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Abstract

Background: Continuous heart rate monitoring via mobile health technologies based on photoplethysmography (PPG) has
great potential for the early detection of sustained cardiac arrhythmias such as atrial fibrillation. However, PPG measurements
are impaired by motion artifacts.

Objective: The aim of this investigation was to evaluate the analyzability of smartwatch-derived PPG data during everyday life
and to determine the relationship between the analyzability of the data and the activity level of the participant.

Methods: A total of 41 (19 female and 22 male) adults in good cardiovascular health (aged 19-79 years) continuously wore a
smartwatch equipped with a PPG sensor and a 3D accelerometer (Cardio Watch 287, Corsano Health BV) for a period of 24
hours that represented their individual daily routine. For each participant, smartwatch data were analyzed on a 1-minute basis by
an algorithm designed for heart rhythm analysis (Preventicus Heartbeats, Preventicus GmbH). As outcomes, the percentage of
analyzable data (PAD) and the mean acceleration (ACC) were calculated. To map changes of the ACC and PAD over the course
of one day, the 24-hour period was divided into 8 subintervals comprising 3 hours each.

Results: Univariate analysis of variance showed a large effect (ηp
2> 0.6; P<.001) of time interval (phase) on the ACC and PAD.

The PAD ranged between 34% and 100%, with an average of 71.5% for the whole day, which is equivalent to a period of 17.2

hours. Between midnight and 6 AM, the mean values were the highest for the PAD (>94%) and the lowest for the ACC (<6×10-3

m/s2). Regardless of the time of the day, the correlation between the PAD and ACC was strong (r=–0.64). A linear regression

analysis for the averaged data resulted in an almost perfect coefficient of determination (r2=0.99).

Conclusions: This study showed a large relationship between the activity level and the analyzability of smartwatch-derived
PPG data. Given the high yield of analyzable data during the nighttime, continuous arrhythmia screening seems particularly
effective during sleep phases.

(JMIR Form Res 2022;6(3):e29479) doi: 10.2196/29479
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Introduction

Background
Stroke is a leading cause of mortality and disability resulting
in considerable economic costs of treatment and poststroke care
[1]. With 5.5 million deaths in 2016, stroke was recognized as
the second leading cause of death globally, after ischemic heart
disease [1]. In the European Union, the number of people living
with stroke is estimated to increase by 27% between 2017 and
2047, mostly due to population aging and improved survival
rates [2]. Nevertheless, the constantly increasing burden of
stroke also implies inadequate implementation or effectiveness
of primary prevention strategies [1]. There is no doubt that
besides targeting behavioral risk factors, effective screening for
conditions that raise stroke risk, such as hypertension, diabetes
mellitus, and atrial fibrillation (AF), is essential [1]. In that
respect, particular attention must be paid to AF since it
represents one of the main causes of stroke [3] and the most
common sustained cardiac arrhythmia in adults, affecting
between 2% and 4% of the general population [4]. Due to its
paroxysmal and often asymptomatic (silent AF) clinical
presentation, AF often remains undetected and is frequently
only diagnosed upon a suffered stroke [5]. According to the
guidelines of the European Society of Cardiology (ESC), 24-
to 72-hour electrocardiography (ECG) is the standard of care
to detect AF [4]. However, this is usually prescribed only when
the patient is already experiencing symptoms (eg, palpitations,
exertional shortness of breath, and chest pain), which is a strong
indicator that the disease has already progressed to an increased
severity (persistent, long-standing persistent, or permanent AF).
In addition, the diagnostic yield of standard ECG monitoring
is limited in the case of paroxysmal AF since prolonged (>7
days) observation periods are required [5]. Additionally,
long-term monitoring using an insertable cardiac monitor is
superior to traditional follow-up methods in detecting AF [6].
Thus, in patients over 65 years of age, routine self-monitoring
of one’s pulse is a class I recommendation in the ESC guidelines
for raising the suspicion of AF [4].

