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Abstract

Background: Pain is an unpleasant sensation that signals potential or actual bodily injury. The locations of bodily pain can be
communicated and recorded by freehand drawing on 2D or 3D (manikin) surface maps. Freehand pain drawings are often part
of validated pain questionnaires (eg, the Brief Pain Inventory) and use 2D templates with undemarcated body outlines. The
simultaneous analysis of drawings allows the generation of pain frequency maps that are clinically useful for identifying areas
of common pain in a disease. The grid-based approach (dividing a template into cells) allows easy generation of pain frequency
maps, but the grid’s granularity influences data capture accuracy and end-user usability. The grid-free templates circumvent the
problem related to grid creation and selection and provide an unbiased basis for drawings that most resemble paper drawings.
However, the precise capture of drawn areas poses considerable challenges in producing pain frequency maps. While web-based
applications and mobile-based apps for freehand digital drawings are widely available, tools for generating pain frequency maps
from grid-free drawings are lacking.

Objective: We sought to provide an algorithm that can process any number of freehand drawings on any grid-free 2D body
template to generate a pain frequency map. We envisage the use of the algorithm in clinical or research settings to facilitate
fine-grain comparisons of human pain anatomy between disease diagnosis or disorders or as an outcome metric to guide monitoring
or discovery of treatments.

Methods: We designed a web-based tool to capture freehand pain drawings using a grid-free 2D body template. Each drawing
consisted of overlapping rectangles (Scalable Vector Graphics <rect> elements) created by scribbling in the same area of the
body template. An algorithm was developed and implemented in Python to compute the overlap of rectangles and generate a pain
frequency map. The utility of the algorithm was demonstrated on drawings obtained from 2 clinical data sets, one of which was
a clinical drug trial (ISRCTN68734605). We also used simulated data sets of overlapping rectangles to evaluate the performance
of the algorithm.

Results: The algorithm produced nonoverlapping rectangles representing unique locations on the body template. Each rectangle
carries an overlap frequency that denotes the number of participants with pain at that location. When transformed into an HTML
file, the output is feasibly rendered as a pain frequency map on web browsers. The layout (vertical-horizontal) of the output
rectangles can be specified based on the dimensions of the body regions. The output can also be exported to a CSV file for further
analysis.

Conclusions: Although further validation in much larger clinical data sets is required, the algorithm in its current form allows
for the generation of pain frequency maps from any number of freehand drawings on any 2D body template.

(JMIR Form Res 2022;6(6):e36687) doi: 10.2196/36687
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Introduction

Background
Pain is an unpleasant sensation signaling potential or actual
injury to the body site [1]. The location of pain can be
communicated or recorded by drawing onto a body template
(eg, Brief Pain Inventory [2]). Pain drawings have been used
clinically and in research for decades [3]. Jang et al [4] reported
that patients were more confident about communicating the
locations of pain to the clinician in the form of a drawing as
opposed to a written description, and the clinicians also favored
drawings over written descriptions. Digital technology is now
commonplace and circumvents problems associated with the
processing and storage of pain drawings; hence, pain drawings
are now widely acquired as digital images when possible [5].
Numerous web-based applications and mobile apps offer digital
pain manikins, both commercial and academic [6]. Most digital
pain manikins use 2D templates, which are whole-body coronal
or sagittal views of the human body. There is often a choice of
gender and body type for 2D or 3D surface templates [7-9]. A
typical digital pain manikin consists of a body template and
self-explanatory instructions for the patient regarding how to
indicate the locations where they experience the most
discomfort.

The pain frequency map is generated by the simultaneous
analysis of all digital pain drawings to compute the locations
of pain that participants have in common. To aid visualization,
the maps also use color codes to highlight locations on the body
in accordance with their frequency of occurrence in the sample
being studied. Such maps are clinically useful in identifying
where sensations commonly relate to disease anatomy [10,11]
and the factors that influence the subjective localization of
pathology. These maps are perhaps most important in chronic
primary pain syndromes [12], which are defined by the locations
of pain in the absence of disease (eg, chronic back pain).

