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Abstract

Background: The most common dermatological complication of insulin therapy is lipohypertrophy.

Objective: As a proof of concept, we built and tested an automated model using a convolutional neural network (CNN) to detect
the presence of lipohypertrophy in ultrasound images.

Methods: Ultrasound images were obtained in a blinded fashion using a portable GE LOGIQ e machine with an L8-18I-D
probe (5-18 MHz; GE Healthcare). The data were split into train, validation, and test splits of 70%, 15%, and 15%, respectively.
Given the small size of the data set, image augmentation techniques were used to expand the size of the training set and improve
the model’s generalizability. To compare the performance of the different architectures, the team considered the accuracy and
recall of the models when tested on our test set.

Results: The DenseNet CNN architecture was found to have the highest accuracy (76%) and recall (76%) in detecting
lipohypertrophy in ultrasound images compared to other CNN architectures. Additional work showed that the YOLOv5m object
detection model could be used to help detect the approximate location of lipohypertrophy in ultrasound images identified as
containing lipohypertrophy by the DenseNet CNN.

Conclusions: We were able to demonstrate the ability of machine learning approaches to automate the process of detecting and
locating lipohypertrophy.

(JMIR Form Res 2022;6(5):e34830) doi: 10.2196/34830
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Introduction

The most common dermatological complication of insulin
therapy for glycemic control in diabetes is lipohypertrophy,

which has a prevalence ranging from approximately 25% to
65% in the literature [1,2]. These lesions are characterized by
fibrosis, decreased vascularity, and adipose hypertrophy [3] and
are likely due to both inflammation and the trophic properties
of insulin [4]. These lesions have clinical effects that reach far
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beyond the skin—some previous works have shown that
lipohypertrophy alters insulin absorption resulting in poor
glycemic control and high glycemic variability in persons with
diabetes [5-7]. Avoidance of lipohypertrophic sites has also
shown to improve glycated hemoglobin levels, and current
practice recommends the evaluation of these lesions based on
either visual inspection or palpation [8,9]. More recent findings
have developed clear criteria for detecting lipohypertrophy with
ultrasound and have shown that approximately half of these
lesions are not detectable by palpation [10,11]. These findings
have led to the suggestion that bedside ultrasound can be used
as an adjunct to palpation [10], but there are significant barriers
to implementing this in standard diabetes clinics since ultrasound
imaging is only familiar to and implemented by a small group
of diabetes educators or physicians.

The development of machine learning techniques to predict
masses in ultrasound images has been an ongoing effort in
clinical practice for the past few decades. To assist physicians
in diagnosing disease, many scholars have implemented
techniques such as regression, decision trees, Naive Bayesian
classifiers, and neural networks on patients’ultrasound imaging
data [12]. Further, many studies involving ultrasound images
have attempted to preprocess the images to extract features.
Previous work by Chiao et al [13] has demonstrated that the
use of convolutional neural networks (CNNs) with ultrasound
images is better than radiomic models in predicting breast cancer
tumors [13]. Other recent work has shown success in classifying
liver masses into 1 of 5 categories with 84% accuracy, using a
CNN model [14]. Recent work looking into the use of various
complex image augmentation approaches has shown that the
use of generative adversarial networks to generate images to
enlarge the data set improve the performance of the eventual
model [15], and many such studies [16,17] have confirmed that
minimal transformations such as flipping images can result in
a higher prediction accuracy.

In an effort to improve the accessibility and efficiency of this
method of detection, we have, as a proof of concept, developed
a supervised machine learning algorithm to detect
lipohypertrophy in ultrasound images using a CNN and a
web-based application to deploy the trained models and make
accurate predictions on the presence or absence of
lipohypertrophy in ultrasound images.

Methods

Recruitment
All images were obtained from research participants who were
enrolled in a diabetes education program at an academic center
and who had an unknown lipohypertrophy status between July
2015 and March 2017 as part of a previous study of this
condition [10]. All research participants were above 19 years
of age, had a diagnosis of type 1 or type 2 diabetes mellitus,
and were currently being treated with a minimum of 1 insulin
injection daily or an insulin pump for at least 2 years.
Participants were excluded if they were prescribed a systemic
glucocorticoid, glucagon-like peptide-1 agonist, or if they had
a nonlipodystrophic dermatological condition extending to the

insulin injection site area. Each image was categorized as
positive (lipohypertrophy present) or negative (no
lipohypertrophy present) by a radiologist as per previously
published criteria in a blinded fashion [10]. Ultrasound images
were obtained in a blinded fashion using a portable GE LOGIQ
e machine with an L8-18I-D probe (5-18 MHz; GE Healthcare).

