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Abstract

Background: Despite the numerous studies evaluating various rhythm control strategies for atrial fibrillation (AF), determination
of the optimal strategy in a single patient is often based on trial and error, with no one-size-fits-all approach based on international
guidelines/recommendations. The decision, therefore, remains personal and lends itself well to help from a clinical decision
support system, specifically one guided by artificial intelligence (AI). QRhythm utilizes a 2-stage machine learning (ML) model
to identify the optimal rhythm management strategy in a given patient based on a set of clinical factors, in which the model first
uses supervised learning to predict the actions of an expert clinician and identifies the best strategy through reinforcement learning
to obtain the best clinical outcome—a composite of symptomatic recurrence, hospitalization, and stroke.

Objective: We qualitatively evaluated a novel, AI-based, clinical decision support system (CDSS) for AF rhythm management,
called QRhythm, which uses both supervised and reinforcement learning to recommend either a rate control or one of 3 types of
rhythm control strategies—external cardioversion, antiarrhythmic medication, or ablation—based on individual patient
characteristics.

Methods: Thirty-three clinicians, including cardiology attendings and fellows and internal medicine attendings and residents,
performed an assessment of QRhythm, followed by a survey to assess relative comfort with automated CDSS in rhythm management
and to examine areas for future development.

Results: The 33 providers were surveyed with training levels ranging from resident to fellow to attending. Of the characteristics
of the app surveyed, safety was most important to providers, with an average importance rating of 4.7 out of 5 (SD 0.72). This
priority was followed by clinical integrity (a desire for the advice provided to make clinical sense; importance rating 4.5, SD 0.9),
backward interpretability (transparency in the population used to create the algorithm; importance rating 4.3, SD 0.65), transparency
of the algorithm (reasoning underlying the decisions made; importance rating 4.3, SD 0.88), and provider autonomy (the ability
to challenge the decisions made by the model; importance rating 3.85, SD 0.83). Providers who used the app ranked the integrity
of recommendations as their highest concern with ongoing clinical use of the model, followed by efficacy of the application and
patient data security. Trust in the app varied; 1 (17%) provider responded that they somewhat disagreed with the statement, “I
trust the recommendations provided by the QRhythm app,” 2 (33%) providers responded with neutrality to the statement, and 3
(50%) somewhat agreed with the statement.

JMIR Form Res 2022 | vol. 6 | iss. 8 | e36443 | p. 1https://formative.jmir.org/2022/8/e36443
(page number not for citation purposes)

Stacy et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

mailto:john.stacy@cuanschutz.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


Conclusions: Safety of ML applications was the highest priority of the providers surveyed, and trust of such models remains
varied. Widespread clinical acceptance of ML in health care is dependent on how much providers trust the algorithms. Building
this trust involves ensuring transparency and interpretability of the model.

(JMIR Form Res 2022;6(8):e36443) doi: 10.2196/36443
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Introduction

An estimated 2.3 million Americans harbor a diagnosis of atrial
fibrillation (AF), and that number is expected to grow to 10
million by 2050 [1,2]. Reduction in mortality and morbidity in
patients with AF is predominantly achieved by reducing stroke
risk via anticoagulation (AC) [3]. However, AC does not
contribute to treating the symptoms of AF or mitigating the
long-term effects of living with AF, rather than affecting the
sinus rhythm (SR), such as AF-induced cardiomyopathies [4].
Hence, a decision of rate control versus rhythm control must
be made. Rate control involves increasing the ventricular filling
time by decreasing the ventricular rate, whereas rhythm control
involves re-establishment of the SR through some combination
of external cardioversion, antiarrhythmic medications, or
catheter ablation. The decision of rate versus rhythm control is
one that has been studied for years. The data show us that there
is no one-size-fits-all answer to this question, and the optimal
strategy is highly reliant on individual characteristics and
comorbidities of patients with AF [5-16]. The variability of
these data and the differences in efficacy in various subsets of
the population render the rhythm versus rate control decision a
very individualized one and one that lends itself to the aid of
clinical decision support systems (CDSSs).