The ease with which pain frequency maps are generated
critically depends on the nature of the body template used. For
body templates where the anatomical locations are already
predefined and demarcated [7,13], the pain drawings are swiftly
completed, and the data captured are binary, where 1 indicates
a selection, and 0 indicates no selection. As a result, the
generation of pain frequency maps is relatively straightforward,
because only the number of participants who selected each
location needs to be deduced [14]. However, such frequency
maps may not entirely capture the underlined spatial patterns
of pain because of loss of spatial resolution caused due to the
pixel (ie, x-y coordinate, representing the smallest possible
division for the body template) being preassigned to larger
(hence fewer) anatomical regions (eg, the Collaborative Health
Outcomes Information Registry [CHOIR] body template has
74 divisions to click [7]). In addition, assumptions must be made
about where the anatomical locations of pain are clinically
relevant or important.

Freehand pain drawings, using body templates with
undemarcated or blank body outlines, are unbiased. Some body
templates supporting freehand drawings use a grid with a
predefined number of cells (eg, GeoPain app with a 3D body

template uses a grid of 2026 cells [9] and Manchester Digital
Pain Manikin uses a grid of 12,800 cells for its 2D body template
[15]). The grid-based templates also allow the easy generation
of pain frequency maps because each location (a cell) is binary
in nature and is either selected or not selected. However, as
body templates come in a variety of shapes and sizes [5], the
aspect ratio (ratio of width to height) of the body regions also
changes, and it is therefore not possible to standardize a grid
(no one-size-fits-all). The optimal grid granularity (resolution)
of each body template must be assessed. The granularity of the
grid determines the end-user experience and accuracy of the
captured data [15].

The grid-free body template, as the name suggests, overcomes
the problem of grid creation and selection and provides an
assumption-free basis for pain drawings that most resemble
paper drawings. The number of clickable locations is of the
order of thousands (depending on the pencil size). In addition,
the participant may choose to draw repeatedly in the same
location, similar to what happens when pen and paper are used.
The precise capture of drawn areas, along with no predefined
locations (cells), poses considerable challenges in generating
pain frequency maps. The drawings on grid-free templates
require intricate pixel-level analysis to generate a pain frequency
map, and the tools for generating such maps are lacking or not
freely available [16-18].

Objectives
In this paper, we describe a novel and unbiased algorithm
developed specifically to generate a spatial pain frequency map
from freehand pain drawings on a generic 2D whole-body
template. We also assessed the performance of the algorithm’s
Python script and demonstrated its utility by generating pain
frequency maps from pain drawings obtained from 2 clinical
data sets.

Methods

Creating the Digital Body Template (Manikin)
An image outline (or template) of the human body is embedded
in an HTML page to create a digital body template (manikin)
to capture drawings of pain locations.

The responsiveness of the body template (ie, the ability to
highlight or zoom in or out of a region) requires vectors, which
are created using lines, points, and shapes to represent the
different regions (demarcations) of the body. Using Scalable
Vector Graphics (SVG), an XML-based language, it is possible
to display vectors and create a responsive body template.

The locations of pain can be recorded on any body template by
inserting basic SVG elements such as circles and rectangles.
These shapes are inserted by specifying their position and size
as the core attributes. For example, the circle requires
coordinates (cx, cy) of the center and the radius (r), and the
rectangle requires coordinates (x, y) of the top left corner along
with width and height. In addition to the core attributes, the
SVG elements can also contain style-related attributes (eg, fill,
visibility, and opacity) and any number of customized attributes
with prefix data- (eg, data-region and data-date-inserted).
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The circle and rectangle elements can be created in SVG:

<circle cx=“5” cy=“5” r=“10” fill=“green”
visibility=“hidden” />

<rect x=“5” y=“5” width=“20” height=“10”
fill=“red” opacity=“0.8” data-region=“front” />

We used the SVG <rect> element to record the location of pain
because the intersection of the 2 rectangles is always a rectangle
(consistent geometry) that is required for the algorithm to
function.

We downloaded a sexless human body outline image (TIFF),
which is an adaptation of one of the oldest templates from the
early works of Sir Henry Head [19]. The image has 4 views of
the human body in 2D: coronal (front and back) and sagittal
(left and right). The image was modified to demarcate 4
nonoverlapping regions: the front, side head (right), side head
(left), and back. For making regions clickable, the body image
was vectorized and converted into SVG using the Inkscape
Editor (version 1.1) [20]. Vectorization produced 4 vectors
(beziergons), where each vector has an associated bounding
box, which is the tightest fitting rectangle that encloses all points
on the vector (Figure 1).