Ethical Considerations
All research participants gave written consent, and our study
protocol received approval by the Human Subjects Committee
of the University of British Columbia (H20-03979).

Data Splits
Before beginning any model training, the data were split into
train, validation, and test splits of 70%, 15%, and 15%,
respectively, followed by some preprocessing steps of manually
removing borders from the nonannotated versions of the images.
We included all different types of diabetes as 1 set and did not
differentiate between patients when splitting, as the histology
of these lesions has been found to be independent of the source
of insulin or mode of administration [18,19]. In fact,
insulin-induced lipohypertrophy does not show any histological
specificity, closely resembles hypertrophic cellulite [20], and
appears identical to fat nodules due to other etiologies such as
corticosteroids [21] or electromagnetic fields [22]. The lesions
have been shown to be due to the direct result of the
hypertrophic effects of administered insulin with no evidence
for a pathogenic role for the insulin antibodies found in type 1
diabetes [23].

Image Transformation and Model Development
Given the small size of the data set, image augmentation
techniques were used to expand the size of the training set and
improve the model’s generalizability. A variety of classic
transformations [16,17] were tested, and the model’s
performance on these augmented data sets were documented at
this stage (Figure 1). The augmenting transformations that led
to the best performance were adding random vertical and
horizontal flipping, randomly changing the brightness between
–0.1 to 0.1, and randomly changing the contrast between 0 and
1, each with a probability of 50%. The images in the data set
varied in size from 300300 up to 460500. As a result, after the
above transformations, all images were resized to a standard
common denominator of 300300 pixels by cropping. An
example of a transformed image is shown in Figure 1. The
augmented data is then used to train a CNN model using transfer
learning, a technique using pretrained models on thousands of
images, which then allows for retraining of the entire network
with our comparatively smaller data set. Based on our literature
review, the transfer learning architectures we chose to
investigate were the following: VGG16, ResNet50,
DenseNet169, and InceptionV3 [24]. Each model was
incorporated into our small data set, trained in separate
experiments using techniques to optimize the parameters of the
model to maximize its ability to learn. To compare the
performance of different architectures, the team considered the
accuracy and recall scores of the models when tested on our
test set.
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Figure 1. Final image transformations included random vertical and horizontal flipping and random brightness and contrast adjustment.

Object Detection
In addition, we wanted to implement object detection into our
pipeline, giving users the opportunity to visually identify the
location of lipohypertrophy being detected by our model. To
implement object detection using a popular framework called
YOLOv5 [25,26], the team created bounding boxes around the
location of the lipohypertrophy masses on the positive training
images using the annotated ultrasound images as a guide. Next,
using the YOLOv5 framework, the YOLOv5m model was
trained for 200 epochs with an image size of 320320 pixels (as
this was what the Application Programming Interface allowed)
and a batch size of 8.

Results

Our images were obtained from a total of 103 participants, of
whom 8% were diagnosed with type 1 and 92% were diagnosed
with type 2 diabetes (Table 1). Our data set included 218
negative images (no lipohypertrophy present) and 135 positive
images (lipohypertrophy present). Examples are shown in Figure
2.

Each of the potential models (VGG16, ResNet50, DenseNet169,
and InceptionV3) were investigated by training them in separate
experiments, using our augmented data set.

Table 1. Research participant characteristics (N=103).

ValuesCharacteristics

75.0 (11.8)Age (years), mean (SE)

28.3 (6.1)BMI (kg/m2), mean (SE)

8Participant with type 1 diabetes, n

9.4 (11.5)Number of years on insulin, mean (SE)

20.7 (6.1)Duration of diabetes (years), mean (SE)

8.0 (1.1)Glycated hemoglobin (%), mean (SE)

48.6 (42.9)Total daily dose (units), mean (SE)

2 (1-6)Daily doses, n (range)
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Figure 2. Some examples of images found in our data set. The top row displays negative images (no lipohypertrophy present) and the bottom row
displays positive images (lipohypertrophy present) where the yellow annotations indicate the exact area of the mass. The yellow annotations are only
for the reader; the images that the model was trained on were unmarked with no yellow annotations.

As shown in Table 2, all models were able to achieve accuracy
scores higher than 0.60 when tested on a holdout sample. When
comparing performance of the various models, DenseNet
demonstrated the highest accuracy score (0.76), the highest
recall or sensitivity score (0.76), and the highest specificity
score (0.49), indicating an overall better performance than
Inception, VGG16, or ResNet. In addition to better performance,
DenseNet also demonstrated a relatively small computational
size (30 MB) compared to the other models (Inception, 100
MB; ResNet, 99 MB; VGG16, 547 MB).

