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Abstract

Background: Approximately 1 in 5 American adults experience mental illness every year. Thus, mobile phone–based mental
health prediction apps that use phone data and artificial intelligence techniques for mental health assessment have become
increasingly important and are being rapidly developed. At the same time, multiple artificial intelligence–related technologies
(eg, face recognition and search results) have recently been reported to be biased regarding age, gender, and race. This study
moves this discussion to a new domain: phone-based mental health assessment algorithms. It is important to ensure that such
algorithms do not contribute to gender disparities through biased predictions across gender groups.

Objective: This research aimed to analyze the susceptibility of multiple commonly used machine learning approaches for gender
bias in mobile mental health assessment and explore the use of an algorithmic disparate impact remover (DIR) approach to reduce
bias levels while maintaining high accuracy.

Methods: First, we performed preprocessing and model training using the data set (N=55) obtained from a previous study.
Accuracy levels and differences in accuracy across genders were computed using 5 different machine learning models. We
selected the random forest model, which yielded the highest accuracy, for a more detailed audit and computed multiple metrics
that are commonly used for fairness in the machine learning literature. Finally, we applied the DIR approach to reduce bias in
the mental health assessment algorithm.

Results: The highest observed accuracy for the mental health assessment was 78.57%. Although this accuracy level raises
optimism, the audit based on gender revealed that the performance of the algorithm was statistically significantly different between
the male and female groups (eg, difference in accuracy across genders was 15.85%; P<.001). Similar trends were obtained for
other fairness metrics. This disparity in performance was found to reduce significantly after the application of the DIR approach
by adapting the data used for modeling (eg, the difference in accuracy across genders was 1.66%, and the reduction is statistically
significant with P<.001).

Conclusions: This study grounds the need for algorithmic auditing in phone-based mental health assessment algorithms and
the use of gender as a protected attribute to study fairness in such settings. Such audits and remedial steps are the building blocks
for the widespread adoption of fair and accurate mental health assessment algorithms in the future.

(JMIR Form Res 2022;6(6):e34366) doi: 10.2196/34366
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Introduction

Background
Various machine learning (ML) algorithms are increasingly
being used to make crucial decisions previously made by
humans. Whether they are involved in approving loans, granting
college admissions, or identifying the need for additional health
support, automated algorithms find patterns, predict outcomes,
and make decisions that may have consequential impacts on
individuals’ lives [1]. Indeed, the dependency on algorithms
has eased our lives by replacing subjective human decisions
with ML algorithms. The movement toward the application of
automated algorithms in the health domain was not an exception.
For instance, the proactive assessment of an individual’s mental
health is essential for maintaining a healthy and well-functioning
society [2]. Although this holds the promise of dramatically
wider access to mental health care, it is also fraught with
inequities that can often inadvertently be baked into the
algorithmic prediction of mental health levels.

ML algorithms attempt to find the generalized pattern from the
training data, and sometimes these algorithms can manifest
inherent biases across demographic characteristics such as age,
race, ethnicity, and gender. A reason for the existing biases can
be explained by negative legacy [3] (ie, the absence of sufficient
data for a particular demographic group). For example, giving
loans mostly to higher-income groups in the past may result in
disapproval of loans to lower-income groups by algorithms that
were informed by historical data, resulting in potential damage
to individuals belonging to lower-income groups.

Such biases can be especially deleterious if they are part of
health care algorithms. For instance, a recent study by Allen et
al [4] found that algorithms used to assess mortality scores
exhibit differential accuracy across races, thereby increasing
racial disparities in health care. Similarly, Gianfrancesco et al
[5] demonstrated that algorithmic predictions based on electronic
health records can discriminate against multiple demographic
groups. In particular, Obermeyer et al [1] showed that existing
algorithms do not adequately identify the need for health support
for people of color.