In order to facilitate data capture from drawings of bodily pain
locations, we first developed Body Pain Map, a tool using

Linux-Apache-Perl-MongoDB–based infrastructure. The
HTML5 webpage of the tool consists of a 2-column layout
where the right column embeds the SVG body template and the
left column contains 7 JavaScript-powered control elements
(Figure 2), which are (1) size of rectangular pencil tip (<select>
element with 3 options, small, medium, and large, signifying
red squares of dimensions: 10, 30, and 60). The dimension of
the smallest square was based on the smallest width found on
the body template (eg, little finger), (2) zoom in (<button>
element) to allow a closer view, (3) zoom out (<button>
element) to allow a wider view, (4) Erase (<button> element)
to remove a previous pain recording, (5) undo eraser (<button>
element) to restate a previously removed recording, (6) clear
(<button> element) to remove all recordings, and (7) submit
(<button> element) to submit drawings for storage in the
MongoDB database for analysis and reconstruction purposes.
A blank body template can be submitted (eg, when the
participant has no bodily pain to draw).

For making the Body Pain Map easily accessible as a web-based
tool, we placed the HTML document on a secure Linux machine
running the Secure Socket Layer (SSL)–enabled Apache HTTP
web server (Figure 3). The tool can be accessed on the web [21]
and tested on modern web browsers (eg, Google Chrome,
Mozilla Firefox, and Microsoft Edge).

Figure 1. The body template (manikin) shows 4 regions. The tightest fitted rectangle (bounding box) enclosing each region is shown in black.
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Figure 2. HTML webpage with a 2-column layout. The left column contains all control elements (buttons) and the right column contains the Scalable
Vector Graphics body template. The participant can click anywhere on the template (divided into 4 regions) to locate their pain; a pain drawing of body
regions, which comprises overlapping squares (rectangles of same width and height) of varying sizes is shown here. These drawings are input to the
algorithm.

Figure 3. Each participant accesses the Body Pain Map tool through their web browser securely. The pain drawings are captured and stored in a
MongoDB database. A sample JSON document of the pain recording (denoting Scalable Vector Graphics <rect> element) is shown as an example with
core attributes in the color red.

Developing the Algorithm to Generate a Pain
Frequency Map

Overview
The pain frequency map is generated by superimposing several
drawings made by the participants using a rectangular pencil
tip on a given body template. The drawing from each participant
indicates where the pain is located on the body and can comprise
multiple overlapping rectangles. The degree to which the

rectangles overlap when all drawings are superimposed is of
interest. The algorithm described in the Overlap Computation
Algorithm section generates a pain frequency map that denotes
the proportion of overlap in the rectangles between participant
drawings. By default, the areas where the proportion of overlap
is higher (ie, where pain is more commonly located) are redder
in color. Areas with less overlap appear less red. Areas that are
colored white are regions within the body template where no
participant has drawn.
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Overlap Computation Algorithm
The key steps in the overlap computation algorithm are (1) data
decomposition, (2) creating partitions, (3) merging partitions
to create nonoverlapping rectangles, and (4) optimizing
nonoverlapping rectangles.

Data Decomposition
The first step toward 2D overlap computation is the
decomposition of the source data from all participants’drawings
on a given 2D body template.

Let T be the total number of participants, P (|P| ≤ T) be the set
of strings denoting all participants with a drawing, R be the set
of visible and unique rectangles from all participants in the front
region of the body template, and I be the index set of set R, we
assume that all participants in P contribute a drawing each, and
as each participant drawing contains at least one rectangle, we
define the relationship between rectangles (indexes) and
participants as a surjective function rectToParticipant:

Assuming that each rectangle has attributes x (x coordinate of
the top left corner), y (y coordinate of the top left corner), w
(width) and h (height) we decompose rectangles along the x-
and y-axis using the functions coordX and coordY:

Creating Partitions
In this step, we create nonoverlapping partitions along the x-
and y-axis. Each partition is an interval window of varying size
and represents an area enclosed by at least one rectangle.

Let E be the domain and C (family of sets) be the range of the
function coordX or coordY depending on the axis.

