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Abstract

Background: Acute blood glucose (BG) decompensations (hypoglycemia and hyperglycemia) represent a frequent and significant
risk for inpatients and adversely affect patient outcomes and safety. The increasing need for BG management in inpatients poses
a high demand on clinical staff and health care systems in addition.

Objective: This study aimed to generate a broadly applicable multiclass classification model for predicting BG decompensation
events from patients’ electronic health records to indicate where adjustments in patient monitoring and therapeutic interventions
are required. This should allow for taking proactive measures before BG levels are derailed.

Methods: A retrospective cohort study was conducted on patients who were hospitalized at a tertiary hospital in Bern, Switzerland.
Using patient details and routine data from electronic health records, a multiclass prediction model for BG decompensation events
(<3.9 mmol/L [hypoglycemia] or >10, >13.9, or >16.7 mmol/L [representing different degrees of hyperglycemia]) was generated
based on a second-level ensemble of gradient-boosted binary trees.

Results: A total of 63,579 hospital admissions of 38,250 patients were included in this study. The multiclass prediction model
reached specificities of 93.7%, 98.9%, and 93.9% and sensitivities of 67.1%, 59%, and 63.6% for the main categories of interest,
which were nondecompensated cases, hypoglycemia, or hyperglycemia, respectively. The median prediction horizon was 7 hours
and 4 hours for hypoglycemia and hyperglycemia, respectively.

Conclusions: Electronic health records have the potential to reliably predict all types of BG decompensation. Readily available
patient details and routine laboratory data can support the decisions for proactive interventions and thus help to reduce the
detrimental health effects of hypoglycemia and hyperglycemia.

(JMIR Form Res 2022;6(7):e36176) doi: 10.2196/36176
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Introduction

Blood Glucose Decompensations Are Associated With
Poor Outcomes in Inpatients
Diabetes is one of the most common lifestyle diseases worldwide
(affecting approximately 537 million people in 2021),
particularly among older adults (aged >65 years), with numbers
on the rise [1,2]. Consequently, the number of inpatients with
diabetes is also increasing, with currently approximately every
sixth hospital bed being used by patients with diabetes [3,4].

The hallmark of diabetes is loss of control over blood glucose
(BG) levels. Failure to maintain BG levels within the ranges
normally set by functional glucose homeostasis in nondiabetic
people manifests as hyper- and hypoglycemia, where BG levels
decompensate, that is, exceed or fall below a critical threshold,
respectively.

Both hypoglycemia and hyperglycemia have been associated
with numerous complications in inpatients. This includes an
increased length of stay [5], diabetic ketoacidosis or
hyperglycemic hyperosmolar state in the case of hyperglycemia
[6], increased risk of infection [7,8], admission to intensive care
units (ICUs) [9], and an overall increase in mortality [10-12].
The association between hypoglycemia and hyperglycemia and
poor outcomes in inpatients who are critically and noncritically
ill calls for a rigorous inpatient management approach toward
reducing dysglycemia [13,14].

Challenges of Inpatient Dysglycemia Management
The environment of inpatients (ie, a hospital setting) is usually
well-controlled; nevertheless, the maintenance of BG levels in
a normoglycemic range is demanding. It is complicated by the
fragile health status of the inpatient, stress (including
postoperative stress), prolonged fasting, changes in diet and
meal timings, and inadequate dosing of or changes in the type
of antidiabetic drugs administered to name a few main troubles
[14,15]. Standard diabetes therapy using adjusted subcutaneous
insulin injections (sliding-scale insulin) combined with
insufficient glucose monitoring is another issue and a potential
risk factor for hypoglycemia [16], aggravated by the frequent
shortage of nursing staff in hospitals.

The combination of continuous glucose monitoring (CGM)
systems and subcutaneous insulin pumps with automated insulin
delivery (closed-loop) systems is a recent promising
development [17-19], which may reduce the workload of clinical
staff in addition to benefiting patients.