Building on these trends, we move the discussion of algorithmic
fairness to mobile mental health assessment algorithms, which
have been increasingly used in recent times [6]. With >6 billion
users, mobile phones are one of the most ubiquitous consumer
devices in the world. Many of them (especially smartphones)
have capabilities conducive to monitoring an individual’s
physical activity, location, and communication patterns, each
of which has been connected to mental health in the past [7,8].
Thus, mobile phones hold significant promise as a platform for
monitoring multiple indicators of mental health risks and
improving long-term management and treatment delivery to
people with mental health issues [7,9]. At the same time, the
creation of phone data–based ML models without considering
the aspects of justice and fairness could reify, amplify, and
multiply existing health disparities for certain segments of
society (eg, women). Considering the abovementioned factors,
the main research questions (RQs) of this study were as follows:

• RQ1: Are mobile phone-based mental health algorithms
susceptible to bias in terms of gender?

• RQ2: Is it possible to reduce the level of bias while
maintaining high accuracy?

Related Work

Predicting Mental Health
Over the past few decades, mental health has typically been
assessed based on self-reported surveys that involved sporadic
sampling, most of which were initiated after some significant
events had taken place in an individual’s life. Recently, as the
availability of mobile phone data has increased, several studies
have suggested using mobile phone data to detect and predict
mental health conditions. Wang et al [10] introduced a mobile
phone sensing system to automatically infer mental well-being,
including depression, stress, flourishing, and loneliness. The
study reported that automatically sensed conversation, activity,
mobility, and sleep were significantly associated with mental
health outcomes. By collecting data from sensors in mobile
phone users (eg, location, messages, and calls), a longitudinal
study showed a relationship between users’ routines and moods
[11]. Another study also found that mobile phone–based features
such as call count, call response rate, and the number of new
contacts are positively associated with mental health [8]. Using
location information collected by a mobile phone app, Canzian
and Musolesi [12] assessed the correlation between mobility
patterns and the presence of depressive mood. A similar study
also presented the relationship between depressive symptoms
and the use of mobile phones and the movement through
geographic spaces [7].

The results of the abovementioned studies provide clear
evidence of interconnections between mobile phone data features
and mental health conditions. More importantly, they suggested
the potential of developing phone-based ML algorithms as a
basis for the unobtrusive prediction of mental health conditions.
However, to the best of our knowledge, no study has examined
the possibility of algorithmic bias in predicting mental health
status by using mobile phone data. Motivated by previous work
on algorithmic fairness (see the Algorithmic Fairness section),
this study attempted to mitigate the discriminatory impact of
gender on mental health prediction algorithms.

Algorithmic Fairness
An increasing amount of research has suggested that ML
algorithms in many domains are not free from discriminatory
decision-making. Even with the best intentions, data-driven
algorithmic decision-making processes can reproduce, inherit,
or reflect the existing social biases. Algorithmic bias may stem
from different sources, including (1) input data that may have
unequal representation from different groups, (2) an algorithm
that has been inadvertently or knowingly coded to make unfair
decisions, (3) misuse of certain models in a different context,
and (4) biased training data, which reaffirms that social biases
may be used as evidence that an algorithm performs well [13].
Broadly, the sociotechnical system framework underscores that
the value system of the algorithm developers is coded during
the algorithm design process; hence, each assumption (often
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implicit) made by the developers influences the real-world
performance of the algorithm [14].

At the same time, multiple bias mitigation techniques have been
developed for fairness in the ML literature [15,16]. Roughly,
they attempt to counter such algorithmic bias by modifying the
training data (preprocessing), learning algorithms
(in-processing), or prediction (postprocessing). Preprocessing
approaches focus on adapting the data going into the algorithms
[16], in-processing approaches change the core algorithm (eg,
change optimization function) [15], and postprocessing
algorithms tend to modify the predicted labels to increase
fairness [17].

Despite the plethora of related work, attempts to ensure
algorithmic fairness toward a protected attribute (gender in our
case) in the algorithmic assessment of mental health (high or
low) have not been made.