Previous Work
Mobile health (mHealth) technologies enabling patient-initiated
short-term or continuous long-term pulse recordings are thought
to have extraordinary potential to improve the care and
management of AF and may yield a practical option to determine
AF burden [4,7,8]. In principle, the currently available mHealth
devices for AF screening can be divided into the following
types: smartphones, smart bands or smartwatches, earlobe
sensors, and handheld ECG devices [7]. Aside from handheld
ECG devices, all of these devices are based on
photoplethysmography (PPG), which is an optical measurement
technique for the detection of blood volume changes in the
microvasculature [9]. PPG sensors are applied on the surface
of the skin, where a light source illuminates the tissue that in
turn scatters and partially absorbs the emitted light [10]. A
photosensitive diode is used to measure variations in scattered
light intensity attributed to cardiac synchronous changes in the
blood volume with each heartbeat, resulting in the typical
pulsatile component of the PPG waveform [9,10].

The evaluation of the diagnostic performance of various
mHealth devices for AF detection revealed the highest
sensitivity (95% to 98%) and specificity (95% to 99.6%) for
smartphones and their associated applications [7]. Accordingly,
both the Preventicus Heartbeats algorithm (PHA, Preventicus
GmbH), which is a certified medical device (class IIa, CE
marked), as well as the competing product FibriCheck
(Qompium NV), showed excellent performance for smartphone
recordings [11-14]. However, the diagnostic accuracy of smart
bands and smartwatches was highly variable between studies
and strongly dependent on the test conditions [7]. This is because
PPG measurements are vulnerable to artifacts caused by contact
pressure, skin tone, user movement, or bright ambient light
[7,9,15]. In addition, the signal can also be affected by
physiologic variations such as vasoconstriction, coughing, a
deep gasp, or a yawn [10]. Hence, the best data quality is to be
expected when subjects are sleeping or sitting still [7]. For
1-minute measurements using wrist-worn devices in a controlled
laboratory setting (relaxed sitting position with both arms resting
on a firm surface), both algorithms (PHA and FibriCheck)
demonstrated sensitivity and specificity comparable to
smartphone analyses [16,17].

This Study
Against this background, the question arises whether PPG-based
smartwatch measurements provide a sufficient data basis for
noninvasive continuous AF screening. The PHA performs an
automatic signal quality check before rhythm analysis and
outputs the percentage of exploitable minutes [11]. Based on
this, the present study aimed to evaluate the analyzability of
smartwatch-derived PPG data generated by the PHA during
everyday life and to determine the relationship between
analyzability and activity level in adults who are in good
cardiovascular health. Furthermore, this study aims to determine
when it is worthwhile to screen for AF, which will help to save
data and increase the life of the device battery.

Methods

Participants and Procedures
A total of 41 (19 female and 22 male) adults with an average
age of 43.2 (SD 15.8; range 19-79) years volunteered to
participate in this investigation. Excluded from the study were
shift workers, those who were unable or unwilling to give
informed consent, and patients already diagnosed with a
cardiovascular disease, especially heart rhythm disorders (eg,
AF or ectopic beats). Each participant was asked to continuously
wear a smartwatch for a period of at least 24 hours while
following their individual daily routine. Thus, the measurements
comprised the whole span of everyday life situations ranging
from nonphysical activities, like sleeping or office work, to
physically demanding activities, such as sports.

Ethics Approval
The study was conducted according to the Declaration of
Helsinki. Informed consent was obtained after verbal and written
explanation of the experimental design. This investigation
provided the technical preparation for our Clinical Trial
“Determine AF Burden with PPG Trial,” which was approved
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by the Northwest and Central Switzerland Ethics Committee
(Project-ID: 2020-01983)

Data Acquisition and Processing
The PPG and mean acceleration (ACC) signal during everyday
life were measured at the wrist using a smartwatch (Cardio
Watch 287, Corsano Health BV). In total, 3 watches of the same

type were used for data collection. Besides a 3D accelerometer
(sensor range ±16 g), the device was equipped with a single
channel PPG sensor module. A total of 2 green light-emitting
diodes (LEDs; peak wavelength of 525 nm and maximum
current of 30 mA) served as light sources for the sensor (Figure
1). The smartwatch measured PPG and accelerometric data with
a sampling rate of 25 Hz.