Prediction of BG Decompensation
An alternative approach to continuous BG measurements is the
prevention of BG decompensation by the detection of early
signs or patterns associated with it, thereby avoiding the
immediate and long-term adverse effects of hypoglycemia and
hyperglycemia [20]. To date, studies have primarily assessed
the prediction of hypoglycemia [20] based on, for instance,
laboratory data [21,22] or data from electrocardiograms [23],
or they required subcutaneous glucose readings from CGM
systems [24].

Aim of This Study
This study investigated whether readily available standard
laboratory results and patient information could be used to
reliably predict both hypoglycemia and hyperglycemia in
inpatients with a clinically relevant prediction horizon.

Methods

Patient Cohort
The data set contained anonymized hospital admission data
collected during the routine management of adult (aged ≥18
years) inpatients of the 6 hospitals of the Insel-Gruppe (Bern,
Switzerland) from January 1, 2014, to December 5, 2019. Data
were retrieved as is; that is, no extra data were collected for this
retrospective cohort study. Data of patients whose BG levels
had been assessed at least once were included if they met ≥1 of
the following inclusion criteria:

Diagnosis of diabetes or diabetes-related syndromes (codes as
specified in the 10th revision of the International Statistical
Classification of Diseases and Related Health Problems of the
World Health Organization [25]), including E10 to E14, E16,
E66 to E68, G59, G63, H28, H36, K77.8, K85, M14.2, N08.3,
O24, R73, and R81

Administration of an antidiabetic drug falling into code category
A10 (or subcategories thereof) of the Anatomical Therapeutic
Chemical Classification System

Extreme BG levels regardless of any formal diagnosis of
diabetes, including a BG level of <4.0 or ≥11.1 mmol/L
measured at any time, a fasting venous BG level of ≥7.0
mmol/L, a 2-hour value of ≥11.1 mmol/L during an oral glucose
tolerance test, or an HbA1c value of ≥48.0 mmol/mol
(International Federation of Clinical Chemistry) or ≥6.5%
(Diabetes Control and Complications Trial and National
Glycohemoglobin Standardization Program)

The rationale behind these 3 inclusion criteria was to include a
broad range of patients with potential indications of
dysglycemia. The fact that BG level tests belong to the routine
panel of laboratory tests in inpatients further helped reduce
potential cohort bias. The unfiltered inclusion of all patients’
BG measurement data was not possible because of the
limitations set by the Swiss Human Research Act.

In total, the patient cohort comprised 38,250 patients (n=16,842,
44.03% women and n=21,408, 55.97% men) who had undergone
63,579 hospital admissions (cases), during which at least 1
laboratory analysis of 52 parameters was performed (Multimedia
Appendix 1).

Definition of Dysglycemia
The types of BG decompensation are defined by BG levels of
<3.9 mmol/L (<70 mg/dL; hypoglycemia) [26] or >10, >13.9,
or >16.7 mmol/L (representing different degrees of
hyperglycemia; >180, >250, and >300 mg/dL, respectively)
[26,27]. A second level of hypoglycemia (BG <3.0 mmol/L
[<54 mg/dL]) [26] was not considered specifically as both BG
levels of <3.0 or <3.9 mmol/L may lead to an “altered mental
and/or physical status requiring assistance” [26]; that is, a BG
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level that is <3.9 mmol/L may already pose a significant risk
for a patient.

BG level intervals were assigned category numbers of 0 to 4,
with category 0 representing cases not showing BG

decompensation (Table 1). These categories were selected on
the basis of clinical relevance, intuition in interpretation, and
clinicians’ decision-making and were aligned with clinical
practice guidelines [26,27].

Table 1. Category assignment of blood glucose decompensation types.

Decompensation typeCategoryBlood glucose level interval (mmol/L)

Nondecompensated0≥3.9 to ≤10

Hypoglycemia (level 1)1<3.9

Mild hyperglycemia2>10 to ≤13.9

Moderate hyperglycemia3>13.9 to ≤16.7

Severe hyperglycemia4>16.7

Data Preprocessing
Before use, the data sets were cleaned and preprocessed to
remove erroneous entries and unreasonable, unlikely, or even
impossible values.