Gender Bias
Various attempts have been made to tackle the issue of gender
bias in computer algorithms by auditing algorithms for gender
bias and modifying algorithms to eliminate stereotypes. For
example, a study found that image search results for occupations
could amplify gender stereotypes by portraying the minority
gender as less professional [18]. Another study found gender
stereotypes in word embeddings (eg, a framework to represent
text data as vectors) and created debiasing algorithms to reduce
gender bias while preserving the utility of the embeddings [19].
Furthermore, Zhao et al [20] tackled the problem of the effect
of data imbalance, arguing that such data imbalance can worsen
discrimination in terms of gender. They quantified the biases
in visual recognition models and calibrated the models to reduce
bias. However, no research has been conducted on gender
equality using classification algorithms that predict mental
health.

This study addressed the problem of identifying and reducing
gender bias, as the overrepresentation of men in training data
could accelerate gender inequality in mental health prediction
algorithms. Particularly, we focused on the issue of
negativelegacy, as suggested by Kamishima et al [3], which
involves the idea that unfair sampling or labeling in the training
data may lead to a disparate impact [16,21] on a certain group
of people (eg, granting loans mostly to those who with higher
income in the past may result in disapproval of loans to those
with low income by the algorithms).

Perspective on Fairness and Justice
There exist multiple interpretations of fairness in the algorithmic
fairness literature [22]. For instance, scholars define fairness in
terms of maximizing utility for groups or respecting various
rules such as individual rights and freedoms [23,24]. However,
other interpretations abound, some of which are mutually
incompatible [25].

The most commonly used approaches are those based on
distributive and procedural justice [22]. While distributive
justice focuses on how outcomes are distributed across the
population, procedural justice focuses on the processes used to
undertake the decisions [26,27].

An influential philosophical theory of fairness is attributed to
the 20th-century philosopher Rawls, who equated fairness and
justice, arguing broadly that fairness is a demand for impartiality
[21,22]. In this study, we followed the approach for distributive
justice based on the interpretation of Rawls. Specifically, we
considered an algorithm to be fair if its performance did not
vary for individuals with different demographic descriptors (eg,
gender).

This is related to the concept of disparate impact [28]. Disparate
impact, in US labor law, refers to practices in areas such as
employment and housing, which affect one group of people of
a protected characteristic more adversely than another, even
when the rules applied by employers or landlords appear to be
neutral [29]. Most federal civil rights laws protect against
disparate impacts based on race, color, religion, national origin,
and sex as protected traits, and some laws include disability
status and other traits.

Methods

Data Set
We used a labeled data set from a previous study by Singh and
Long [8], which explored the associations between call log data
and mental health based on a 10-week field and laboratory study.
The data set included phone-based behavioral data and
self-reported mental health survey data. Phone-based data (eg,
call volume, interaction dynamics, diversity in contacts, tie
strength, and temporal rhythms) were collected through the app
installed on each participant’s mobile phone. Meanwhile, mental
health was measured via in-person survey sessions using the
Mental Health Inventory subscale of the 36-Item Short Form
Health Survey [30]. After passing a preprocessing and
classification process, the study showed that automated ML
algorithms using phone-based features achieved up to 80%
accuracy in automatically classifying the mental health level
(above or below the mean) of an individual [8].

A total of 59 participants completed the survey administered
by Singh and Long [8]. However, some participants did not
complete all the surveys, and some did not enter the correct
identifier (International Mobile Equipment Identity [IMEI]
number) consistently across surveys. This resulted in a subset
of 45 participants in the study [8]. For this study, we returned
to the survey data and decided to manually handle the off-by-one
errors (ie, the mismatch in IMEI for different surveys only by
1 digit). Given that IMEI numbers have 14 to 15 digits, in the
approximately 60-participant sample size, we considered the
odds of 2 participants to be off by just 1 digit without human
error being extremely low. This process helped us obtain a
complete data set (ie, phone data, a mental health survey, and
a demographic survey) for 55 participants.

