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Abstract

Background: Depression levels in adolescents have trended upward over the past several years. According to a 2020 survey
by the National Survey on Drug Use and Health, 4.1 million US adolescents have experienced at least one major depressive
episode. This number constitutes approximately 16% of adolescents aged 12 to 17 years. However, only 32.3% of adolescents
received some form of specialized or nonspecialized treatment. Identifying worsening symptoms earlier using mobile and wearable
sensors may lead to earlier intervention. Most studies on predicting depression using sensor-based data are geared toward the
adult population. Very few studies look into predicting depression in adolescents.

Objective: The aim of our work was to study passively sensed data from adolescents with depression and investigate the
predictive capabilities of 2 machine learning approaches to predict depression scores and change in depression levels in adolescents.
This work also provided an in-depth analysis of sensor features that serve as key indicators of change in depressive symptoms
and the effect of variation of data samples on model accuracy levels.

Methods: This study included 55 adolescents with symptoms of depression aged 12 to 17 years. Each participant was passively
monitored through smartphone sensors and Fitbit wearable devices for 24 weeks. Passive sensors collected call, conversation,
location, and heart rate information daily. Following data preprocessing, 67% (37/55) of the participants in the aggregated data
set were analyzed. Weekly Patient Health Questionnaire-9 surveys answered by participants served as the ground truth. We
applied regression-based approaches to predict the Patient Health Questionnaire-9 depression score and change in depression
severity. These approaches were consolidated using universal and personalized modeling strategies. The universal strategies
consisted of Leave One Participant Out and Leave Week X Out. The personalized strategy models were based on Accumulated
Weeks and Leave One Week One User Instance Out. Linear and nonlinear machine learning algorithms were trained to model
the data.

Results: We observed that personalized approaches performed better on adolescent depression prediction compared with
universal approaches. The best models were able to predict depression score and weekly change in depression level with root
mean squared errors of 2.83 and 3.21, respectively, following the Accumulated Weeks personalized modeling strategy. Our
feature importance investigation showed that the contribution of screen-, call-, and location-based features influenced optimal
models and were predictive of adolescent depression.

Conclusions: This study provides insight into the feasibility of using passively sensed data for predicting adolescent depression.
We demonstrated prediction capabilities in terms of depression score and change in depression level. The prediction results
revealed that personalized models performed better on adolescents than universal approaches. Feature importance provided a
better understanding of depression and sensor data. Our findings can help in the development of advanced adolescent depression
predictions.
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Introduction

Background
According to the World Health Organization, half of all mental
health conditions start at the age of 14 years, but most cases are
undetected and untreated. Among mental health conditions,
depression is one of the leading causes of illness and disability
among adolescents [1], the most likely mental illness to be a
risk factor for suicide [2], the second leading cause of death
among US adolescents [3], and among the top causes of death
in adolescents worldwide [4].

Major depressive disorder, more commonly termed depression,
can be defined as a medical disorder that results in negative
feelings in a person’s thoughts or actions. The effects of
depression are both emotional and physical [5]. The sources of
depression are varied and include biochemical changes, genetics,
personality traits, and environmental factors [5]. Depression
has a combination of effects that play a role in its diagnosis,
such as alteration in mood, negative self-image, self-punitive
desires, vegetative changes, and physiological changes such as
activity retardation or agitation [6].

Depression is difficult to monitor or regulate in adolescents as
part of the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition, diagnosis [7] includes not only
depressive symptoms but also irritability, which may be difficult
to distinguish from typical adolescent behavior. As an
internalizing disorder that is expressed more through thoughts
and not actions, worsening depressive symptoms can be more
difficult for others such as parents or caregivers to identify [8].
Adolescents also report using cognitive coping strategies far
less often than adults [9]. In a study on adolescent mental health
literacy, it was found that <50% of adolescents were able to
identify depression [10]. Although earlier intervention on
symptom worsening improves outcomes in depression,
adolescents themselves and their caregivers not being able to
identify these symptoms serves as a barrier [11]. This indicates
a strong need for interventions that can assist adolescents and
their caregivers in monitoring the symptoms of depression
earlier.

The result of not addressing depression can extend into
adulthood, impairing both physical and mental health and
limiting future employment opportunities and the potential to
lead satisfied lives [12]. With the increased use of screening
tools such as the Patient Health Questionnaire-9 (PHQ-9),
mental health clinicians and primary care providers can more
efficiently screen for depression. However, screening does not
always lead to a substantial increase in treatment engagement
[13]. Measurement-based care [14] or using these validated
screening tools as recurring to identify, monitor, and treat
depressive symptoms results in improved outcomes for patients
with depression by identifying and intervening earlier on
worsening nonresponsive symptoms or their treatment [15].

The success of validated screening tools has provided mental
health clinicians and primary care providers with better
assessment tools for symptom severity and, especially with the
ability to embed these tools in electronic health records, more
frequent monitoring may result in earlier intervention and
improved care. Unfortunately, constant monitoring of depression
symptomatology is still far from reality. With the advent of
mobile phones, fitness trackers, and their inbuilt sensors, this
can be made possible. Our goal is to look closely into adolescent
depression through the eyes of passively sensed data and
evaluate machine learning (ML) approaches that offer predictive
capabilities.

By exploring approaches to adolescent depression data, we want
to enable the future development of apps geared toward the
continuous monitoring of patients experiencing depression and
allow clinicians, adolescents, and their parents the opportunity
to take preventive or earlier actions.

This study was aimed at using passively sensed data to generate
predictions on depression levels and change in depression levels.
The predictions took on both universal and personalized
modeling approaches. We then determined key contextual
features that affected our ML models. Finally, we presented
how the performance of personalized models changed over time
and across data samples.

Related Work
Related work in this section takes an inverse pyramid approach
to describe the state of the art in mobile sensing for health apps
and then focuses on the impact in the space of mental health.