CDSSs encompass a wide array of tools designed to augment
and improve clinical outcomes [17]. These tools vary from
broad aids such as literature databases [18], to decision trees
that help with diagnosis [19-22], to risk stratification tools
including the CHA2DS2Vasc and HEART scores, which estimate
stroke risk in patients with AF and 6-week increase in adverse
major cardiac events, respectively [23-28]. Although
CHA2DS2Vasc and HAS-BLED (Hypertension, Abnormal
renal/liver function, Stroke, Bleeding history or predisposition,
Labile International Normalized Ratio, Elderly, Drugs/alcohol

concomitantly) [29] scores (the HAS-BLED score estimates
risk of major bleeding for patients on AC) have been helpful in
determining which patients with AF need AC, there is no CDSS
to our knowledge that has been designed to help make the less
straightforward AF decision concerning rate versus rhythm
control. For more than a decade, the focus in CDSS has been
on the development of computerized algorithms to aid in
decision-making or development of computerized CDSSs
(CCDSSs). A CCDSS harnesses the massive data pool, that is,
the electronic health record (EHR), along with advanced
computing to aid providers in making complex decisions.
CCDSS development is an active field of research focusing on
Bayesian networks (BN), machine learning (ML), and artificial
neural networks (ANN), but clinical acceptance has lagged
behind.

In this study, we introduce a novel ML framework used to create
a CCDSS for rhythm management in patients with AF. The
QRhythm application is a learning CCDSS that utilizes a 2-stage
ML model to identify the optimal rhythm management strategy
in a given patient on the basis of a set of clinical factors, in
which the model first uses supervised learning (SL) to predict
the actions of an expert clinician, and then applies reinforcement
learning (RL) to identify the best strategy to obtain the best
clinical outcome.

Providers are asked to input data pertaining to the patient in
question, including age, duration of AF, history of heart failure,
diagnosis of left atrial enlargement, resting heart rate, diagnosis
of hypertension, BMI, and symptoms associated with their AF.
Based on the answers to these questions, the algorithm predicts
the frequency at which an expert would choose different rhythm
control strategies including external cardioversion,
antiarrhythmic medications, AF ablation, or rate control.
Screenshots of the input and output screens of the application
are provided in Figures 1A and 1B, respectively.
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Figure 1. (A) Screenshot of the data input page of QRhythm. (B) Screenshot of the data output page of QRhythm. AAM: antiarrhythmic medication;
AF: atrial fibrillation; AFA: atrial fibrillation ablation; EF: ejection fraction; HTN: hypertension; LA: left atrial; HR: heart rate; EXC: external
cardioversion; RAC: rate control.

Both the SL and RL algorithms of the QRhythm application are
based on linear regression models, in which the inputs are each
weighted toward prediction of each of the 4 possible treatment
options: rate control, external cardioversion, antiarrhythmic
medication, and ablation. The SL model is trained using
stochastic gradient descent, with back-propagation of the
gradient of the error, which represents the difference between
the predicted treatment and what is actually selected by a
treating provider, adjusted by a learning rate of 0.1. The RL
model uses an algorithm called Q learning, in which the model
is trained in parallel for patients in whom outcome information
related to hospitalizations, stroke, and symptomatic recurrence
is available in follow-up. Within the Q learning framework, the
reward is calculated as –2 × (stroke) – (hospitalization) –
(symptomatic recurrence), and is back-propagated across each
treatment, after adjustment for a learning rate of 0.01. Owing
to the preliminary nature of the RL algorithm, the learning rate
is one order of magnitude lower than that used in the SL
algorithm. Weight updates are delivered in batches of 8 patients.
The QRhythm algorithm was initialized using a combination
of big data mining and chart review in the University of
Colorado Health system of 100 patients diagnosed with AF,

which were used to train the SL algorithm based on the action
selected by the treatment provider. The QRhythm application
is now being deployed in the clinical setting, where its
recommendations are being used to guide rhythm strategy
decisions in actual patients. Here, it can continue training of the
SL algorithm and begin training the RL algorithm as additional
patient information is included.

Over time, the model will use what it has learned in the SL
phase as a scaffold to slowly transition from an SL algorithm
to an RL one, driven by rewards and punishments based on
defined outcomes of hospitalizations, symptoms, quality-of-life
scores, and changes in rhythm strategies. Rather than predicting
what strategy an expert is most likely to choose, the RL edition
will have the ability to suggest actions that an expert may not
realize as being beneficial for the patient. Therefore, the RL
edition will have the capability to improve outcomes for patients
with AF when compared to standard of care. This 2-staged
method was utilized by the team at DeepLearning to develop a
ML model with the ability to defeat world experts in the game
Go [30,31].
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We used the QRhythm application as a substrate to analyze the
reasons underlying apprehension toward clinical acceptance of
CCDSSs in general.

Methods

Ethics Approval
This study was approved by the Colorado Multiple Institutional
Review Board (#20-2192).