The data set we obtained from Singh and Long [8] had gender
as a demographic attribute that we considered a protected
attribute. Note that a protected attribute in the algorithmic
fairness literature is one on which performance should not
depend [15]. Among these 55 participants, 21 (38%)
self-reported their gender as women or female (minority class),
and 34 (62%) self-described as men or male. Note that this study
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does not differentiate between (biological) sex and (socially
construed) gender. In addition, note that we consider the use of
binary gender as a limitation of this study. Future studies should
be conducted, which include participants with nonbinary gender
identities.

Preprocessing and Model Training
The initial obtained data set was imbalanced (ie, there was not
enough data for one class), which is a common problem in the
fairness literature [31]. To mitigate the effect of imbalance, we
applied the synthetic minority oversampling technique [32] to
the training data (the test data remained in the original ratio).
This technique works in balancing the data set by generating
synthetic observations based on the existing minority
observations.

Before moving on to the application of any ML algorithm, the
missing values were filled with the median values of the
corresponding features. To reduce the impact of features with
high variance, the features were standardized by removing the
mean and scaling to unit variance. To build a classification
model for high or low mental health scores, instances were
labeled into 2 categories (1=high and 0=low) via a median split.

With small sample data and high-dimensional space, there is
always a chance of overfitting and reduced generalization. To
avoid these issues, we used principal component analysis [33].
Principal component analysis confirmed that the top 5
components explained >99% of the variance (the larger the
variation across a dimension, the more the information it
contains); hence, we used the top 5 components as features for
model creation.

The abovementioned latent features were passed to several
classification algorithms to classify the level of mental health
(ie, whether the score was above or below the mean score of
the population). As the sample data size was relatively modest,
we refrained from splitting the data set into training and test
sets. Instead, as suggested by prior literature [8,34], we applied
5-fold cross-validations and experimented with 5 popular
classification algorithms, including logistic regression, support
vector machine, random forest, k-nearest neighbors, and
multilayer perceptron neural networks using the scikit-learn
library [35]. We ran all algorithms for 100 iterations, and the
results are reported in the form of average overall accuracy,
male accuracy (ie, accuracy for male individuals), and female
accuracy (see the Results section).

Using the abovementioned data, we could, in principle, replicate
the approach described by Singh and Long [8]. Although the
features used were the same, we must note that the
implementation was undertaken de novo with different
preprocessing steps.

Auditing Mental Health Algorithms for Bias
Gender was selected as a protected attribute. Following the
previous literature [36,37], men were considered the privileged
group, and women were considered the unprivileged group. As
there are multiple metrics to characterize accuracy in traditional
ML (eg, observed accuracy, precision, recall, and F1 score),
past literature has discussed the need for multiple metrics to

characterize bias in ML [13,31]. In this study, we adopted the
five most commonly used metrics [15,16,38]:

1. Delta accuracy captures the difference in the accuracy of
samples belonging to privileged and unprivileged groups
based on sensitive features (eg, gender and race or
ethnicity).

2. Delta true positive rate (∆TPR) focuses on equal opportunity
for truly deserving entries in both privileged and
unprivileged groups to obtain a positive label (eg, higher
mental health label) from the algorithm [13,15].

3. Delta false positive rate (∆FPR) ensures that both the true
positive rate and the false positive rate (instances where
undeserving candidates are granted positive outcomes) are
equal across different groups [15,39].

4. Statistical parity difference (SPD) calculates the difference
in the probability of favorable outcomes from the algorithm
being obtained by the unprivileged group to that of the
privileged group [38].

5. Disparate impact captures the ratio of the probability of
favorable outcomes for the unprivileged group to that of
the privileged group [16] (see Multimedia Appendix 1
[13,15,16,39-41] for more details on the 5 metrics).