Mobile-Based Sensing for Health Apps
Mobile sensing has been an active research area in health apps.
A number of studies [16-18] have analyzed areas of
cardiovascular health and sensed participant heart rate and heart
rate variability with the help of mobile camera sensors. Areas
of study such as sleep have benefited from mobile sensing by
using sensors to detect sleep quality and sleep states using ML
[19]. Further studies on sleep have explored both supervised
and unsupervised approaches to detect sleep variation in
contextual settings [20-22]. Mobile sensors such as
accelerometers, gyroscopes, and GPSs have been used to model
human behavior and cognition through contextualized feature
extraction [23,24]. Studies on overall health and well-being
have combined the aforementioned sensing capabilities to help
promote general health. For example, the use of health apps to
monitor human behavior through sleep, physical activity, and
social interaction [25] has been found to show improvement in
behavior patterns. Another example of general well-being [26]
generates an index as a medium of feedback for improving
health through exercise-based goal setting. All of the
aforementioned studies have shown the efficacy of using mobile
sensing to predict or diagnose health-related changes. The next
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subsection delves into how mobile sensing is changing mental
health.

Mobile Sensing in Mental Health Apps
Mobile sensing–based mental health studies have been
conducted in the areas of bipolar disorder [27], schizophrenia
[28], anxiety [29,30], stress [31,32], and depression [33-39].
These studies have shown that mobile sensing can play an
integral role in detecting and predicting mental health–related
problems. Daily mood, physical activity, and social
communication tracking of participants helped predict symptoms
of bipolar relapse [27]. This was achieved using random
coefficient methods to analyze the relationship between
phone-based data and the rating of manic and depressive
symptoms. Schizophrenia is another mental condition in which
passive sensing has demonstrated predictive capability by
showing the relationships between tracked features as indicators
of schizophrenia [28]. The study used bivariate analysis and
tree-based methods to perform ecological momentary assessment
scores. Depression and anxiety in college students were studied,
in particular the effect of stress and self-esteem, using the tool
of causal networks derived from time-series sensor data [29].
These data helped in understanding the causal relationship
between anxiety, depression, and stress. Anxiety regulation
using wearable devices was explored through false feedback of
slow heart rate [30] and was found to be beneficial for helping
control anxiety symptoms. Researchers have been successful
in tracking physiological changes during stress using voice
sensing across different acoustic environments and individuals
[31]. Patients undergoing chemotherapy were studied using
passively sensed data. This exploratory study used instruments
of random forest classifiers showing a strong correlation
between sedentary behavior, less time spent in light physical
activity, and other factors such as longer onscreen time and app
interactions [32]. All of these studies provide sufficient evidence
to consider passively sensed data as an effective method to track
mental health, which provides support for our approach in this
study.

One of the first studies to use mobile phones for depression
used GPS data to track participant mobility [33]. The study
provided evidence of a correlation between location-based data
and depressive mood. In addition to GPS, phone use has been
another feature to exhibit a strong relationship with depression
severity [34]. The study extracted features such as phone use
frequency and duration along with GPS-based features such as
location variance and normalized entropy to show the correlation
with depression. Behavior in people with depression has also
been investigated by monitoring additional features such as
sleep and social interaction through smartphones [35].

Multimodal features were gradually introduced into the research
sphere to derive a contextual filtering of features that detected
depression in college students and showed that multimodal
feature information could outperform unimodal features [36].
This study used association rule mining to choose features and
applied standard ML to detect depression, showing the merit in
using multimodal features. Detecting depression is dependent
on the approach used; analyzing the problem from the
perspective of longitudinal data and exploring changes in
depressive symptoms were shown to generate good accuracy
[37]. The work in the latter study is closely related to our
endeavor and serves as an inspiration. Collaborative
filtering-based study is yet another approach that has shown
promise in using personalized models to derive better predictions
[38]. Our study also proposes 2 personalized strategies to model
individual participants using ML.

Narrowing down to adolescent depression studies, we present
some existing works in the literature and later explain their
differences from our work in Table 1. Studies on adolescent
depression have been primarily survey-based and social
sentiment– and feasibility-centric [40-42]. The work in the study
by Cao et al [39] closely relates to our aim of detecting
depression in adolescents. However, their study had a smaller
sample size and used both parent and adolescent inputs and was
also more reliant on participant feedback. The differences
between the studies highlighted and our work are further
elaborated on in the Discussion section.

In this study, we first investigated the feasibility of universal
and personalized ML modeling strategies to predict adolescent
depression scores and change in depression levels. We then
identified features that were more predictive of adolescents’
depression during the ML process. Finally, we studied how
missingness of data affected model performance along with
understanding how much data were required for our models to
perform over a predetermined threshold.

Our findings revealed that a regression-based predictive
modeling approach was able to capture more granular changes
in depression scores. We also showed that personalized
strategies were more effective predictors compared with
universal strategies. The performance of personalized models
did not improve with increase in the weeks of data and, instead
of a steady increase in model performance with increase in data,
we experienced fluctuations in the results. In an attempt to
explain this phenomenon, we performed additional studies that
separated our participants into 2 pools. The pools were generated
based on the SD of the depression scores. Our results showed
that the pool with a small SD in depression score was more
accurately modeled in comparison with the higher-SD pool.
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Table 1. Papers on adolescent mental health prediction and how our work differs from the existing work.

Difference from our workResultsMethodsStudy aimPaper

Our work does not depend on
self-evaluation by adolescents
and parents to help improve
predictions; instead, we con-
sider a system where our re-
liance is exclusively on the
captured sensor values to
make predictions of PHQ-9
scores. We used universal and
personalized modeling strate-
gies with multiple machine
learning algorithms.

Correlation between mood aver-
aged over a 2-week period and
biweekly psychometric score
from PHQ-9, HAM-D, and
HAM-A; combining self-evalu-
ation from both parents and
children along with smartphone
sensor data resulted in PHQ-9
score prediction accuracy

Used self-evaluation of adoles-
cents and parents with smartphone
data to improve predictions of
PHQ-9 scores; used the SOLVD
app installed only on Android
phones; used only linear regressor
and support vector regressor with
polynomial kernel

Investigated the effectiveness
of smartphone apps useful in
evaluating and monitoring de-
pression symptoms in a clinical-
ly depressed adolescent popula-
tion compared with psychomet-

ric instruments (PHQ-9a,

HAM-Db, and HAM-Ac); 13
participants aged 12 to 17 years

Cao et al [39]

The study was based on pas-
sively sensed data collection.
It did not perform predictive
modeling. The aim was to as-
sess how well the app per-
formed in data collection and
the hurdles encountered
therein. The study had 11
participants with depression
with a mix of young and older
participants, whereas our
study was focused on adoles-
cents, and all participants had
been diagnosed with some
form of depression.

The study mainly identified
concerns related to technologi-
cal barriers in passively sensed
data collection.