Qualitative Assessment
Residents, fellows, and attendings were first introduced to the
QRhythm app via a brief written tutorial. The providers were
asked to examine the app. They were encouraged to use the app
in a clinical setting—that is, to help inform a rhythm/rate
strategy for a real patient—but this was not required. They then
were presented with a survey produced on REDCap. The survey
was designed to assess how important the providers thought
certain characteristics of the app were. They were asked to rate
how important each category was on a scale of 1-5, with
1=unimportant, 2=slightly important, 3=moderately important,
4=important, and 5=very important. Other prompts asked the
provider to report how firmly they agreed with a prompt, with
1=“strongly disagree,” 2=“somewhat disagree,” 3=“neutral,”
4=“somewhat agree,” and 5=“strongly agree.” Finally, those
who used the app were asked to rank their areas of concern with
using the app from 1=highest concern to 5=lowest concern.
Data were collected on REDCap and exported to an Excel
(Microsoft Inc) spreadsheet for further analysis.

Results

In total, 33 providers responded to the survey. Seven (21%) of
them were attendings (postgraduate year>3), 2 (6%) were
fellows, 21 (64%) were residents, and 3 (9%) chose not to
identify their provider level. The providers were predominantly
either internal medicine residents or attendings (n=27, 82%)
with the remainder being either cardiology fellows or attendings
(n=6, 18%). We feel that this mix of internists and cardiologists
is valuable, as it importantly reflects providers involved in both
early-stage (referrals—internists) and later-stage
(treatment—cardiologists) management of AF.

Of the characteristics of the app surveyed, safety was most
important to the providers, who reported an average importance
rating of 4.7 out of 5 (SD 0.72) in response to the prompt “The
model is not recommending anything unsafe or potentially
harmful.” This was followed by an importance rating of 4.5
(SD 0.90) for clinical integrity corresponding to the prompt
“The information the model is using to make predictions makes
sense clinically,” 4.3 (SD 0.65) for backward interpretability
(“I know the population in which the model was derived is the
same as the one in which I am applying it,”), and 4.3 (SD 0.83)
for application transparency (“I understand the reasoning with
which the model made its recommendations”). Least important
to the providers was provider autonomy with an average
importance of 3.85 (SD 0.83) placed on the prompt “I am able
to disagree with or challenge the recommendations of the model”
(Figure 2).

Figure 2. Importance rated by survey respondents on a scale of 1-5, with 1=unimportant, 2=slightly important, 3=moderately important, 4=important,
and 5=very important, with regard to safety, clinical integrity, backward interpretability, application transparency, and provider autonomy.

Of those who responded, 6 providers used the app at least once
in the clinical setting; that is, they used the app to aid in
developing rhythm control strategies for actual patients.
Providers were not required to follow the specific
recommendations of QRhythm, but merely to examine
agreement and interpretability of the application, as formal
testing toward hard clinical outcomes was beyond the scope of
this pilot investigation. Apprehension concerning the use of the
app clinically varied among these providers. In response to the
prompt “I would feel apprehensive about using the QRhythm
application,” 1 provider (17%) strongly disagreed, 2 (33%)

somewhat disagreed, 2 (33%) were neutral on the subject, and
1 (17%) somewhat agreed. Trust in the app similarly varied. To
the prompt “I trust the recommendations provided by the
QRhythm app,” 1 provider (17%) somewhat disagreed, 2 (33%)
were neutral, and 3 (50%) somewhat agreed. For the most part,
providers did not feel intimidated by the app. One provider
(17%) strongly disagreed with the statement “the QRhythm
application would be intimidating for me to use,” 4 (67%)
somewhat disagreed with this statement and 1 (17%) was
neutral. To the prompt, “Learning to use the QRhythm
application would be easy for me,” 4 providers (67%) strongly
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agreed, and 2 (17%) somewhat agreed. Finally, in general,
providers felt that the QRhythm app would be helpful when
taking care of patients with AF. To the prompt “Using the
QRhythm application would enhance my effectiveness in patient
care and AF management,” 1 provider (17%) strongly agreed,
3 (50%) somewhat agreed, and 2 (33%) were neutral.

These providers were also asked to rank their concerns regarding
clinical use of the app from highest to least concern. Four
providers (67%) ranked the clinical integrity of
recommendations as their highest concern, 1 (17%) ranked
ineffectiveness as their highest concern, and 1 (17%) ranked
data security as their highest concern.