Following the principle of disparate impact, a fair information
system is one in which the performance does not vary for
individuals with different demographic descriptors (eg, gender);
hence, the disparate impact metric should be close to 1.0.
However, for practical settings, a model is considered biased if
its value is <0.8 [40]. Meanwhile, the values of delta accuracy,
∆TPR, ∆FPR, and SPD should be close to zero in fair systems.
Following the previous literature [39,41], we used a 2-tailed t
test to assess whether there was a significant difference in
accuracy, true positive rate, and false positive rate levels
observed for the privileged and unprivileged groups.

Reducing Algorithmic Bias in Mental Health
Assessment
Disparate impact remover (DIR) [16] is a preprocessing
algorithm that modifies the feature values of the data set and
makes the algorithm discrimination aware at the time of training.
It does not require any changes in the classification algorithm,
nor does it amend or postprocess the results of the classification
algorithm, thus making it robust and applicable to different
algorithms. The scenario in which DIR is needed to preprocess
the data set depends on the metric called balanced error rate
(BER), defined as follows:

BER = (error rate [S = privileged] – error rate [S =
unprivileged]) / 2

In algorithmic fairness, the notion of BER is more important
than the notion of traditional accuracy as, in most data sets, the
contribution of the underprivileged attribute to the entire data
set is lesser than that of the privileged attribute. For example,
let us consider a data set with 100 rows, where 90 rows belong
to the privileged group and 10 rows belong to the unprivileged
group. With this data set, if the algorithm predicts all privileged
rows right and unprivileged wrong, the error rate would be
10/100, which is 0.1, whereas the BER would be (0+1)/2, which
is 0.5.
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An approach discussed in the literature [16,17] is to replace the
raw values of the data features with normalized variants that
capture how extreme the value for an individual (eg, female)
stands out within their own demographic group (eg, other
women). In particular, the approach suggested by Feldman et
al [16] tackles this issue by allowing the considered classes to
have equal probabilities of scoring high values for any of the
chosen features. With a toy example, where output is college
admissions, input is Scholastic Assessment Test (SAT) scores,
and with a binary notion of gender (men and women) for the
protected class, this approach gives men and women separate
scores based on their ranking within their own genders. For
example, a man with an 80th percentile SAT score within the
men’s group is considered just as worthy as a woman with an
80th percentile SAT score within the women’s group,
irrespective of the actual SAT scores. In this way, the approach
supports an equitable admission process across 2 genders. Note
that in many practical settings, it is useful to undertake partial
repairs (eg, move the scores at the same percentile across the
privileged and unprivileged groups to be closer to each other
rather than being congruent). Finally, the above approach can
be extended to multidimensional input features for the algorithm.
In the considered domain (phone-based mental health
assessments), phone use patterns for men and women are known

to differ [42,43]. Hence, using the same thresholds for the
features (eg, number of phone calls) of men and women as
symptoms of mental health issues could yield erroneous and
biased results.

In this study, the DIR algorithm for bias reduction was
implemented in Python using the IBM AIF360 library [15]. The
algorithm was run 100 times, with each iteration having a
shuffled version of the data set. The average results for the
accuracy and fairness metrics are presented in the Results
section.

Results

Mental Health Assessment Results
Table 1 shows the accuracy of multiple well-known ML
algorithms for men and women (averaged over 100 iterations).
The best-performing algorithm was random forest, which
yielded 78.57% accuracy. These results are similar but not the
same as those described by Singh and Long [8]. In both studies,
the random forest algorithm yielded the best performance, and
the highest observed accuracy was close to 80%. The random
forest model with the highest accuracy had 100 estimators or
number of trees in the forest and a maximum depth of 6.

Table 1. Results showing the average overall accuracy, accuracy for men, and accuracy for women for various machine learning models in mental
health assessment (averaged over 100 iterations).