They explored possible explana-
tions for differences in successful
data collection by time of day and
sensor type along with description
of qualitative results to illuminate
these differences

StandStrong app used to assess
feasibility and acceptability of
sensing technologies for mater-
nal depression treatment in
low-resource settings for moth-
ers aged between 15 and 25
years

Maharjan et al
[43]

This work was primarily fo-
cused on establishing correla-
tions between self-reports.
The study used passive sensor
data to perform linear regres-
sor model fitting for predic-
tions of the CES-DC and
SCARED values. Nonlinear
modeling approaches were not
considered, whereas we have
explored and produced better
results.

Depressive symptoms correlat-
ed with time spent stationary,
less mobility, higher light inten-
sity during the night, and fewer
outgoing calls. Anxiety correlat-
ed with less time spent station-
ary, greater mobility, and more
time on-screen. Adding passive-
ly collected smartphone data to
prediction models of internaliz-
ing symptoms significantly im-
proved their fit.

Self-reports of anxiety, depression,
and attention-deficit hyperactivity
disorder collected; N=122 for 2
weeks of passively sensed data;

CES-DCd and SCAREDe anxiety
assessments were used

Explored whether passively
collected smartphone sensor
data can be used to predict inter-
nalizing symptoms among
youths in Canada; participants
aged between 10 and 21 years

MacLeod et al
[44]

aPHQ-9: Patient Health Questionnaire-9.
bHAM-D: Hamilton Depression Rating Scale.
cHAM-A: Hamilton Anxiety Rating Scale.
dCES-DC: Center for Epidemiological Studies Depression Scale for Children.
eSCARED: Screen for Child Anxiety Related Disorders.

Methods

Data Collection

Recruitment and Participant Breakdown
Adolescents aged 12 to 17.99 years and their parents were
recruited from psychiatric clinics at the University of Pittsburgh
Medical Center Western Psychiatric Hospital serving depressed
and suicidal youth, an adolescent and young adult medicine
clinic seeing youth for primary and subspecialty services, as
well as through the University of Pittsburgh research registry.
A total of 114 adolescents expressed an interest in this study.
Of these 114 adolescents, 94 (82.5%) completed a screening
assessment, and 31 (27.2%) were screened out because of
minimal symptoms of depression (PHQ-9 score [45] of <5), no

self-reported previous diagnosis of depression, not having a
smartphone, and age restrictions. A total of 57 adolescents and
their parents consented to the study, of whom 55 (96%)
completed a baseline assessment and were entered into the study.
The aggregated data set after exploratory data analysis (EDA)
and initial cleaning consisted of 67% (37/55) of the participants.
The reduction in participant number was due to sensor issues
and irregular syncing that constituted missing data and the
dropping out of some participants in between the study. The
data for each participant were collected over a period of 24
weeks.

Passively sensed data from mobile phones were collected using
the AWARE app [24], which logs relevant sensor data and
harnesses those data within the device. It was installed on the
participants’phones and set up to record the sensor information
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in the desired sampling frequencies. We collected data from
multiple sensors, including calls, conversations, location, Wi-Fi,
and screen use. Features were classified into event-based
features, which included phone use, calling, and conversational
recording, and time series–based features, comprising Wi-Fi
and GPS-based location. We used Fitbit Inspire HR (software
version 1.84.5) to collect heart rate, sleep, and steps. Sensor
data from GPS and Wi-Fi were collected at a frequency of 10
minutes. The Fitbit features were collected every minute and
accumulated daily. The data collected from both AWARE and
Fitbit were uploaded to the cloud and then hosted in a database
for cleaning and further processing.

The AWARE passive sensing data and Fitbit were, on average,
69.11% and 32.36% complete, respectively. Missing Fitbit data
were attributed to less than expected adherence to wearing the
Fitbit because of several reasons, including forgetting to wear
it, fatigue, rash (recurred in 1/55, 2% of the participants even
after the band was changed), and the need to charge the device.
The data collection process was approved by the University of
Pittsburgh Institutional Review Board.

Weekly PHQ-9 surveys were sent over the 24 weeks, and the
adolescents completed 69.01% (873/1265) of the weekly surveys

on average, respectively. The PHQ-9 is an evaluative
questionnaire used to assess depression severity. The PHQ-9
has been used effectively in multiple studies related to
depression [38,39]. The questionnaire consists of a set of 9
questions with scores between 0 and 3. This results in an overall
score range between 0 and 27. For the purpose of our study,
this was our choice ground truth owing to its strength in
categorizing depression severity levels and its effectiveness in
yielding responses from participants when administered
remotely [46,47]. The scores are divided into levels based on
depression severity and allow for easier interpretability by
clinicians, parents, and adolescents [45].

Descriptive Statistics of Collected Participant Data
The adolescent sample included participants aged 12 to 17.99
years, with an average age of 15.5 years. Most of the sample
was White (47/56, 84%), with 16% (9/55) of the individuals
representing a minority population. There was variability in
gender, with approximately 73% (41/56) of the adolescent
sample identifying as female, 23% (13/56) identifying as male,
and 9% (3/56) identifying as transgender or other. The
demographic statistics are provided in Figure 1 associated with
the data collected.

Figure 1. Demographic statistics: (A) gender distribution, (B) race distribution of the adolescents, (C) sexual orientation, (D) depression score distribution
for each week of observation, and (E) depression score distribution for each participant.

Figure 1 also contains box plots of depression scores based on
weeks (bottom left) and depression scores based on the
participants’ box plots (bottom right). The depression score
versus participants box plot presents the variation in depression
scores across participants. The data set comprised 507 data
points. The PHQ-9 scores ranged from a minimum of 0 to a
maximum of 27. The mean PHQ-9 score was 11.21 (SD 5.23).
For depression score versus weeks, we observed a mean PHQ-9
score of 10.63 (SD 4.92), and the minimum and maximum
values were similar to those of the participant plot. The PHQ-9
scores are also expressed in the form of levels of depression:
minimal (0-4), mild (5-9), moderate (10-14), moderately severe

(15-19), and severe (20-27). The distribution of depression
levels according to the number of participants was as follows:
minimal depression (12/55, 22%), mild depression (26/55, 47%),
moderate depression (31/55, 56%), moderately severe depression
(21/55, 38%), and severe depression (5/55, 9%). There were
rare occurrences of participants traversing up to 4 levels of
depression over the course of their time in the study. It is also
important to mention that, owing to data limitations and survey
completion rate, 5% (3/55) of the participants maintained a
single level of depression in the data set. The observations also
revealed that most participants fluctuated between 2 levels of
depression.
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Feature Extraction
The collected sensor data were passed to the Reproducible
Analysis Pipeline for Data Streams framework [25] for feature
extraction. The data set retained 66 features, including calls,
conversations, locations, screen, Wi-Fi, heart rate, sleep, and
steps. The data were then compiled into an aggregated data set
and used as input for our ML modeling operations.