Discussion

Principal Findings
In this study, we examined the provider experience with a novel,
AI-based CCDSS for rhythm management of AF. Providers
generally found the application easy to use, though trust in the
application was variable and apprehension toward its advice
remains a concern. Our data show that safety of the
recommendations provided by the app was most important to
providers. This priority is followed closely by a desire for advice
from a CCDSS to make sense clinically, for the provider to have
knowledge of the population in which the algorithm was
developed, and for transparency of the reasoning with which
the app made its decision. Less important in the minds of the
providers surveyed was the ability to challenge the decisions
made by the app. Of those providers who used the app in the
clinical setting, the accuracy of its recommendations ranked
highest among their concerns.

Comparison With Prior Work
Although there are no existing CDSS for rhythm management
of AF to our knowledge, there are numerous studies related to
specific treatment approaches within the rate versus a rhythm
control strategy decision for patients with AF. The AFFIRM
trial, published in 2002, showed noninferiority in terms of
mortality in rate-controlled patients compared to
rhythm-controlled patients, with a trend toward increased
mortality in the rhythm control group [5]. This trial subsequently
guided rhythm control strategies away from the promise of
improvement in mortality, and directed treatment toward
improvement in symptoms alone. However, the paradigm for
rhythm management may be shifting with the more recent data
suggested by the EAST-AFNET 4 trial published in February
2021, which showed that early rhythm control (within a year
of AF diagnosis) decreases stroke and cardiovascular mortality
compared to a rate control strategy [6].

We surmise that declaring rate control as superior to rhythm
control, or vice versa, however, is too sweeping a conclusion
to make. Further evaluation of these data reveal that individual
characteristics of patients with AF play a large role regarding
the success or failure of a chosen strategy. Subsets of patients
with AF, such as those with heart failure or left ventricular
dysfunction, have been shown to have a mortality benefit from
rhythm control [7]. Additionally, the severity of symptoms for
patients with AF vary widely, and symptomatic patients

experience more relief with rhythm control than with rate control
[8-12]. Conversely, factors such as atrial enlargement [13,14],
age at onset of AF [15], and duration of AF (paroxysmal vs
persistent vs permanent) [16] make rhythm control strategies
more difficult to achieve. In other words, the decision about
rate or rhythm control in patients is likely to be highly
individualized, which raises the possibility that an automated
CDSS could provide guidance with AI integration.

Within the category of rhythm control, various rhythm strategies
exist including external cardioversion, various antiarrhythmic
medications, and AF ablation. The EAST-AFNET 4 trial
randomized patients into a rate or rhythm control strategy, but
the protocol did not specify which rhythm control strategy was
to be pursued. Patients either underwent AF ablation or were
started on an antiarrhythmic agent with coincident external
cardioversion, but the choice of antiarrhythmic agent was left
to the provider [6]. In short, the variability in outcomes based
on patient characteristics makes it difficult to generalize and
extrapolate data from these studies. It does, however, lend itself
to the aid of AI, which can quickly take all of these
characteristics into account and provide recommendations
accordingly.

The advent of EHR has brought a wealth of data to the fingertips
of providers. However, the vastness of these data makes utilizing
them time-consuming and clumsy for humans alone. With the
aid of AI, CCDSSs aim to create interfaces that are easy to
interact with, which condense this plethora of data into easily
digestible visualizations to improve the quality of decisions
made by providers. Multiple methods have been used to develop
such technology, including BNs, ML, and ANNs. While BNs
and ANNs are not presently used by QRhythm, these more
sophisticated prediction algorithms could easily be incorporated
in future versions to include additional types of data, such as
electrocardiography (ECG) tracings, patient symptom reports,
and clinic notes. The framework we have developed for
QRhythm using stochastic gradient descent provides the
opportunity for expansion to deep neural networks, for example,
which could be used for image recognition or natural language
processing to incorporate these additional data types.

ML can be broken down into 3 categories: unsupervised learning
(UL), SL, and RL. UL is not used in QRhythm and will therefore
not be discussed here.

In SL, data are input to the model with associated labels; that
is, data on patients who underwent a rate control strategy would
be labeled as “rate control,” data for those who underwent
external cardioversion would be labeled as “external
cardioversion,” etc. Through application of various computer
algorithms, a model is trained to recognize data associated with
these labels in order to predict an outcome using a held-out
“training set.” The algorithm is then applied to a second set of
data known as the “testing set” or “validation set” to assess its
out-of-sample generalizability and efficacy in predicting an
outcome. SL comprises the initial strategy for the QRhythm
application. Its learning set is a large set of charts of patients
with AF. Based on these data, the model has been taught to
predict the rhythm strategy most likely to be selected by an
expert; for example, an electrophysiologist. SL is designed to
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mimic the decisions or predictions that would be made by
humans. Its efficacy is measured by the difference in the
predictions made by the model compared to those made by
human experts. This difference is known as the loss function.
A loss of zero represents a “perfect” supervised learning model.
Therefore, by definition, an SL model can only ever be as
effective as the human experts against which it is compared
[32-34]. SL models have been used to produce algorithms that
accurately interpret ECGs [35,36]. A diagrammatic
representation of SL is shown in Figure 3A.