The function partition for creating partitions along the x- and
y-axis is defined as follows:

Merging Partitions to Create Nonoverlapping Rectangles
This step involves merging the X and Y partitions
(nonoverlapping interval windows) to create nonoverlapping
rectangles.

Let Px and Dx (family of sets) be the domain and range of
partitionX and Py and Dy (family of sets) be the domain and
range of partition.

We define O (a family of sets of participants P) as a set of all
overlaps. The function rectToParticipant defined earlier is used
to map the rectangles to their corresponding participants.

For any o (o ∈ O) the set of nonoverlapping rectangles RME can
then be defined as

Each element in RME represents a unique, nonoverlapping
location in the front region of the body template and carries an

overlap frequency |o| or proportion given by .

Optimizing Nonoverlapping Rectangles
In the previous step we generated nonoverlapping rectangles
some of which might be adjoined.

This step describes the merging of adjoining rectangles for all
the observed overlaps (O). The merging of rectangles is
important for two main reasons: (1) to optimize the dimensions
of the rectangles (ie, as wide or long as possible) and (2) to
reduce the size of the output file (SVG) for efficient rendering
by the web browser.

Let r1 and r2 be 2 nonoverlapping rectangles associated to the
overlap o (o ∈ O).

The 2 rectangles r1 and r2 are eligible for horizontal or vertical
merging, provided that either of the following conditions is met.

Horizontal merging produced wider rectangles, whereas vertical
merging produced longer rectangles (Figure 4).
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Figure 4. Illustration of the algorithm’s input and output. (A) A, B, and C are individuals who have drawn red, blue and green rectangles that overlap
on a body template. (B) These overlapping rectangles are inputted to the algorithm. The output is 11 nonoverlapping rectangles (horizontal layout),
named 1 to 11 in parentheses. Each rectangle represents a location with the proportion of pain. For example, A(1) = 1/3 , AB (3) = 2/3, ABC (6) = 3/3.
(C) This shows the output from the algorithm in the vertical layout. The choice of layout (horizontal or wider rectangles or vertical or longer rectangles)
can be made as per the locations of pain. For the legs, the rectangles might be better visualized when the layout is vertical, whereas horizontal layout
is preferred for the abdominal area. (D) The illustration of the algorithm’s output when the input is a single drawing made by one individual (A, B and
C are the same individual). In this case, the output is simply 5 nonoverlapping rectangles instead of 11 each with a proportion of 1.0. (E) A, B and C
are individuals who have drawn red, blue and green rectangles that overlap in a nested fashion, on a body template. These nested rectangles when
inputted to the algorithm produce 9 nonoverlapping rectangles, with (F) showing the horizontal and (G) showing the vertical layout. (H) The demonstration
of the output (ie, 1 nonoverlapping rectangle) when the input is a single drawing consisting of nested rectangles. This tends to occur when the individual
elects to switch between pencil (tip) size: small, medium and large.

Algorithm Analysis Pipeline Construction
For implementing the overlap computation algorithm, we
developed a command line workflow in Python programming
language release 3.9 [22], which involves 3 steps (scripts)
described further. The scripts can be run in either sequential or
pipeline mode (using the named pipe command “|”). Each script
performs a specific operation and accepts parameters in the
form of command line options and arguments. The scripts use
some core Python modules that are responsible for reading
command line arguments, parsing and validating SVG to be
processed, and producing the output for the subsequent step in
the workflow. The following scripts can be obtained by
contacting the corresponding author (AD):

1. extract_data.py: this script is only used if the pain drawings
are originally saved as SVG files (a file per participant).
The script extracts all the pain recordings denoted by
<rect> elements with the same width and height attributes.
The script produces a CSV output. The columns in the
output are (1) participant: the identifier of the drawing, (2)
x: the x coordinate of the top left corner of the rectangle,
(3) y: the y coordinate of the top left corner of the rectangle,
(3) width: the width of the rectangle, (4) height: the height
of the rectangle (same as width), (5) region: the region of

the body template where the recording belongs (eg, front
or back), and (6) visibility: the visibility status of the
recording (hidden means erased). The script also provides
the option of including or excluding empty files. These files
represent instances when the participant had no pain to draw
or indicate on the body template. The script also allows
users to extract data from specific body regions (eg, front
or back).