For patient variables, values outside the following (reasonable)
limits were set to “N/A” (whereas all other values of the
respective patient were retained) as they are most likely the
result of errors during data input: ages 18 to 130 years, body
height 100 to 250 cm, and weight 25 to 400 kg. For laboratory
measurements, negative values were removed (apart from the
measurements of base excess, which allowed negative results).
Values generally incompatible with human life were published
only for a relatively small number of analytes [28], and
measurements outside the following limits were excluded on
the basis of such published limits for chloride (<65 or >138
mmol/L) [29], plasma pH (<6.8 or >7.8) [30,31], potassium
(<1.3 or >9.0 mmol/L) [29], and sodium (<100 or >191 mmol/L)
[29].

Other putative outliers were identified using the Isolation Forest
algorithm [32] (implemented in the Python sklearn.ensemble.
IsolationForest module; version 0.21.3) and were flagged. These
binary outlier flags were used as additional variables to label
potentially severe cases.

Predictors and Outcomes
Decompensation events corresponding to the different
decompensation categories specified in Table 1 were identified
in the data for each admission case. If an event corresponding

to a decompensation category was present, all data collected
before the decompensation event (look-back window; see Figure
1 for a fictive case with [Figure 1A] and without [Figure 1B] a
decompensation event) were used to form derived variables for
each laboratory analyte (descriptive statistics: mean, SD, IQR,
total range, recent trend, most extreme and most recent value,
and analysis count). These derived variables are supposed to
reflect the current overall status of a patient, mimicking a
physician’s assessment of the information present in a patient’s
health record. Only the first decompensation event was
considered for each category. If a decompensation event was
detected with the first measurements of a case, it was not
considered at all in the corresponding decompensation
categories. If no decompensation event of a specific category
occurred within a case, the data collected at all its time points
were used to create the derived variables (Figure 1B). The time
span from the last piece of data of at least 1 predictor variable
in the electronic health record (EHR) before the decompensation
event of interest was considered the prediction horizon for the
respective category (Figure 1A).

Analyte statistics were subsequently combined with patient
demographics (age, sex, weight, height, language, and civil
status), information on the previous and current administration
of antidiabetic drugs, previous incidents of BG decompensation,
history of diagnoses, and stay in ICU (complete variable list is
provided in Multimedia Appendix 2). The data points were
hashed, duplicates were removed, and a final data table was
generated for the development and evaluation of the prediction
models.
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Figure 1. Look-back window and prediction horizon (A: decompensated case; B: nondecompensated case).

Prediction Models and Second-Level Ensemble
Binary prediction models were set up to distinguish clinically
relevant combinations of decompensation categories (Figure
2). To this end, decision tree–based classification models using
extreme gradient boosting (XGBoost; XGBoost package [33];
version 1.0.0.2) were trained. XGBoost models do not make

any assumptions about the distribution of the data and can deal
with incomplete data sets. This is particularly useful for clinical
data where the time points and types of analyses are specific
for each individual patient. XGBoost uses a sparsity-aware
split-finding algorithm that assigns a default direction to each
node [33]. If a feature value is missing, the default direction
along the corresponding node is taken [33,34].
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Figure 2. Binary models detecting clinically relevant combinations of blood glucose decompensation types.

The data of cases falling into several categories were used to
train each of the relevant prediction models. For each binary
model, cases that did not meet the respective decompensation
criterion were used as controls. The resulting categorizations
may be puzzling for the human observer at first glance; for
example, a binary hypoglycemia model using the data of a
hyperglycemic case as control.

The model parameters were optimized over a wide parameter
space using a stochastic grid search approach covering 2000 to
4000 parameter combinations. Data were split 70/30; that is,
70% of the cases were used for iterative training and the
withheld 30% for model testing.

To counter the imbalance in the data sets, each sample was
assigned a weight corresponding to the inverse frequency of its
class during model training.