Rather than comparing the model’s performance compared to
that of a human expert as in SL, RL is driven by a system of
punishments and rewards. RL is an iterative process in which

actions are made on the basis of the model’s environment. The
results of each action are assessed on the basis of the outcomes
of the action. Good outcomes harbor a positive value or
“reward”; bad outcomes harbor a negative value or
“punishment.” The model takes into account the reward or
punishment that results from a certain action and uses this
knowledge to inform its next action. RL models are designed
to choose actions in order to maximize the reward, thus
providing the best outcome possible. As the goal of RL is not
merely to mimic humans, but rather to maximize outcomes, it
has the potential to outperform human experts. Figure 3B shows
a diagrammatic representation of an RL algorithm. An RL model
has been used to aid in dosing decisions during dofetilide
loading for patients with AF [37].

Figure 3. Diagrammatic representations of (A) supervised learning (SL) and (B) reinforcement learning (RL).

The advantage of ML in health care is clear; advanced
computation allows for analysis of unfathomable amounts of
data in infinitesimal amounts of time, which is something the
most adept provider simply cannot physically achieve. More
data lead to a more informed decision and, therefore, better
outcomes [18,38-41]. However, the power and accuracy of ML
models are irrelevant if their use is not widely adopted. AI in
health care is a robust area of research, but its acceptance in
everyday clinical practice lags behind. Two key obstacles
standing between the development of AI for health care and its
clinical use are model interpretability and trust in the technology.

Interpretability can be broken down into forward or mechanistic
interpretability and backward or post hoc interpretability [42].
Forward interpretability represents the ability for a provider to
walk through the input portion of the model (ie, its usability).
All QRhythm users reported that using the app would be easy
for them, indicating good forward interpretability. Backward
interpretability represents the ability of a user to easily identify
the reasoning behind the decision made by the model. Our
survey respondents rated the importance of backward
interpretability as 4.3 out of 5 (scale 1-5). Backward
interpretability of QRhythm was less convincing; 1 (17%) user
reported not understanding the reasoning underlying the
decisions made by QRhythm well, 3 (50%) were neutral on the

subject, and 2 (33%) reported understanding the reasoning
somewhat well.

Maybe the largest obstacle preventing clinical acceptance of AI
in health care is trust. ML models require complex mathematics
to be functional. As a result, the methodology underlying their
decision-making is inherently murky for nonexperts in the field,
leading to mistrust by those who do not understand their
mechanisms. A study concerning patient apprehension toward
AI in health care highlighted that one factor integral to trust in
AI was safety of the recommendations made by the model [43].
These concerns were shared by our respondents who rated
patient safety as the most important characteristic of the app
with an importance rating of 4.7 out of 5. Asan et al [44]
highlighted the importance of the transparency of a model when
gaining trust. Given the black box nature of these models,
achieving transparency is a difficult task. To do so, steps such
as furthering education concerning ML in the health care field
and providing accessible and understandable explanations of
models should be taken.

Limitations
QRhythm is in the beta testing phase of operation and currently
relies heavily on the SL model for recommendations owing to
the need for interactive training of RL. Time and increased
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deployment are needed to improve the accuracy of the
recommendations of the model, and additional research is
needed to identify a training environment that is safe but also
provides meaningful opportunities to apply a computer algorithm
in clinical care decisions. Importantly, our work has uncovered
the challenges with integration of software development
lifecycles, which generally proceed best in a bottom-up,
just-in-time development life cycle as employed in the Agile
development process, with the necessary top-down guidance
from clinical studies and expert opinion. Development of a
CDSS that not only provides usability but also meaningful
predictions toward an improvement in clinical outcomes is the
ultimate goal, and this work represents an important first step.

Conclusions
In summary, we introduced a novel ML-based model first
utilizing SL and then RL to aid in the decision-making process
for rhythm strategy for patients with AF. We asked providers
to respond to a survey to assess apprehensions regarding the
acceptance of such a model for widespread use in clinical
practice. Our results show that interpretability and trust of a
model are key to acceptance, and providing transparent
explanations underlying model reasoning and ensuring the safety
of model recommendations are key aspects to improving
interpretability and trust.
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