2. compute_overlap.py: this script implements the overlap
computation algorithm to produce nonoverlapping
rectangles. Each rectangle represents a unique location on
the body template. The script accepts input in CSV format
with columns, namely, participant, x, y, width, height, and
region. The script returns a CSV output where rows are
nonoverlapping rectangles, and the columns (rectangles’
attributes) are (1) x: the x coordinate of the top left corner
of the rectangle, (2) y: the y coordinate of the top left corner
of the rectangle, (3) width: the width of the rectangle, (4)
height: the height of the rectangle, (5) area: the area of the
rectangle, (6) overlap: the identifiers of drawings that
overlap, (7) overlap_frequency: the number of identifiers
that overlap, and (8) overlap_proportion: the proportion of
identifiers that overlap. The proportion is calculated from
the total number of drawings, which may include empty
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drawings. The script also allows users to filter the output
by providing the range for overlap (frequency) and
thresholds for the width and height of the rectangles.

3. plot_heatmap.py: this script plots the nonoverlapping
rectangles on the blank SVG body template and generates
a pain frequency map (heat map) as an HTML file. The
color of the pain frequency map can be specified either by
its native name or as a hexadecimal color code (default
#ff0000 or red). The intensity (shade or gradient) of the
participant overlap on the pain frequency map is displayed
using the opacity attribute of an SVG element. Opacity is
any number strictly between 0 and 1. For optimum color
coding, the opacity for each output rectangle is calculated
as follows:

Data Generation for Algorithm Implementation

Simulation
We examined the performance of the algorithm’s Python script
compute_overlap.py in 2 separate simulations on a machine
(Intel Xeon[R] Silver 4110 CPU@2.10GHz and 16-GB RAM)
running Ubuntu 18.04. Given an XY plane of dimensions
1000×1000 with the origin at (0,0), let X and Y be the set of all
natural numbers on the x- and y-axis. The set of all ordered
pairs P is denoted by the Cartesian product X×Y of sets X, Y.

Simulation 1
We assumed that the drawings from every individual consisted
of a single rectangle (analogous to a single mouse click on the
body template). This situation is extremely unlikely; however,
the purpose of this simulation was to test the ability of the
algorithm to compute an overlap, given a set of overlapping
rectangles.

A total of 10 data sets were generated for this simulation. The
first data set consisted of 10,000 rectangles, and for each
consecutive data set, the number of rectangles was increased
by 10,000. For each data set, the coordinates of the origin of
the rectangles were sampled without replacement from the set
of ordered pairs (P), and the dimensions (width and height)
were sampled with replacement from a sequence starting at 10
and ending at 100 (incremental step is 10).

Simulation 2
We assumed that a typical participant drawing of pain locations
consisted of 100 rectangles (equivalent to 100 mouse clicks on
the body template). For this simulation, we sought to assess
performance with an increasing number of participants.

A total of 10 data sets were generated for this simulation. The
first data set consisted of 100 participants, and for each
consecutive data set, we increased the number of participants
by 100. For each participant, the origin of the rectangles was
sampled without replacement from the set of ordered pairs (P),
and the dimensions (width and height) were sampled with
replacement from a sequence starting at 10 and ending at 100
(incremental step is 10).

Each simulation produced 10 CSV files for analysis by the
algorithm. The CSV file consisted of the columns, namely,
participant, x, y, width, height, and region. For both simulations,
there was only one region (the XY plane); therefore, the region
was simply labeled xy-plane.

Actual
Finally, we used the digital pain drawings from 2 clinical data
sets; the first data set (data set 1) consisted of 23 individuals
who were screened for a clinical drug trial (ISRCTN68734605)
[23], and the second data set (data set 2) comprised 30
participants with chronic back pain who were recruited into a
separate study [24]. The pain drawings were stored as MongoDB
documents (Figure 3), which were organized into subdocuments
ordered by the date and time of insertion. The virtual pencil tip
used for the drawings was a square, an SVG <rect> element,
where the width and height attributes were the same (Figure 2).