The data set was in a 2D tabular format for the application of
our supervised modeling approaches populated with the survey
results from the PHQ-9 weekly surveys to serve as the ground
truth. To match the weekly ground truth depression score, we
aggregated our features into daily and then weekly values.
Figure 2 shows the combined harnessing framework comprising
AWARE, Fitbit, and Reproducible Analysis Pipeline for Data
Streams. Each sensor-based feature set was used to extract a
range of features.

Figure 2. Feature extraction.

ML Modeling

Overview
The data processing pipeline started with extensive EDA to
check for skewness and filter missing data. This step was
followed by the calculation of the Pearson correlation values
for our feature set and the removal of highly correlated features.
On the basis of our EDA, we set thresholds for missing data
and adopted a robust imputation strategy such as the k-nearest
neighbors, which is effective in handling multivariate time-series
data. Our final data set consisted of 507 data points with 61
features, which represented 37 participants owing to high data
sparsity. An illustration of the EDA and final data set generation
is presented in Figure 3.

The ML phase after the data preprocessing can be segmented
into a model-fitting stage and a cross-validation (CV) stage.

In the model-fitting stage, we applied both the depression score
prediction and change in depression level prediction approaches.
This model involved passing the feature sets through linear and
nonlinear ML algorithms. The linear algorithms included Least
Absolute Shrinkage and Selection Operator and elastic net.
Nonlinear modeling included tree-based algorithms such as
random forest; decision trees; and ensemble methods such as
AdaBoost, extra trees, gradient boosting, and XGBoost.

The CV stage was responsible for the train-test splitting of data.
This stage was also designed to consider universal and
personalized modeling strategies. The universal strategies
ensured that the modeling was based on the sample population
data splits. The personalized strategies modeled based on
individual data train-test splits. These strategies will be further
elaborated on in the following subsection.
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Figure 3. Machine learning (ML) pipeline comprising exploratory data analysis that includes (A) check for skewness of data, (B) missing value
assessment, (C) check of depression level distribution, (D) generation of correlation matrix and removal of features that are highly correlated, (E)
k-nearest neighbors (KNN)-based missing value imputation, (F) aggregated data set creation, and (G) nonlinear and linear ML modeling of data.

Prediction of Depression Score
To predict depression score, we used linear and nonlinear
regression-based ML algorithms, as shown in Figure 4. The
algorithms included Least Absolute Shrinkage and Selection
Operator, elastic net, random forest, AdaBoost, extra trees,
gradient boosting, and XGBoost for regression. The features

extracted were used as input based on sensor combinations. The
ML algorithms modeled on the data output predictions of the
depression score. The model was based on universal and
personalized modeling strategies. The models were evaluated
based on mean absolute error (MAE), mean squared error
(MSE), root MSE (RMSE), and mean absolute percentage error
(MAPE).

Figure 4. Depression score prediction approach. MAE: mean absolute error; MAPE: mean absolute percentage error; ML: machine learning; MSE:
mean squared error; RMSE: root mean squared error.

Prediction of Change in Depression Level
The prediction of change in depression level used the feature
set combinations as input. The ML algorithms regressed on the
feature data to predict the change in depression score and is

shown in Figure 5. The change in depression level was then
derived from the predicted change in depression score. This
was a regression modeling approach with MAE, MSE, RMSE,
and MAPE as evaluation metrics.
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Figure 5. Machine learning approach for predicting change in depression level.

As mentioned previously, there were 5 depression levels. A
jump to a level above (positive change) or a level below
(negative change) was considered a change in level. The
magnitude of the change was determined by the number of
jumps seen in participant depression levels. On the basis of this
idea, there were 9 changes in levels: positive changes (1, 2, 3,
and 4), negative changes (−1, −2, −3, and –4), and no change
(0). The change in depression level observed in our data fell
within the range of −3 to 3. The change in depression scores

was mapped to these 7 changes in depression levels. The
establishment of levels helps in the better interpretation of
depression changes by health care providers and aligns with
standard medical diagnostics [45].

CV Strategy
We used multiple variations of the leave-one-out CV as
presented in Figure 6. These strategies were designed to
accommodate both personalization and generalization of the
trained models.

Figure 6. Cross-validation strategies: (A) Leave One User Out, (B) Leave Week X Out, (C) Leave One Week One User Instance, and (D) Accumulated
Weeks.

Leave One Participant Out
In this strategy, we held out a single participant for validation
and trained the model on the other participants. This strategy
reflects the cold start case where a new user starts using the
health app. This is a generalized approach to model fitting that
takes advantage of the existing data set participants.

Leave Week X Out
In Leave Week X Out, we held out a given week for all
participants and trained on the rest of the weeks. This strategy
evaluates the impact of time-specific segments of data on the
prediction. The training phase captures the similarity and
variation of the data during different weeks to build the models.
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This too is categorized as a general modeling strategy to detect
patterns in weekly depressive behavior.

Accumulate Weeks
A sliding window approach was followed in this CV strategy
where, for each participant, the model was built with data from
weeks t to t+n and tested on week t+n+1. This strategy examines
the feasibility of the personalized ML models using data from
individual users and evaluates the impact of longer-term data
on prediction accuracy.

Leave One Week One User Instance Out
Here, we trained the models on all the weeks of a participant
leaving one of their weeks for testing. This was done for all
participants. This method also evaluates the feasibility of the
personalized models using each individual user’s data on a
week-by-week basis without considering the temporal and
historical trend.

Baseline Performance
The idea of a baseline was to establish a reference for our
accuracy levels. In this study, we operated with a naïve random
baseline for our depression score approach and a majority
baseline for the depression level change approach. This baseline
analysis was carried out for all the CV strategies.

Feature Set–Based Detailed Modeling

Overview
As shown in Figure 1, we used 6 major feature sets: Fitbit, calls,
conversations, location, screen, and Wi-Fi. The aggregated data
set was used to generate 63 individual data sets that comprised
all possible combinations of these 6 feature sets. This approach
was used to determine the most effective feature set combination
for a specific modeling strategy. Each data set was passed
through the modeling strategies and ML algorithms. The process
of generating models for the various combinations of data sets
is outlined in Textbox 1.