The best models with respect to precision (positive predictive
value), sensitivity (recall), area under the curve of the receiver
operating characteristic curve (AUC ROC), and informedness
were retained. The importance of each variable (feature
importance), which is a score indicating how influential each
variable was during the construction of the tree ensemble, was
determined during model training [33]. The selection of
variables in advance was not required for the XGBoost models.
Feature importance was calculated for each separate decision
tree and node as the amount by which splitting on that particular
node reduces the loss function, weighted by the number of leaf
assignments to which the node contributes. Therefore, features
affecting more decisions and decisions with higher significance
will have higher relative importance. For the final assignment,
the importance was averaged across the entire ensemble for
each variable [33,35].

Subsequently, multiple binary models were assembled into a
second-level ensemble to build a multiclass classifier. The
composition of this second-level ensemble was optimized for

average precision using a genetic algorithm [36,37], as the
number of possibilities for combining binary models into an
ensemble grows exponentially.

Each multiclass is described by a (theoretical) combination of
predictions of all binary classifiers (class-specific bit strings,
ie, ideal results). For multiclass classification, a case-specific
bit string for the votes of all binary classifiers of the second-level
ensemble was created. The label of the ideal class-specific bit
string with the minimal Hamming distance to the predicted
case-specific bit string was chosen as the predicted case label.

In the case of a tie between ≥2 classes, they were prioritized
according to clinical relevance (severity): hypoglycemia>severe
hyperglycemia>moderate hyperglycemia>nondecompensated
case>mild hyperglycemia. Mild hyperglycemia was assigned
the lowest priority to reduce false alarms.

Ethics Approval
This study was approved by the Bernese cantonal ethics
committee (Kantonale Ethikkommission, KEK) and registered
with the Business Administration System for Ethics Committees
of the canton of Bern (KEK/NZE file number: Req-2018-00335).

Results

Patient Cohort Characteristics
For this study, we analyzed clinical data from 38,250 inpatients
who had undergone 63,579 hospital admissions between January
1, 2014, and December 5, 2019, during which at least 1
laboratory analysis was performed. Of the 38,250 patients,
16,842 (44.03%) were women (age: mean 62.6, SD 19.6 years),
and 21,408 (55.97%) were men (age: mean 65.9, SD 14.4 years).
Specific details for the different categories of dysglycemia
(based on clinical relevance; compare with the Methods section)
are summarized in Table 2.

JMIR Form Res 2022 | vol. 6 | iss. 7 | e36176 | p. 5https://formative.jmir.org/2022/7/e36176
(page number not for citation purposes)

Witte et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Patient cohort characteristics at baseline.

Category

4: severe hyper-
glycemia

3: moderate hyper-
glycemia

2: mild hyper-
glycemia

1: hypo-
glycemia

0: nondecompensated

Characteristics

848410,41926,788816424,330Number of casesa

13.316.442.112.838.3Prevalence per admission,
%

Gender, n (%)

2989 (35.2)3687 (35.4)9981 (36.9)3911 (47.9)10,820 (44.5)Female

5495 (64.8)6732 (64.6)16,897 63.1)4253 (52.1)13,510 (55.5)Male

68 (58-76)68 (60-77)69 (60-77)65 (48-75)69 (56-78)Age (years), median (IQR)

170 (163-176)170 (163-176)170 (163-176)168 (162-175)169 (163-175)Height (cm), median (IQR)

78.8 (67.0-91.0)79.6 (68.1-92.4)79.1 (67.9-91.9)71.0 (60.3-83.4)81.9 (69.5-96.5)Weight (kg), median (IQR)

27.3 (23.8-31.5)27.5 (24.1-31.7)27.3 (24.0-31.4)25.0 (21.7-29.0)28.4 (24.7-33.4)BMI, median (IQR)

2523 (29.7)3171 (30.4)7694 (28.7)2062 (25.3)1381 (5.7)Cases in the ICUb, n (%)

6.9 (3.1-13.1)7.1 (3.2-13.1)6.8 (3.0-12.1)7.6 (3.6-14.8)3.8 (1.9-7.6)Length of stay (days), median
(IQR)

3985 (47)4568 (43.8)9860 (36.8)2449 (30)9529 (39.2)Previous diagnosis of diabetes,
n (%)