Results

Simulation
The simulations were carried out to assess the performance of
the algorithm’s Python script compute_overlap.py. The
simulations reveal that the script’s execution time (seconds)
increases linearly as a function of the number of input rectangles
(Figure 5), up to 400 seconds for 100,000 rectangles (simulation
1). Assuming that a typical participant drawing consists of 100
rectangles, the execution time for 1000 participant drawings is
300 seconds (simulation 2).
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Figure 5. Simulations to assess the performance of the algorithm’s Python script – compute_overlap.py. The y-axis shows the execution time of the
script in seconds and the x-axis shows the number of rectangles handled by the script. The output from the script, the number of nonoverlapping rectangles
is shown in red. The plot (A) shows the script’s performance on the data sets from simulation 1 where the number of rectangles per participant was set
to 1, and plot (B) shows the performance on the data sets generated in simulation 2 where the number of rectangles per participant drawing was set to
100.

Actual
We first extracted all drawings (<rect> elements with the same
width and height attributes) from the 2 data sets stored in the
MongoDB database into CSV files. Data set 1 produced 4016
and data set 2 produced 4167 recordings, respectively, sorted
by the participant identifier and the date and time of insertion.
The characteristics of the participants from the 2 data sets
pertaining to the Body Pain Map exercise are summarized in
Table 1.

For generating pain frequency maps, we only used visible and
unique (nonidentical) recordings from the 2 clinical data sets.
Identical recordings from the same participant (<rect> elements
with complete overlay) were filtered based on the recording’s
last visibility status. If visibility was hidden (meaning erased),
the recording was excluded. This exercise produced 2 CSV files
(one file per data set) with 3242 and 3993 rows, respectively,
signifying unique and visible recordings across all 4 regions,

namely, front, side (right), side (left), and back as summarized
in Table 2.

The CSV data sets were independently processed by the Python
script compute_overlap.py on a machine (Intel(R) Xeon (R)
Silver 4110 CPU @ 2.10GHz and 16 GB RAM) running Ubuntu
18.04. The script processed the first CSV data set in 4 seconds
and produced 6653 nonoverlapping rectangles with an overlap
frequency between 1 and 8. The second CSV data set was
processed in 7 seconds and produced 6010 nonoverlapping
rectangles with an overlap frequency ranging from 1 to 21. Each
nonoverlapping rectangle represents a unique location on the
2D body template and carries an overlap frequency, which
denotes the number of participants with pain at that location.

The nonoverlapping rectangles for the 2 clinical data sets were
subsequently plotted on the body template using the Python
script plot_heatmap.py, and a pain frequency map was generated
for data set 1 (Figure 6) and data set 2 (Figure 7).

Table 1. Pencil and eraser clicks made by the participants from the 2 clinical data sets while using the Body Pain Map tool.

Data set 2Data set 1Characteristic

3023Participants, N

Clicks, mean (SD)

138.9 (108.2)174.6 (208.5)Pencila

1.5 (4.2)16.7 (32.7)Eraserb

133.1 (105.5)141.0 (176.5)Visible and unique pencil clicks, mean (SD)

25.2 (6.0)26.6 (10.3)Mean pencil sizec, mean (SD)

aEach pencil click denotes a recording of the pain location and creates a Scalable Vector Graphics <rect> element with the same width and height
attributes (a square).
bThe eraser click hides the previously inserted Scalable Vector Graphics <rect> element.
cOn the basis of the visible and unique pencil clicks to record (draw) pain locations.
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Table 2. Visible and unique pencil recordings made in each region for 2 clinical data setsa.

Data set 2Data set 1Characteristic

39933242Recordings, N

Region, n (%)

800 (20.0)1381 (42.6)Front

0 (0.0)80 (2.5)Side (right)

11 (0.3)103 (3.2)Side (left)

3182 (79.7)1678 (51.7)Back

aData are derived from the Scalable Vector Graphics drawings and provided to the algorithm’s Python scripts to generate a pain frequency map.

Figure 6. Illustration of the pain frequency map produced from freehand pain drawings (data set 1) obtained from patients (N=23) who were screened
for a clinical drug trial. In the interactive map (HTML format), the user can slide the black pointer on the gradient bar (shown in the middle) to view
locations based on the overlap threshold (ie, <= overlap proportion) and save the map as a PNG file.
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Figure 7. Illustration of the pain frequency map produced from freehand pain drawings (data set 2) obtained from patients (N=30) diagnosed with
chronic primary back pain.

