spectra analysis of tissue light
path

Forearm[23]

aN/A: not applicable.

JMIR Form Res 2022 | vol. 6 | iss. 8 | e38664 | p. 9https://formative.jmir.org/2022/8/e38664
(page number not for citation purposes)

Valero et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Limitations
Future research is needed to address several limitations in the
development of a more reliable noninvasive blood glucose
prototype based on light. First, a large amount of data is needed
for training a machine learning and deep learning model for
complicated tasks. Collecting data from people with diabetes
is often time-consuming and expensive compared with other
tasks. Consequently, many studies face a shortage of data during
their research cycles [30-35]. In this preliminary work, we used
data augmentation techniques to compute additional data points
from our preliminary data set. Additional data will be needed
for the ANN model to detect the exact glucose value instead of
a range.

Second, depending on the type of radiation used, a viable
NIO-GM must account for differences in skin pigmentation,
surface roughness, skin thickness, breathing artifacts, blood
flow, body movements, and ambient temperature [36]. Accurate
measures of the absorption (scattering) properties within human
skin remains challenging in biomedical optics and biomedical
engineering [37]. Similarly, skin roughness and pigmentation
can affect light distribution when propagating through the skin
[38]. These factors must be addressed in future technology.

Finally, the prototype enclosure design must be comfortable
and usable to be effective.

Conclusion
In this paper, we have presented a noninvasive glucose
monitoring system that leverages the computational power of
Internet of Things devices and can be used for diabetes
management. The prototype is based on images taken from the
finger or ear, and does not require blood samples. An ANN
model was used to classify and estimate blood glucose
concentrations from the images. When using images from the
finger, the accuracy of GlucoCheck was 79%. For images taken
from the ear, the accuracy was attenuated to 62%. Though the
current data set is limited, these results are encouraging. Future
studies are needed to address three main limitations: (1) the size
of the database (by expanding the data collection process); (2)
the prototype enclosure design (by working with biomedical
and hardware engineers); and (3) the external factors (by
analyzing the impact of skin color, skin thickness, and ambient
temperature, among others). If successful, this prototype will
be an attractive, life-changing technology for people with
diabetes.
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ANN: artificial neural network
CNN: convolutional neural network
MI-GM: minimally invasive device
NIFS-GM: noninvasive fluid sampling
NIO-GM: noninvasive optical glucose monitoring
ReLu: rectified linear unit
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