P value of the 2-tailed
t test on delta

Delta across gender
(%), mean (SD)

Female accuracy (%),
mean (SD)

Male accuracy (%),
mean (SD)

Overall accuracy (%),
mean (SD)

Machine learning models

<.00112.10 (10.41)61.92 (9.24)58.68 (8.14)59.99 (3.67)Multilayer perceptron neu-
ral networks

<.00112.20 (8.67)59.60 (8.37)65.98 (6.49)63.17 (2.91)Support vector machine

<.00119.73 (9.80)47.38 (6.75)66.59 (5.47)58.48 (2.69)Logistic regression

<.00120.96 (8.46)49.63 (5.89)70.43 (3.72)61.77 (1.78)K-nearest neighbors

<.00115.85 (0.22)71.31 (2.51)87.16 (2.73)78.57 (1.61)Random forest

Audit Results
We compared the accuracies of different algorithms for the male
and female groups (Table 1). The performance was found to be
significantly different for the 2 groups in each of the considered
algorithms based on a nonpairwise (2-tailed) t test (α=.05;
P<.001) [41]. This indicates that the commonly used ML
algorithms, when used for phone-based mental health
assessment, are susceptible to bias.

There, a trade-off is expected between accuracy and fairness
(ie, with increased fairness, there is typically a dip in accuracy)
[31], the random forest model with the highest observed
accuracy was selected as the baseline model for further
inspection of fairness.

For random forest, the average absolute delta accuracy was
15.85% (Table 2). The absolute values of ∆TPR and ∆FPR were
0.88% and 33.43%, respectively. The average SPD was 26.1%,
and the average disparate impact was 0.682, which were distant
from the ideal values of 0 and 1.0, respectively.

Table 2. The average score for bias metrics in the random forest–based mental health assessment algorithm (average of 100 iterations).

Ideal scoreObserved score, mean (SD)Bias metrics

015.85 (0.22)Delta accuracy (%)

0−0.88 (8.39)Delta true positive rate (%)

033.43 (13.50)Delta false positive rate (%)

026.1 (4.16)Statistical parity difference (%)

1.00.682 (0.049)Disparate impact
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For 4 of the 5 considered metrics (ie, except ∆TPR), the fairness
scores were far from the ideal scores. In other words, the
developed model yielded significantly different outcomes for
individuals across genders despite reasonable aggregate
performance. More precisely, the model was mostly biased
against the unprivileged group (in this case, women), and the
disparate impact appeared to be a major issue.

Bias Reduction Results
We recomputed the abovementioned bias metrics after applying
the bias reduction algorithm (DIR), and the results averaged
over 100 iterations are reported in Table 3. Furthermore, a
comparison of the results before and after applying the bias
reduction algorithm is presented in Table 4.

Table 3. The average score for bias metrics after applying the disparate impact remover approach (average of 100 iterations).

Ideal scoreObserved score, mean (SD)Bias metrics

01.66 (1.56)Delta accuracy (%)

03.74 (6.74)Delta true positive rate (%)

05.58 (9.88)Delta false positive rate (%)

0−2.70 (1.71)Statistical parity difference (%)

1.01.09 (0.041)Disparate impact

Table 4. Comparison of delta accuracy, statistical parity difference, and disparate impact before and after applying the postprocessing algorithm.

P values of 2-tailed t test on deltaDifferenceAfter bias reduction, mean (SD)Baseline model, mean (SD)Bias metrics

<.00114.191.66 (1.56)15.85 (0.22)Delta accuracy (%)

<.0014.633.74 (6.74)−0.88 (8.39)Delta true positive rate (%)

<.00127.855.58 (9.88)33.43 (13.50)Delta false positive rate (%)

<.00128.80−2.70 (1.71)26.10 (4.16)Statistical parity difference (%)

<.0010.4081.09 (0.041)0.682 (0.049)Disparate impact

To test the significance of these improvements, we conducted
a 2-tailed t test with α=.05 for each of the bias metrics for the
before and after scores. The changes in all metrics were
noteworthy (P<.001). The bias levels were reduced for 4 of the
5 metrics considered in this study. The only exception was
∆TPR, which was the only metric with a low (<5%) score in
the baseline condition. This value remained <5% before and
after the bias reduction process.