Textbox 1. Process to generate models for the various combinations of data sets.

Process of model generation

• Data set generation: from the aggregated data set that is inclusive of all the feature sets, we generated all possible combinations of the feature
sets, including 1-feature sets, 2-feature sets, 3-feature sets, 4-feature sets, 5-feature sets, and 6-feature sets.

• Depression score and change in depression level: we used the Patient Health Questionnaire-9 scores as the ground truth for depression score
prediction. To predict the change in depression level, the ground truth was the actual transitions between the depression levels of the participants.

• Machine learning modeling: the derived data sets were all passed through both the universal and personalized modeling strategies.

• Model selection: for depression score prediction and change in depression level both following regression-based approaches, we evaluated and
selected the best models based on mean absolute error, mean squared error, root mean squared error, and mean absolute percentage error precision.

• Feature importance: the models that performed best were further analyzed, and their feature importance was calculated. For each combination
of sensors and their respective analyses under universal and personalized modeling strategies, the top 10 features were determined. This list of
the top 10 features across the combinations was then converted into a frequency chart to help understand the features that had predictive capability.

Feature Importance Calculation
The feature importance in this study was calculated by observing
the decrease in node impurity of our tree-based models, which
included random forest, AdaBoost, and XGBoost. The impurity
for regression tree-based modeling was determined by
calculating the variance reduction of the model owing to a
feature. Training the tree-based models allowed us to evaluate
the contribution of each feature in decreasing the weighted
impurity. This decrease in impurity was averaged over the
ensemble of trees trained.

Ethics Approval
We obtained approval for this study from the University of
Pittsburgh Human Research Protections Office
(STUDY18120176). After the participants showed interest in
study involvement, they were screened based on the study
criteria. The inclusion criteria were that the adolescents be aged
12 to 17.99 years, own an Android or iOS smartphone with
access to a data plan, score ≥5 on the PHQ-9 consistent with at
least mild symptoms, self-report a previous diagnosis of
depression, understand English, and currently reside in the
United States. The exclusion criteria were that the adolescents
could not have current active suicidal ideation (thoughts with
an intent to act on them), a history of a suicide attempt without

having received mental health treatment, or a physical deformity
or medical reason preventing them from wearing an activity
tracker, or be simultaneously participating in a different research
study using AWARE. Adolescents meeting the study criteria
were offered study participation and, thereafter, if interested,
provided their verbal assent, and their parents provided
permission. A copy of the consent materials was emailed to all
participants for review beforehand.

Results

Overview
In this section, we present the performance of our approaches
in predicting depression score and change in depression level
in adolescents. The results are the mean values of our runs with
the respective approaches. We further show the features that
played the most significant role in predicting outcomes for
change in depression level. We then report the effect of adding
incremental weekly data on the accuracy of depression level
prediction. We analyzed the data using both universal and
personalized modeling strategies. The study also assessed the
impact of missing data on personalized modeling performance.
Finally, we conclude this section with a comparative study of
classic time-series modeling and a personalized ML model.
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Prediction of Depression Score
To understand how sensor features can help in predicting
adolescents’ depression, we applied regression-based ML
algorithms to predict depression scores. The model was
compared with a random baseline, and we tested all possible
combinations of sensor features and ML algorithms. The
evaluation metrics selected were MAE, MSE, MAPE, and
RMSE. In particular, we paid close attention to MAE and
RMSE. As shown in Table 2, nonlinear algorithms such as the
decision trees and AdaBoost performed best. Overall, the
personalized models outperformed the universal models in all
metrics, in particular MAE and RMSE. The best set of
performance metrics recorded was for the Accumulate Weeks
personalized strategy. The most optimal model used a 4-feature
combination that consisted of Fitbit, calls, screen, and
location-based feature sets (MAE=2.39, MSE=10.28,
RMSE=2.83, MAPE=0.27). The best results from the
personalized models were derived from feature sets that had
location, calls, and screen in the combination. This also shows

that adding more features does not necessarily yield better
results. An RMSE in the range of 2 indicates that our model
was able to predict depression scores within 2 scores of test
cases.

The results of the regression analysis of depression scores can
also be interpreted as levels of depression. This was achieved
by segmenting our predictions into intervals of PHQ-9 scores
adhering to the established strategy [45]. The confusion matrix
of depression levels in Figure 7 was derived based on the
depression score predictions to provide more insight. We see
that the model is able to best predict levels 2 and 3 most of the
time with 89 and 79 correct labels, whereas the other levels,
such as 1, 4, and 5, appear to have been predicted 24, 33, and
15 times, respectively. These results support our ground truth
distribution, where mild (level 2) and moderate (level 3)
depression accounted for most of the samples, followed by
moderately severe (level 4), minimal (level 1), and severe (level
5) categorizations.

Table 2. Depression score regression resultsa.

LOWOUeACCUdLWXOcLOPOb

2.53 (0.10)2.39 (0.10)3.43 (0.70)4.46 (0.62)MAEf (SD)

11.89 (0.25)10.28 (0.21)19.0 (0.39)30.74 (0.41)MSEg (SD)

0.29 (0.20)0.27 (0.15)0.42 (0.52)0.55 (0.65)MAPEh (SD)

2.53 (0.17)2.83 (0.11)4.31 (0.65)5.07 (0.71)RMSEi (SD)

Fitbit, calls, conversation, screen,
location, and Wi-Fi

Fitbit, calls, screen,
and location

Calls, conversation, screen, lo-
cation, and Wi-Fi

Fitbit, calls, conversation, screen,
location, and Wi-Fi

Feature set

Random forestXGBoostRandom forestAdaBoostMLj algorithm

aThe values presented display evaluation metrics for depression score regression models. The best-performing machine learning models were AdaBoost,
random forest, and XGBoost.
bLOPO: Leave One Participant Out.
cLWXO: Leave Week X Out.
dACCU: Accumulate Weeks.
eLOWOU: Leave One Week One User Instance Out.
fMAE: mean absolute error.
gMSE: mean squared error.
hMAPE: mean absolute percentage error.
iRMSE: root mean squared error.
jML: machine learning.
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Figure 7. Confusion matrix of depression levels based on depression score predictions.