Discussion

Principal Findings
Drawing pain locations on body templates is widely and
increasingly being used in research and pain clinics. These are
frequently part of questionnaires (eg, the Brief Pain Inventory
[25]). The topography of bodily pain is often summarized as a
pain frequency map but relies on digitization of paper drawings,
which is labor intensive and may be infeasible for larger studies
[26]. Although freehand digital drawing tools are available to
capture pain locations, they are often restricted to specific body
templates [6]. Other tools parcellate the body (eg, the CHOIR
Body Map [7] and Michigan Body Map [13]), which allows
easy generation of pain frequency maps but lacks the resolution
required.

In this paper, we first described the Body Pain Map [21], a
web-based platform used to capture freehand pain drawings as
SVG <rect> elements and then thoroughly described the
algorithm to generate a pain frequency map from the drawings.
We further described the implementation of the algorithm as a
Python-based analysis pipeline and tested its performance in 2
different simulations. We demonstrated the utility of the
algorithm by producing pain frequency maps (Figure 6 and

Figure 7) from freehand drawings obtained from 23 patients
screened for a clinical drug trial (ISRCTN68734605) [23] and
30 patients diagnosed with chronic primary back pain [24].

The key advantage of this algorithm is that it can handle data
from any undemarcated body template. In other words, the body
template does not need to be divided using a mesh with a fixed
number of cells (eg, GeoPain, a body surface map rendered on
a 3D manikin [9] and Manchester Digital Pain Manikin [15])
or demarcated into regions with anatomical labels (eg, CHOIR
[7]). Only the outline or perimeter of the body template requires
demarcation. The label-free and grid-free approach is unbiased
and allows the participants to freely draw the locations of their
bodily pain, closely mimicking the experience of drawing on
paper. Although the user is unlikely to draw in the entire space,
given the nature of freehand drawing, they can draw repeatedly
in the same area. This results in redundant data, which are not
usually of interest to most clinician researchers. Our algorithm
processes raw (source pixel) data in grid-free space to address
this difficulty, and in doing so, it also achieves lossless
compression.

The algorithm accepts a single CSV (plain text) file with pain
recordings captured as rectangles and produces nonoverlapping
rectangles. Each nonoverlapping rectangle is a unique location
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on the body template and carries an overlap frequency, which
denotes the number of participants with pain in that location.
The output, when transformed into an HTML file, can be
feasibly rendered on modern web browsers (eg, Google Chrome,
Mozilla Firefox, or Microsoft Edge) or printed at the desired
resolution for publishing as we have shown for 2 clinical data
sets. The algorithm also contains features to optimize the display
of the pain frequency map. Rectangles can be produced either
in a horizontal (wider) or vertical layout (longer; Figure 4). For
example, for the leg, the rectangles may be better visualized
with a vertical layout, whereas a horizontal layout is preferred
for wider regions such as the abdomen.

As the individual can draw freely on the body template, the
output (ie, nonoverlapping rectangles) produced by the algorithm
is highly granular. Given the required spatial information (x-y
coordinates within the body region), it is possible to
retrospectively create a grid and reassign the cells and
anatomical labels as required. The output from the algorithm
can be subjected to coordinate transformation using linear
algebra and labeled to allow harmonization with other body
atlases or templates with anatomical labels (eg, arms and legs)
in nature [7]. The unbiased output can also be trained to provide
demarcations for a given pain disorder within any 2D body
template. The demarcations or boundaries of areas for an
anatomical label (eg, shoulder) may also be determined
empirically through feedback from any group of individuals. It
is also possible to acquire drawings from gender-specific body
templates provided by the Hannover Medical School [8] and
subsequently use the coordinate transformation to harmonize
the algorithm’s output on a gender-neutral template for
comparisons between sexes.

Limitations
The algorithm generates nonoverlapping rectangles without any
knowledge of the region boundaries within the 2D body
template. Hence, some rectangles in the output may fall partly
outside these regions. This overflow occurs when drawings
include the border (or are close to the border) of the body
regions. For generating pain frequency maps, this is not a
problem because rectangles falling outside the regions can be
easily masked (hidden) using SVG. For other analysis purposes,
the problem can be feasibly mitigated by approaches such as
(1) dividing the body template into small regions and applying
bounding box correction to filter output nonoverlapping
rectangles by region or (2) creating a null drawing that delicately
fills the entire body template, ensuring that the <rect> elements
are within the regional boundaries. With this approach, the null
drawing is added to actual participant drawings, and the
algorithm is executed on the combined data set. In the resulting
output, only the nonoverlapping rectangles that are common to
both the null drawing and the actual drawings are retained, and
the rest (overlap frequency is 1) are discarded.