3291 (38.8)3829 (36.8)8396 (31.3)1975 (24.2)8046 (33.1)Antidiabetic drugs (administered
before hospital admission), n (%)

6415 (75.6)7885 (75.7)10,820 (40.4)4238 (51.9)6801 (28)Previous BGc decompensation,
n (%)

18.6 (17.4-20.8)14.9 (14.4-15.7)11.4 (10.6-12.3)3.6 (3.2-3.7)N/AdDecompensation level (mM),
median (IQR)

22 (1-74)25 (3-70)16 (1-43)34 (4-115)N/ATime point of decompensation
(hours; time after hospital admis-
sion), median (IQR)

aNumbers sum up beyond the total number of hospital admissions (63,579), as cases occasionally fell into multiple categories if different decompensation
events occurred within a case (Figure 3).
bICU: intensive care unit.
cBG: blood glucose.
dN/A: not applicable.

Men represented approximately two-thirds of the patients
showing a hyperglycemic decompensation event (Table 2),
whereas nondecompensated and hypoglycemic cases mirrored
the overall gender distribution of the cohort.

The patients showing hypoglycemia included significantly
younger patients compared with other categories, and similarly,
patients presenting with hypoglycemia were less obese (ANOVA
[type II] using subjects as blocking factors, followed by the
Games-Howell post hoc test 95% confidence level; P<.001).
The likelihood that patients with some form of BG
decompensation were admitted to the ICU increased
approximately 5-fold.

An overview of the baseline characteristics of the patient cohort
is provided in Table 2.

In a subset of cases, the patients showed multiple episodes or
categories of decompensation events during admission (Figure
3). This included opposing decompensation types (hypo- and
hyperglycemia) during the same admission in approximately
10.16% (3987/39,249) of decompensated cases. The inclusion
criteria of the cohort favored a high prevalence of
decompensation events (eg, patients with a formal diagnosis of
diabetes or diabetes-associated comorbidities); hence, the
prevalence of cases without any kind of BG decompensation
was appreciably low (Table 2).
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Figure 3. Types of decompensation events.

Multiclass Classifier Performance
Several binary models were assembled into a second-level
ensemble to create a multiclass classifier. For k classes, a
minimum of log2k binary classifiers are required to represent
all classes, (ie, a minimum of 3 classifiers for 5 classes). Adding
additional binary classifiers (beyond log2k) is, in principle,
redundant; however, additional bits can act as error-correcting
codes (eg, the study by Berger [38]).

As the number of potential ensembles built from binary models
grows exponentially, their composition was optimized using a
genetic algorithm [36,37], assessing different combinations of
the best binary models with respect to precision, sensitivity
(recall), AUC ROC, and informedness. Average precision served
as a readout (fitness value) during the optimization process.

The multiclass classifier ensemble with the best performance
comprised binary model types A, B, G, H, and I (compare Figure

2; ie, of models trained to recognize all types of
decompensations, only hypoglycemia, hypoglycemia and severe
hyperglycemia, all types of hyperglycemia, and moderate and
severe hyperglycemia, respectively). The mean AUC ROCs of
the contributing binary models were 0.925 (SD 0.001), 0.960
(SD 0.002), 0.867 (SD 0.002), 0.914 (SD 0.001), and 0.863 (SD
0.003), respectively (5-fold cross-validation).

An overview of the true decompensation categories versus the
model predictions (confusion matrix) is shown in Figure 4. Our
multiclass classifier correctly predicted nondecompensated,
hypoglycemic, and hyperglycemic cases in 93.66%
(28,042/29,941), 58.99% (1093/1853), and 63.56% (6240/9817)
of cases, respectively, in relation to the true category.

The performance metrics for each class are summarized in Table
3. All types of dysglycemia were predicted reasonably but
somewhat conservatively.

Figure 4. Classification by multiclass classifier for nondecompensated cases (control), hypoglycemia, and hyperglycemia (confusion matrix; percentages
relative to true class; number of cases in parentheses).
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Table 3. Performance of multiclass classifier by class (5-fold cross-validation).