Note that as we move toward making the algorithm less biased,
there is often a trade-off that arises in the form of the reduced
overall accuracy of the model [13]. The accuracy levels for men
and women were 87.16% and 71.31%, respectively (∆accuracy
15.85%; mean 78.50%), before bias reduction. The accuracy
levels changed to 78.49% and 76.83% for men and women,
respectively (∆accuracy 1.66%; mean 76.83%), after the bias
reduction process. The 1.38% reduction (78.50%-77.12%) in
the model accuracy was considered an acceptable loss in
accuracy for the abovementioned improvements in fairness.

Discussion

Principal Findings

RQs of the Study
The first RQ in this work was as follows: are mobile
phone–based mental health algorithms susceptible to bias in
terms of gender?

As summarized in Table 1, we found statistically significant
differences across genders in the performance of phone-based
mental health assessment algorithms with an array of common

ML algorithms. All of these point to the potential for disparate
impact across gender with mental health assessment algorithms.

With respect to the performance of the highest accuracy
algorithm (using random forest), we found noticeable differences
in the performance of the algorithm across genders via the 5
commonly used bias metrics. As shown in Table 2, there was
a difference in terms of all 5 metrics between the male and
female groups. In particular, we found that the disparate impact
ratio was 0.682 in the initial model. However, this value was
much lower than the often recommended (and legally accepted)
threshold of 0.8, irrespective of the intent of the designers [29].
Although the in-principle replications of algorithms described
in the past literature may yield reasonable accuracy, their
deployment will require them to meet the legal and ethical
guidelines of disparate impact. In addition, similar fairness
issues have been well studied in some other spaces (eg, policing
and bank loans [44,45]); they are much less explored in
algorithmic mental health assessment. However, they will
become important with the increased deployment or adoption
of mobile mental health tools.

The results also point to another domain in which women are
disadvantaged. As per the US Department of Labor Statistics,
women earn 82 cents for every dollar earned by men [46].
Similarly, recent research has reported worse performance for
women in face recognition [47], Google Translate [48], and
image search results [18]. The awareness of such disparities is
an important first step in the creation of countermeasures.
Broadly, such results in intersection with growing movements
such as Data Feminism [49] can support the creation of more
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equitable algorithms. Specifically, we hope that our findings
will shed light on the need to ensure fairness in emerging mental
health–related domains.

Finally, there are multiple potential reasons for the reduced
performance of women in the considered algorithms. Given that
the performance is consistently poorer for all the considered
ML algorithms (Table 1), possible explanations may lie in the
negative legacy and data set imbalance. Data imbalance is the
lack of data samples from a particular demographic group for
algorithms to learn from, and negative legacy refers to the lack
of positive examples for algorithms to learn from for the
unprivileged group [13,31]. For instance, Buolamwini and Gebru
[47] argued that a lack of training samples is a reason for poorer
performance for women and people of color. Similar to other
areas, and perhaps even more urgently, there is a need for more
diverse data samples to create accurate and fair ML models in
mental health assessment algorithms.

The second RQ in this study was as follows: is it possible to
reduce the level of bias while maintaining high accuracy?

On the basis of the results summarized in Table 4, we found
that the DIR approach was effective in reducing the disparity
in the performance of phone-based mental health assessment
algorithms across genders. As reported in Table 4, there were
statistically significant differences in terms of all 5 fairness
metrics considered upon the application of the DIR approach.

Past literature has discussed the need for multiple metrics to
characterize bias in ML [13,31] and that metrics can be
orthogonal to each other [25,44]. A suggested process is for
system designers to identify a set of parameters that they
consider appropriate for a given task [50]. In this study, we
considered disparate impact to be an important criterion,
considered in consultation with the scores for other fairness
metrics. In the considered scenario, noticeably large reductions
in bias levels were observed regarding the 4 metrics, except for
∆TPR, where the scores were <5% before and after bias
reduction. Finally, we noted that there was a 1.38% decrease in
accuracy upon the application of the bias reduction approach.