The algorithm is optimized to generate pain frequency data only
for the locations of the body template on which at least one
participant has drawn. Adding the null drawing would allow
representation (in the pain frequency map) of body locations
within the template that no participant has drawn and may also
be required for inferential statistics. As the null drawing is

specific to a body template, it does not have to be recreated,
and the approach can be applied to prospective data sets
(drawings), provided they are acquired using the same body
template.

Comparison With Prior Work
Software tools (R package, CHOIR Body Map [27]) have
recently been developed to generate co-occurrence maps. The
map shows the number of times 2 locations on the body template
are endorsed together by patients in a data set. However, these
tools are only applicable to the CHOIR body template [7], where
the participant can only click on 74 predefined locations.

Generating a pain frequency map for body templates with either
demarcations or grid is straightforward because the locations
are predefined and fixed, and it is a case of deducing the number
of participants that selected each location [14].

Studies in which a nondemarcated and grid-free body template
was used for freehand drawings used customized tools for the
simultaneous analysis of their drawings. These tools are not
freely available in the public domain [16-18]. Other studies
[28,29] converted their drawings (originally saved as PNG
images) into NIfTI format [30] and analyzed them using
image-processing tools provided by the Functional Magnetic
Resonance Imaging of the Brain (FMRIB) Software Library
[31].

The primary purpose of our algorithm and other methods used
in previous studies is to generate pain frequency maps, which
requires simultaneous analysis of all freehand drawings provided
by participants. Previous studies have stored freehand pain
drawings as bitmap images (eg, PNG); therefore, the generation
of a pain frequency map requires the extraction and analysis of
all pixels [16-18,28,29].

Our algorithm processes drawings in which pain locations are
indicated using rectangles (the pencil tip is a square, which is
fundamentally a rectangle). This has several advantages, such
as the fact that the input from the drawings can be simply stored
as a CSV (plain text) file because all locations are represented
as rectangles with attributes x, y, width, and height. This is also
more efficient than the storage and extraction of pixels from
the drawings. The output also comprises rectangles and can be
stored as CSV files for statistical analyses and visualized using
images (eg, SVG and PNG). We used SVG because it allows
the reconstruction and visualization of the input and output
rectangles at the desired resolution. CSV storage also facilitates
the merging of several independent data sets acquired using the
same body template for a combined analysis.

Conclusions
Body maps have long been used in research and clinical practice
to facilitate communication between pain and other sensations
[32]. The choice of a drawing tool or body part selection
depends on the nature of the research question and the
participants. It is important to clinically validate any digital tool
used to capture the topography of body sensations [33]. Our
algorithm is primarily developed to render pain frequency maps
for efficient display and printing, but the output (ie,
nonoverlapping rectangles) can be readily subjected to statistical
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analyses (eg, statistical comparisons of pain frequency maps
between different patient cohorts or the same patient cohort
over multiple time points). Although we chose to digitize and
use a specific body template in our study, the algorithm
described can process any number of freehand drawings on any
2D body template to produce a pain frequency map. The
nonoverlapping rectangles generated by the algorithm can be
labeled anatomically or mapped onto a grid to facilitate analyses
and harmonization with other body templates.

Our freehand pain drawing tool (Body Pain Map [21]) uses
resolution-independent and XML document object model–based
SVG technology. However, our algorithm can also generate
pain frequency maps from drawings created using other
technologies (eg, HTML5 <canvas> element), provided that

the pain locations are captured as rectangles and the location
attributes (ie, x, y, width, and height) are accessible.

As the algorithm has already been implemented as a Python
command line workflow, it is possible to schedule an automated
pain frequency map construction through the cron daemon
(Linux environment) and filter and visualize the output using
several criteria (eg, region, overlap frequency, width, and height
of rectangles). The Python scripts can be obtained by contacting
the corresponding author (AD).

We envisage the use of the algorithm in clinical or research
settings to facilitate fine-grain comparisons of human pain
anatomy between disease diagnosis or disorders or as an
outcome metric to guide the monitoring or discovery of
treatments.
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