Performance (%), mean (SD)Performance metric

HyperglycemiaHypoglycemiaControl

63.6 (1.1)59.0 (5.7)67.1 (2.3)Sensitivity

93.9 (0.6)98.8 (0.5)93.7 (0.9)Specificity

76.3 (1.6)71.8 (8.6)80.6 (1.9)Precision

78.7 (0.4)78.9 (2.6)80.4 (0.7)Balanced accuracy

When the different types of hyperglycemia were considered
separately, mild, moderate, and severe hyperglycemia were
correctly predicted in 46.69% (2411/5164), 31.22% (797/2553),
and 36.87% (774/2099) of the cases in relation to the true
category, respectively (Figure 5). For each type of

hyperglycemia (mild, moderate, and severe), an additional 20%
to 30% of the classifications fell into other categories of
hyperglycemia, meaning that the overall state of hyperglycemia
was detected in those cases as well.

Figure 5. Classification by multiclass classifier (confusion matrix; percentages relative to true class; case numbers in parentheses).

Nondecompensated cases or cases showing hypoglycemia and
severe hyperglycemia were predicted reasonably, albeit fairly
conservatively, with lower sensitivity. The correct distinction
between hyperglycemia types was more challenging. From a
clinical perspective, this is understandable as these cases form
a continuum. Nevertheless, a warning of any kind of
hyperglycemia makes no difference in terms of the measures
taken; hence, a classification of hyperglycemia was assumed to
be sufficient, as long as this is indeed the underlying condition.

The median look-back window was 4.4 (IQR 1.8-9) days, 1.9
(IQR 0.4-5.7) days, 1.0 (IQR 0.3-2.4) days, 1.5 (IQR 0.6-3.7)
days, and 1.8 (IQR 0.7-4.4) days for control class,
hypoglycemia, and mild, moderate, and severe hyperglycemia,
respectively. The median prediction horizon was 7 (IQR 3-15)
hours for hypoglycemia and 4 (IQR 3-7, 3-6, and 3-6 for mild,
moderate, and severe hyperglycemia, respectively) hours for
all hyperglycemia types. In a clinical setting, such a prediction
horizon would allow sufficient time for proactive interventions
before BG decompensation occurs.

If the multiclass classifier is converted (reduced) to a binary
classifier, it correctly predicts 67.12% (7833/11,670) of
decompensated and 93.66% (28,042/29,941) of
nondecompensated cases, corresponding to sensitivity (recall)
and specificity (selectivity), respectively. In terms of precision
(positive predictive value) and balanced accuracy, the model
achieved 80.5% and 80.5%, respectively.

Notably, across all predictions, a relatively small set of variables
had a comparably large impact on the individual binary models
constituting the multiclass classifier (Figure 6). Although the
contributions of the variables (feature importance; see the
Methods section for details) varied slightly across models, they
all pointed in the same direction. A set of 12 variables
encompassed the 10 most important variables for all 5 binary
models. Not unexpectedly, quantitative readouts of glucose
measurements had the highest importance; however, soft
variables, such as information on recent decompensation events
or time since admission, were also critical.
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Figure 6. Variable importance (population level) of binary models comprising the multiclass classifier (top 10 shown). ADD: antidiabetic drug; all:
all types of; decomp: decompensation; hyper: hyperglycemia; hypo: hypoglycemia.

Discussion

Principal Findings
In this study, we set up a prediction model for hypo- and
hyperglycemia from routine inpatient clinical data. We used
anonymized EHRs of 63,579 hospital admissions of 38,250
patients between January 2014 and December 2019 to derive
variables from measurements of common laboratory analytes,
as well as patient information, drug administration, and
diagnosis history. The data were characterized by a high degree
of missingness, particularly for many of the variables originating
from less common laboratory tests. To address this issue, we
created a second-level ensemble comprising binary decision
tree models that could deal with incomplete data. With respect
to the overall main categories of interest (nondecompensated
cases and hypo- or hyperglycemia), our classifier achieved
93.7% (28,042/29,941), 59% (1093/1853), and 63.6%
(6240/9817) correct predictions, respectively. When converted
to a binary classifier, it reached correct classification rates of
93.7% (28,042/29,941) and 67.1% (7833/11,670) for
decompensated and nondecompensated cases, respectively. The
median prediction horizon was 7 and 4 hours for hypo- and
hyperglycemia, respectively.