With respect to object detection implementation, the YOLOv5m
model was able to identify the specific location of
lipohypertrophy in test cases, as demonstrated in Figure 3. In
order to help a clinician verify the results of our models,
YOLOv5m was able to accurately create bounding boxes around
lipohypertrophy sites in ultrasound images. As shown in Figure
4, YOLOv5m demonstrated an F1 score of 0.78 at a confidence
value of 0.41.

All 4 models (ResNet, VGG16, Inception, and DenseNet) were
tested on a holdout sample to produce these accuracy, recall or
sensitivity, and specificity results.

Table 2. Model accuracy scores, recall or sensitivity scores, and specificity scores.

Specificity scoresRecall or sensitivity scoresAccuracy scoresModel

0.490.760.76DenseNet

0.330.520.74Inception

0.120.190.65VGG16

000.61ResNet
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Figure 3. Our final object detection model results on a test sample reveals promising outcomes. The top row indicates the true location of lipohypertrophy,
and the bottom row indicates where the model thinks the lipohypertrophy is. The number on the red box indicates the model’s confidence.

Figure 4. Our results from the YOLOv5m object detection model showcase a successful initial attempt, as shown by our precision (a). Our best F1
score (b) is around 0.78 with a confidence value of about 0.4109. Any higher confidence value causes our recall (c) to suffer dramatically, which was
the focus of our optimization.

Discussion

Principal Results
As a proof of concept, we were able to demonstrate the ability
of a supervised machine learning algorithm to detect
lipohypertrophy on ultrasound images using a CNN, and we
were able to deploy this algorithm though a web-based

application to make accurate predictions on the presence or
absence of lipohypertrophy in ultrasound images obtained at
the point of care. The DenseNet transfer learning architecture
outperformed the other architectures tested, suggesting this
would be the most appropriate choice to automate the process
of detecting and locating lipohypertrophy, a common
dermatological complication of insulin injections.
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Comparison With Prior Works
Prediction of masses in ultrasound images using machine
learning techniques has been an ongoing effort in clinical
practice for the past few decades. To assist physicians in
diagnosing disease, many scholars have implemented techniques
such as regression, decision trees, Naive Bayesian classifiers,
and neural networks on patients’ ultrasound imaging data [12].
Further, similar to this study, many investigators have used
preprocessing techniques to extract features. In fact, Chiao et
al [13] demonstrated that CNNs using ultrasound images
perform better than other methods (such as radiomic models)
in predicting breast cancer tumors. Another recent study showed
considerable success in classifying liver masses into 1 of 5
categories with 84% accuracy, using a CNN mode [14]. To our
knowledge, this is the first attempt to use CNN techniques to
automate the detection of lipohypertrophy, demonstrating the
considerable performance of our DenseNet model both in terms
of test accuracy and recall (Table 2).

Recent research has delved into various complex image
augmentation techniques to generate images [15]; we also found
that traditional transformations managed to improve model
performance, congruent with the results of this study.
Furthermore, other studies [16,17] also confirmed that minimal
transformations such as flipping the images led to higher
prediction accuracy in their application. DenseNet has also
proved successful in similar deep learning applications using
small data sets [27], which we suspect is due to its ability to
reduce the parameters in a model.

Limitations
Although our project has demonstrated in principle that machine
learning can be used to detect lipohypertrophy, there are some
key limitations that should be addressed before it can be used
in a clinical setting. Given the small size of our data set, more
images need to be incorporated into the model before it can be
used to direct patient care. Besides, even after the addition of
new images, an auditing process should also be developed to
ensure that our machine learning model does not propagate any
biases that could cause harm to specific patient populations.

Conclusions
Previous clinical studies of lipohypertrophy have demonstrated
quite a high prevalence of this condition (greater than half).
More importantly, they have demonstrated a significant burden
of subclinical lesions in patients with diabetes [10]. This is
clinically important both due to the alterations in insulin
absorption with injection proximate to a lipohypertrophic lesion
[5-7] and the fact that the only treatment for this condition is
avoidance [28]. Although our proof-of-concept study was
limited by the fact that our model was based on a small number
of images, we have successfully demonstrated the development
of a model that can automatically detect lipohypertrophy in
patients with diabetes. Although more work needs to be done,
future studies of models developed on larger image data sets
could allow for the development of a rapid, noninvasive, bedside
test for subclinical lipohypertrophy that could easily be used
by health care professionals unfamiliar with the use of
ultrasound technology.
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