Prediction of Change in Depression Level
Table 3 presents the results of predicting change in depression
score. In this approach, the change in depression score was
calculated between participant weeks as per depression scoretime–
depression scoretime–1. The best-performing models with the
lowest MAE were the personalized models Accumulate Weeks
(MAE=3.21, MSE=20.13, RMSE=3.86, MAPE=13.69) and
Leave One Week One User Instance Out (MAE=3.12,
MSE=20.14, RMSE=4.48, MAPE=7.16). Having the ability to
predict change within an error margin of –3 to +3 can not only
help in determining change in score but also aid in discerning
change in levels of depression.

We used the change in depression predictions to create 7
different classes marking changes in levels of depression [45].
The classes (−3, −2, −1, 0, 1, 2, and 3) map the regressed change

in depression score to the change in depression level. The signs
of the classes represent the rise and fall of depression level, and
their values represent the magnitude of change in depression
level. Similar to our approach to understanding how depression
scores can be interpreted in terms of depression levels, this
enabled us to visualize how well our models performed in terms
of detecting change in depression score and mapping it to change
in depression level. The results from the confusion matrix Figure
8 allowed us to see that the model was able to predict the level
jumps (−1, 0, and 1) more accurately than the higher jumps (−3,
−2, 2, and 3). This can be explained by the distribution of the
observations in the data. Most of the recorded cases witnessed
a rise and fall in depression levels by 1 or were at the same level
(0) for an extended period. The confusion matrix showed that
the true occurrences of large depression level jumps were very
rare events.
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Table 3. Depression score change regression resultsa.

LOWOUeACCUdLWXOcLOPOb

3.12 (0.15)3.21 (0.20)3.24 (0.67)3.28 (0.70)MAEf (SD)

20.14 (0.22)20.13 (0.24)19.43 (0.63)21.35 (0.72)MSEg (SD)

7.16 (0.20)13.69 (0.17)15.79 (0.61)8.33 (0.55)MAPEh (SD)

4.48 (0.21)3.86 (0.18)4.26 (0.66)4.2 (0.71)RMSEi (SD)

Fitbit, calls, conversation,
screen, and location

Fitbit, calls, and locationCalls, conversation, screen, lo-
cation, and Wi-Fi

Fitbit, calls, conversation, screen,
location, and Wi-Fi

Feature set

Random forestXGBoostRandom forestAdaBoostMLj algorithm

aThe values presented display evaluation metrics for depression score regression models. The best-performing machine learning models were AdaBoost,
random forest, and XGBoost.
bLOPO: Leave One Participant Out.
cLWXO: Leave Week X Out.
dACCU: Accumulate Weeks.
eLOWOU: Leave One Week One User Instance Out.
fMAE: mean absolute error.
gMSE: mean squared error.
hMAPE: mean absolute percentage error.
iRMSE: root mean squared error.
jML: machine learning.

Figure 8. Confusion matrix for change in depression level into 7 classes (−3, −2, –1, 0, 1, 2, and 3) that represent transitions between higher and lower
levels of depression.

Feature Importance Calculation
One of the main advantages of modeling and formulating
prediction strategies by extracting features using tree-based
approaches is interpretability. In this section, we share the results
and provide key insights into the features that were most
influential in formulating our ML models. In particular, we

chose our depression score prediction results to understand and
narrow down the features that played a crucial role in model
performance. The results are presented in two parts: (1) plot of
the features from the best models based on the frequency of
their selection and (2) analysis of the top 10 features with
relative importance plotted for each of the personalized and
universal modeling strategies.
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Most Frequent Features Selected During ML Modeling
Location, calls, and screen were the top 3 feature sets over all
modeling strategies. The normalized location entropy and
location entropy, which tell us how much time a participant
spent at a location, were observed to be most frequently selected
during modeling, in particular for both personalized and
universal models. The other most frequently selected location
features included the outlier time percentage, which is the ratio
of time spent in a nonsignificant location divided by the time
spent in all locations. Static ratio and number of location
transitions were more features that were consistently included
in the modeling strategies. Call features were the second most
frequent feature in the model. Top call-related features included
outgoing calls, in particular Shannon entropy for the duration
of all calls, and minimum and mean duration of calls. This was
also commensurate with the incoming call features, where,
besides the mean, minimum duration of calls also included
incoming call count and sum of duration of incoming calls.
Frequently selected screen features included first use after
unlock, count episode of unlocks, and minimum and maximum
duration of screen unlocked. For completeness, we should also
mention that conversation, Fitbit, and Wi-Fi followed the
aforementioned feature sets.

Figures S1-S4 in Multimedia Appendix 1 show the features that
were selected most frequently by Accumulate Weeks, Leave
One Week One User Instance Out, Leave Week X Out, and
Leave One Participant Out for the best models predicted under
them. These plots show the number of times particular features
were associated with the best models for all combinations of
feature sets under the respective modeling strategy. It is
important to note that we modeled up to 6 combinations of
sensors and feature sets; therefore, the presence of a feature
with a count of 6 indicates that, for all feature combinations
tested, that particular feature played a significant role in
predictive model building.

Important Features Selected Based on Relative
Importance From the Best Depression Score Prediction
Models
In the previous section, we presented the results for the most
frequently observed features that contributed to the modeling
phase. In this section, Figures S5 and S6 in Multimedia
Appendix 1 look at the feature importance of the modeling
strategies. In particular, we will look at the relative importance
among the top 10 features that influenced the respective
modeling strategy. Relative importance reflects the importance
that the ML algorithm places on a particular feature to form its
predictions. Figure S5 in Multimedia Appendix 1 illustrates the
feature importance for the Accumulate Weeks (left) and Leave
One Week One User Instance Out (right) modeling strategies
for depression score prediction. The feature set for Accumulate
Weeks that performed best included Fitbit, calls, screen, and
location. We see that screen first unlock has the maximum
importance (0.175), followed by screen maximum duration
unlock (0.115). They are followed by call features count of most
frequent call types (0.0754) and incoming call count (0.0752).

In the case of Leave One Week One User Instance Out, the
6-sensor combination of Fitbit, calls, conversation, screen,

Wi-Fi, and location performed best overall. The best features
in this modeling strategy also included screen first unlock (0.16)
and screen maximum duration unlock (0.112). This was followed
by call incoming count of most frequent call types (0.079) and
screen count episode unlocks (0.052). An important observation
in this result is the similarity of the feature importance of both
personalized models. Both modeling strategies selected screen,
call, and Fitbit features as important. The results only showed
the top 10 features by relative importance; other features such
as location followed but had low relative importance.