Strengths and Limitations
In our modeling approach, the variables were derived rather
than directly taken from the EHRs. This increases the effort in

an applied clinical setting as the variables need to be updated
when new measurements are added to a patient’s EHR. This
concerns both the summary statistics of each analyte and
variables related to patient history (eg, application of antidiabetic
drugs or previous decompensation events), which may change
during hospitalization. However, an automatic update from
clinical data warehouses should solve this issue. The ultimate
aim should be to allow integration into a real-time alert system.

Data were not specifically collected for our retrospective study;
hence, our data set may show a potential bias in terms of the
timing of blood sampling; for example, hours during the day
with higher staffing levels or before meals may be somewhat
overrepresented. Hypoglycemia, in particular, may occur at
night or in the early morning hours when no measurements are
performed. Despite this potential bias in the training data, our
model featured a promising prediction horizon. With 7 and 4
hours for hypo- and hyperglycemia, respectively, it provided
sufficient time to initiate measures and prevent BG
decompensation and its adverse effects. The difference between
hypo- and hyperglycemia may be explained by more deliberate
monitoring of BG levels in potential hypoglycemic patients by
clinical staff.

The main strength of our model’s performance lies in the
distinction between the extreme ends of the decompensation
scale (nondecompensated cases, hypoglycemia, and severe
hyperglycemia). However, the discrimination rate of different
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types of hyperglycemia, was rather moderate, particularly the
rate of correct classification of moderate hyperglycemia (31.2%).
In part, this may be because the categorization of different types
of hyperglycemia, and the overall distinction into 5 categories
in our model, had a clinical relevance rather than a
computational one. Different types of hyperglycemia are defined
by clinical practice guidelines [26,27] and form a continuum in
the daily routine.

This does not affect the model’s usefulness drastically when
taking into account the intention behind a model like ours,
namely serving as decision support for adjustments of patient
monitoring or therapeutic strategies (not triggering any treatment
such as administration of insulin or glucose). Regarding the
potential consequences of misclassification for a patient,
mix-ups of hyperglycemia types are clinically irrelevant, and
similarly, confusion of hypoglycemia and hyperglycemia has
no drastic consequences—they would all trigger a BG test by
clinical staff. False positives cause an extra workload for clinical
staff but are also noncritical for a patient and occurred at a low
rate (6.3%). False-negative predictions are more problematic
as they may possibly result in the noninitiation of a BG test or
countermeasures for BG decompensation. The false-negative
rate of our model (32.9%) is suboptimal, meaning that it
classifies too conservatively and misses too many
decompensated cases. However, in light of these cases being
missed completely without decision support, this is a step in
the right direction.

Despite having a common denominator—diabetes or
diabetes-related comorbidities—patients in our cohort were
diagnosed with various primary and secondary diagnoses.
Consequently, a plethora of different analyses have been
conducted, with some tests done routinely; for example, the
assessment of blood count, and other, more specific ones, were
missing in most cases, such as analyses related to iron
metabolism. Our prediction model, a second-level ensemble
using derived variables, deals well with this sparse data (shown
in the Methods section), in contrast to other popular methods
such as logistic regression, support vector machines, and neural
networks, which require complete data sets.

Akin to other studies [22], the patient cohort underlying our
model features a certain bias toward patients with potential
indications of dysglycemia (see the Methods section). However,
this is not necessarily disadvantageous. A cohort without
preselection may lead to trivial models calling for the
(nondecompensated) group with an overwhelming frequency,
yielding a low overall classification error but limited clinical
utility [39]. The actual performance, clinical applicability, and
performance for specific patient subgroups (eg, dysglycemia
risk patients) must be assessed in broader follow-up studies, as
for every model.