Overall, we interpreted the results to imply that it is often
possible to create fairer versions of algorithms. However, given
the variety of fairness metrics that can be considered and the
complexities of practical scenarios, the process of bias reduction
is likely to involve a human-in-the-loop process and
consideration of the trade-offs in terms of multiple metrics [50].
Hence, rather than identifying a silver bullet solution, there
might be opportunities for multiple small modifications that
allow fairer versions of the algorithms. Having said that,
value-sensitive design needs to be an important part of the future
design of similar applications [51], and algorithmic audits need
to become an essential step in the process of medical approval
of newer (algorithmic) diagnostic tools.

The obtained results have multiple implications for different
stakeholders engaged in health information systems.

Health Informatics Researchers and Policy Designers
This study moves the conversation with health policy designers
beyond the equity of the built environment (eg, access to

hospitals and parks) to the equity of data infrastructure, which
can profoundly influence the health outcomes for millions of
individuals going forward [52]. Although there exist multiple
legal and policy guidelines that counter the physical aspects of
bias (eg, redlining [53]), there is relatively little work on legal
and policy frameworks with digital algorithms that undertake
similar roles.

Health Care Technology Companies
This study identified a feasible pathway for creating algorithms
that balance accuracy and equity in the creation of novel health
care applications. Hence, the findings support the creation of
equitable versions of just-in-time mobile mental health
intervention apps.

Health Care Providers
This study allows for more robust detection and flagging of
mental health issues in patients. Fairer algorithms will reduce
the odds of patients being flagged for interventions incorrectly
simply because of demographic characteristics, thus allowing
for the better alignment of resources between individual
providers and the health care industry at large.

The Public
The ultimate goal of this study was to create and promote equity
in mental health information technology. The fairness of
algorithms is intimately connected with trust and adoption. In
fact, recent research suggests that disparate impact diminishes
consumer trust, even for advantaged users [40]. A robust fair
detection process will allow for the scalable delivery of
just-in-time and tailored mental health support services to a
wider population. This is important, given the huge disparity
between the need for mental health support and the percentage
of the population that uses mental health services [54].

Limitations
This study has some limitations. It focused on a single data set
with 55 individuals and considered a specific type of feature
(phone data based, as described by Singh and Long [8] in the
past literature). The use of binary gender in the assessment is
another limitation of this study. Although this study examined
many of the commonly used ML methods, other approaches
are well represented in the literature. Hence, we will be cautious
in generalizing the results until they are supported at a scale
with samples of more representative populations and many other
ML algorithms. Future work may also suggest other bias
reduction techniques to reduce the discriminatory outcomes of
mental health assessment algorithms based on protected
attributes. At the same time, this work is the first empirical
effort to analyze the difference in the performance of mental
health assessment algorithms based on gender. A key
contribution of this study is the motivation for future work in
this domain using varied data sets and methods.

Conclusions
This study grounds the use of gender as a protected attribute to
study fairness in phone-based mental health assessment
algorithms. Mobile phones are now actively used by billions of
individuals; hence, the automatic assessment of mental health
using ML algorithms could potentially be beneficial in
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estimating and intervening in billions of individuals’ mental
health conditions. An audit of commonly used ML algorithms
for mental health assessment revealed that the performance of
these algorithms can vary significantly depending on gender.
This disparity in performance was found to be noticeably
reduced after the application of a DIR approach by adapting the
data used for modeling. The results move the literature forward

on fairness in mental health assessment algorithms, particularly
with gender as a protected attribute. Future work could consider
larger data sets, protected attributes other than gender, and a
newer approach to creating fair and accurate mental health
assessment algorithms. Such results will pave the way for
accurate and fair mental health support for all sections of society.
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