The universal models are shown in Figure S6 in Multimedia
Appendix 1. Both Leave One Participant Out and Leave Week
X Out showed the best performance for 5-feature and 6-feature
combinations, respectively. We note that both of the generalized
approaches ranked the Wi-Fi feature count of the most scanned
access point for a time segment with high importance (Leave
One Participant Out: 0.11; Leave Week X Out: 0.132). Universal
models also displayed importance among the screen and Fitbit
features. Screen features such as max duration unlock (Leave
One Participant Out: 0.042; Leave Week X Out: 0.07) and
standard deviation of duration screen unlocked (Leave One
Participant Out: 0.041; Leave Week X Out: 0.038) were also
common between the 2 strategies. The Fitbit features of
maximum resting heart rate and maximum steps were both
selected as important by Leave One Participant Out and Leave
Week X Out.

Variation in Accuracy With Increase in Weeks of Data
for Accumulated Modeling Strategy
In this section, we present our analysis of how incremental
increases in weeks of data affected model accuracy, which was
extracted by converting depression score predictions to levels.
The results in this section are based on modeling done under
the Accumulate Weeks approach. We present 3 plots in Figure
9. The first plot reflects the variation of accuracy based on data
from all participants, the second is for participants who showed
low SD between their weekly PHQ-9 scores, and the final plot
is for participants with high SD between their reported weekly
PHQ-9 scores. The blue line represents the accuracy values
corresponding to the weeks of data available for modeling, and
the red dotted line represents a 2-point moving average.

All 3 plots in Figure 9 show that average accuracy fluctuated
between weeks of data available for modeling. Therefore, we
looked closely at the trend of the moving average to guide
inferences about accuracy variation. In the plot with all
participants, looking at the 2-point moving average, we can see
that the average accuracy fluctuates between 50% and 60%.
The plot with data from participants with a low SD in the PHQ-9
score is higher and can be conservatively stated to be between
60% and 75%. For participants with a high SD in the PHQ-9
score, the moving average shows a significant variation between
20% and 40% accuracy.

We observed that variation in the reported PHQ-9 score by
participants contributed to the overall fluctuations. Ideally, it
would be expected that, with an increase in data, the accuracy
of the models would tend to increase. Although a slight trend
upward was observed, the constant rise and fall of participant
PHQ-9 scores seemed to affect the accuracy.
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Figure 9. Variation in accuracy with increase in weeks of data trained on with a 2-point moving average to map the trend.

Missingness of Data and the Impact on Accuracy and
RMSE
In this section, we explore how missing data affected our
accuracy and RMSE values across participants. Figure 10 plots
the percentage of missing data for each participant and their
accuracy based on personalized modeling (Accumulate Weeks).

We observed 30.89% missing data in the phone-based sensors
and nearly 67.74% in Fitbit. Missing Fitbit data were attributed
to less than expected adherence to wearing the Fitbit because
of reasons relating to regular charging, rash in some participants’
cases, and forgetting to wear the device on a regular basis.

The line in blue in Figure 10 is the normalized missing
percentage, and the orange line is the normalized RMSE of
predicting the depression score. The figure shows how missing
data percentage relates to the RMSE value of individual
participants for predicting depression score. To analyze both of
these values, we normalized them to have the same scale of
comparison. Observing a few participants, such as participant
22 (normalized missing percentage: 1; normalized RMSE: 0.04)
and participant 24 (normalized missing percentage: 0.15;
normalized RMSE: 0.72), we discovered the presence of an
inverse relationship between model performance and the amount
of missing data.

Figure 10. Missing data percentage (missing%) versus depression score prediction root mean squared error (RMSE)-normalized.

Discussion

Principal Findings
This study presented an in-depth analysis of passively sensed
multimodal data collected over a period of 24 weeks from 37
adolescents to predict depression. The collection of data
coincided with the COVID-19 outbreak and allowed for the
observation of sensor data predictive capability in this scenario.
Our models predicted both depression scores and change in the
level of depression over weeks. The results showed reasonable
improvements compared with the baseline models for both
depression score and change in depression level prediction.

We explored universal and personalized modeling strategies.
Overall, given the unpredictability of mental health patterns in
individuals, personalized models were the most optimal. The
Accumulate Weeks modeling approach, which relied on
previous windows of sensor observations, achieved an RMSE
of 2.83 for depression score predictions and an RMSE of 3.21

for change in depression score prediction. This provides a strong
intuition regarding the model’s performance. In cases of
depression prediction, the model can differ by a score of
approximately 2 and, for change in depression score, by a score
of approximately 3. This realization of the results points toward
the future research and development of more sophisticated
personalized predictive modeling to map individual behavioral
traits between participants.

Investigating the modeling predictions by segmenting them into
depression levels revealed that the model was good at predicting
the mild, moderate, and moderately severe levels, whereas
minimal and severe levels were difficult to detect because of
the less frequent observations in the data collected. In the case
of change in depression levels, the models detected decreases
and increases with reasonable accuracy when the transitions
were −1, 0, and 1. Rare changes such as −3, −2, 2, and 3 were
detected with less accuracy. Data imbalance in terms of rare
events such as severe changes in depression level, as shown in
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this study, can be a subject of further exploration, with possible
strategies for synthetic data generation that can imitate sensor
readings of participants with sudden or rare changes.

Our study also looked into feature frequency and feature
importance. Understanding the features that were selected and
highly ranked by optimal-performing models can help in
determining what sensors to focus on when analyzing data from
passive sensor studies. We see that location, calls, and screen
sensor-based features appeared most frequently in the
optimal-performing models. Individuals experiencing depressive
symptoms tend to move less, which can be captured by location
data. Depression also causes participants to reduce their
interaction with friends and family, and call-related features
can play a role in characterizing this behavior. The screen time
of individuals has been seen to be a reflection of mood, as
explored in an earlier study [48]. Feature importance helps
narrow down the exact features that contributed to modeling.
We noticed that, for personalized models, screen time was a
strong determining factor that could be a consequence of the
COVID-19 lockdown that prompted participants to use their
phones with greater frequency. The feature importance presented
in this study enabled us to make informed interpretable
associations between sensor readings during changes in
depression levels or scores. This can propel more research in
the direction of more explainable or interpretable model
building, especially for mental health–related diseases.