Notably, our model uses routine clinical data from standard
laboratory tests and patient information, all of which are readily
available in hospital settings. This is beneficial as these
variables—assuming a proper in-house information flow—are
available for free, both in terms of cost (no additional testing
required) and effort (once the information is entered). However,
such data collected during routine management usually do not

feature fixed sampling times or a common set of analyses, which
complicates alignment between cases. Given the absence of
periodicity in the data, our approach was to mimic a physician’s
intuitive assessment of the information present across a patient’s
health record (eg, average and extreme values, trends, and most
recent values) rather than individual data points.

This could ensure broad applicability, for example, in contrast
to models based on expensive specialized tests [22] or even data
from sensor implants [24]. Without a doubt, CGM devices
offering frequent subcutaneous glucose measurements are ideal
for a narrow set of patients, such as those with type 1 diabetes.
However, their wider use in the general context of inpatients is
neither practical nor cost-effective. In times of tight budgets for
health care systems, the frugality of a model relying only on
pre-existing data is of additional value. Our model does not
require data sampled at specific time points; it takes whatever
data are available. The identification of high-risk patients at no
extra cost may lead to a reduction in workload for clinical staff
and less frequent blood sampling for average patients.
Overalerting should be taken into account as well—it would
reduce the benefit of correct predictions; hence, the rather
conservative nature of our multiclass classifier may actually
not be such a drawback. A model is always an approximation
of reality and should serve its purpose in the first place (“All
models are wrong but some are useful.” [40]).

Comparison With Prior Work
An increasing number of prediction studies are using the
growing amount of patient data available in EHRs (for review,
see the studies by Woldaregay et al [20], Roca et al [41], and
Torkamani et al [42]). Diabetes is a popular and promising target
of prediction studies [20] because of both its high prevalence
in an aging population and the associated economic burden.
The growing number of inpatients with deficiencies in
controlling their BG levels calls for a refinement of the existing
inpatient dysglycemia management [12-14,43].

Models for predicting a single type of BG decompensation as
diabetes-associated complications have been established
previously, mainly for hypoglycemia [20-22,44,45]. Few studies
only have been published for hyperglycemic events [20].

To the best of our knowledge, this is the first general multiclass
prediction model for BG decompensation to date (ie, both hypo-
and hyperglycemia). A multiclass model offers the advantage
of overcoming the vagueness associated with a binary model
in a setting of >2 classes. For example, the prediction of
nonhypoglycemic by a hypoglycemia model is ambiguous as
the affected patient could be nondecompensated or
hyperglycemic, where the latter would require action by the
patient or clinical staff. A multiclass model such as ours resolves
this conflict by differentiating between nondecompensated and
multiple types of decompensated cases.

Notably, our model performed reasonably well when reverted
to a binary model. Although it may be counterintuitive to first
build a multiclass classifier and then revert it to a binary
classifier, this approach takes advantage of the fact that
ensembles tend to outperform individual models [46] and can
benefit from error correction [38].
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Future Directions
In the next step, it would be interesting to assess the multiclass
classifier in a follow-up retrospective cohort study for validation
purposes using an independent data set. Optimizing the
sensitivity and reducing the false-negative rate should be an
additional focus to make the model more applicable for clinical
use. Further down the road, the incorporation of the model into
an alert system or even actionable artificial intelligence [17-19]
could be tested. This would allow the evaluation of its real-time
effectiveness, ideally leading to a reduction in the incidence of
BG decompensations in inpatients.

Conclusions
Our multiclass prediction model based on derived variables can
classify both hypo- and hyperglycemia with reasonable
sensitivity.

Given the serious adverse health effects of hypo- and
hyperglycemia and the associated poor outcome of BG
decompensation in inpatients, it is important to prevent
dysglycemia whenever possible. Prediction models such as ours
may support clinicians in inpatient management by proactively
pointing out the necessity for adjustment of patient monitoring
or therapeutic strategies. Therefore, this study may serve as a
step toward a real-time alarm system and actionable artificial
intelligence, which may aid in reducing BG decompensation in
inpatients.
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