Personalized models performed best in our study of adolescent
depression data. Therefore, it was important to understand how
personalized modeling, in particular the Accumulate Weeks
approach, performed when subjected to incremental data
addition as well as looking at how missing values affected model
performances. The Accumulate Weeks modeling approach
performed better when the variation in the depression scores of
the participants was low. By contrast, when the variation in
depression scores was high, the accuracy decreased significantly.
Exploring the relationship between missing values and the
performance metrics of the models allowed us to discover an
inverse relationship. This bolsters our understanding that
completeness of data can be an important factor in improving
model performance. Our experimental analysis of missing data
suggests a requirement for strategies to improve the collection
of sensor data that can include stronger adherence to protocols
by participants or more robust data-generating processes.

Finally, we investigated how autoregressive integrated moving
average (ARIMA) models performed in comparison with the
ML modeling approaches used. The outcome of the comparison
showed that ML models performed relatively better than the
classic ARIMA models. However, the ARIMA models were
more robust to sudden changes in comparison with the ML
models, which were better at predicting smoother transitions.
This result leads us to believe that, with possibly larger data
sets, a combination of classic time-series approaches and
ML-based approaches can be useful for participants with
inherent trends or seasonality in their behavior.

Comparison With Previous Research
In the Related Work section, we discussed a number of studies
on mobile health. In particular, we looked at studies that

explored adolescent depression to some degree. Most previous
studies were conducted with varied age groups where the
adolescent population was either not a part or a very small part
of the study [33-38]. However, these studies cannot be
considered representative of the adolescent age category. An
in-depth review of passive sensing technology for predicting
depression [49] mostly focused on college students and adults.

This study focused on adolescents, and all the results are
representative of adolescent participants with a previous
diagnosis of depression. To the best of our knowledge, this
study had the largest sample of adolescents monitored passively
to predict depression. In our work, we found location to be one
of the most frequent feature sets to be recognized by the ML
models. This is in agreement with previous studies of GPS
sensor data [33,34] to detect depressive states. They too found
a relationship between mobility metrics and depression. The
population segment in those studies was restricted to adults.
The sensors used were also limited. Other studies that used
multimodal sensor data were limited in either participant
recruitment or duration [33-37] as well as the population they
studied. Our study was an extensive, 24-week–long endeavor
with 37 participants being retained for our predictive analysis.
A few previous studies on the adolescent population relied on
survey-based approaches [40-42]. We differ in relation to them
as we strictly based our modeling on multimodal sensor features
and did not rely on any direct input from the participants or
their parents.

The work by Cao et al [39] was the closest to our study. It was
aimed at the adolescent population and used a combination of
survey inputs from parents and adolescents besides multimodal
features to improve on their accuracy. The differences between
the study by Cao et al [39] and our study lie in the type of
modeling approaches we used (eg, universal and personalized),
the duration of the trial, and the number of participants. In
relation to the modeling approaches, Cao et al [39] only
performed a universal approach with the best RMSE value
leading to 3.70, which combined parents’ inputs, steps, GPS,
SMS text messages, and calls. We achieved an RMSE of 2.39
based only on the sensor combinations of calls, screen, location,
and Fitbit. Their trial lasted 8 weeks and only had 8 participants;
this was less compared with our study. Overall, our study
explored adolescent depression based on passively sensed data
in greater depth owing to both modeling approaches, the study
duration, and the participants involved. We also showed how
data affected our modeling and compared them with classic
techniques such as ARIMA. This information is pertinent in
understanding the adolescent population and provides evidence
of the type of modeling approaches and features that can
generate the best results in predicting depression and change in
depression score.

Limitations
Despite the exhaustive modeling approach and strong participant
involvement, our study also encountered some limitations. One
of the primary limitations of our study was the start of the
COVID-19 outbreak that caused potential deviation from the
regular behavior of adolescents. Schools were closed and
mobility was restricted to the confines of participant houses or
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rare outings. Most adolescents were at home and were restricted
to television, games, or cell phone use.

We also encountered missing data partially because of the
participants’ lack of adherence to data syncing and management
of the app and partially because of technical issues and difficulty
in remote troubleshooting. Missing data are a general concern
in passive sensing, which we investigated in our work to show
the impact they had on modeling. Data completeness can aid
greatly in modeling performance.

Despite our study being one of the studies of longest duration
conducted to the best of our knowledge, it can still be
categorized as a small data set. A small data set can have an
impact on the modeling of rare events; for example, large,
sudden jumps in depression scores or extreme depression scores
can be hard to track for ML models. Although these measures
are anomalies in the data set, perhaps a more focused study on
participants exhibiting such traits can be looked into for future
directions.

Finally, although our extensive analysis provides useful insights
into the feasibility and challenges of using passive sensing for
the prediction of adolescents’ depression, we emphasize that
our study is exploratory and further investigation and more
studies are needed to replicate these results.

Conclusions and Future Directions
In this exploratory study, we investigated the feasibility of using
passively sensed data for predicting adolescents’ depression.
We applied universal and personalized ML approaches to predict
depression score and change in depression level in adolescents.
Our results showed RMSE values of approximately 2 and 3 for
the prediction of depression score and for depression change,

respectively. This provides confidence in personalized modeling
approaches for predicting depression in adolescents. We also
investigated the features that models frequently relied on.
Features related to screen, call, and location sensors were the
most frequent in the optimal models. Our analysis showed better
model performance for participants with low variation in
depression scores. We also observed that the percentage of
missing data of a participant inversely affected the model’s
performance.

Modeling both change in depression and depression scores can
be greatly influential in helping clinicians, parents, and
adolescents take preventive measures to intervene in the early
worsening of depressive symptoms before entering severe
categories. This study will inform the development of an
adolescent-facing mobile app with a parent and clinician
component to aid in adolescents’ self-management and tracking
of their mood.

Future research based on our principal findings can help improve
mental health prediction. The area of personalized modeling
can be used to provide tailored feedback to patients. Rare event
prediction in the face of the data imbalance seen in this study
should act as an impetus to develop more realistic synthetic
data. The feature importance determined can be further explored
for other mental illnesses and provide a more interpretable
analysis of passive sensing–based studies. Strategies to mitigate
missing data for passive sensing will need to balance both
participant adherence and modeling strategies that account for
missingness. A final promising area of research could be the
formulation of an ML model while incorporating a classic
time-series approach to account for possible future trends in
patients.
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