Figure 1. The smartwatch used for measuring photoplethysmographic (PPG) and accelerometric data. (A) A photograph of the front side of the wearable
used in the study (Cardio Watch 287, Corsano Health BV). (B) The back side of the device indicating the exact position of the light-emitting diode
(LED), the PPG sensor, and the charging contacts.

Data transfer and storage was performed via a wireless
connection (Bluetooth Low Energy, version 5.0) to a paired and
preconfigured smartphone (Galaxy A40, Samsung Electronics
Co Ltd) with the Android 10 operating system (Google LLC)
that was running a data acquisition application provided by
MMT. To avoid data loss, the internal memory (8 MB) of the
Corsano smartwatch enabled data buffering for a period of about
24 hours. The PPG and ACC signal were automatically saved
as JSON files on the smartphone and manually transferred to a
desktop PC after the participant completed the measurement
period. The raw data were further processed in MATLAB
R2016a (MathWorks Inc). First, all data sets were manually
inspected for completeness or potential data gaps. Since the
smartwatch did not have an algorithm capable of automatically
detecting when the watch was not worn, these phases were
eliminated afterwards using custom-written programs in
MATLAB. These periods were easy to identify as they appeared
as Gaussian white noise in the raw data. Data sets containing
more than 10% (2.4 hours) of erroneous data were excluded
from the analysis. For each participant, a period of 24 hours
was analyzed on a one-minute basis using the PHA.
Consequently, a maximum of 1440 minutes (data points) was
analyzed for each participant. To map changes over the course
of a day, the 24-hour period of a day was divided into 8 equal

subintervals (P1 to P8) of 3 hours or 180 minutes. The phases
should divide the 24-hour day as sensibly as possible, thus
resulting in the following phases: P1 (midnight to 3 AM;
sleeping phase), P2 (3 AM to 6 AM; sleeping phase), P3 (6 AM
to 9 AM; wake-up phase), P4 (9 AM to noon; working phase),
P5 (noon to 3 PM; working phase), P6 (3 PM to 6 PM; working
phase), P7 (6 PM to 9 PM; coming to rest phase), and P8 (9 PM
to midnight; going to sleep phase). We have assumed that most
people tend to behave roughly according to these time windows.
Furthermore, on the one hand, one needs a division that is
sufficiently large to be suitable for statistical tests. On the other
hand, this division should not be too fine because otherwise,
one obtains error probabilities that are too small with the
Bonferroni correction for multiple testing. For this purpose, a
compromise had to be found.

Outcomes
The percentage of analyzable data (PAD) described the ratio
between the number of measured PPG minutes and the number
of exploitable minutes for the PHA. Exploitable minutes are
determined by using the signal-to-noise ratio and the ACC data.
For example, data sections disturbed by movement can be
detected and marked. If the ratio of disturbed data sections to
data sections with sufficient quality is more than 10%, then the
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entire minute is nonexploitable. A minute must therefore contain
no more than 6 seconds of disturbed data for it to be exploitable
[11]. The activity level of the participant (represented by the
ACC) was estimated using the triaxial acceleration. For each
time increment, the magnitude of acceleration change was

calculated using the Euclidean norm (ie, the square root of the
sum of squares) (Figure 2). Finally, the standard deviation of
this was calculated for each period (P1 to P8) and expressed as
the ACC .

Figure 2. A visualization of the method for quantifying the activity level (represented by the ACC) of a participant. The length of the vector between
2 successive triaxial acceleration values (green arrow) was calculated using the Euclidean norm. ACC: mean acceleration.

Statistical Analysis
Statistical analyses were performed using SPSS, version 23
(IBM Corp). Results are presented as means with SD and 95%
CI. Sex comparisons were verified with Student t tests for
unpaired samples. Where appropriate, effect sizes were
calculated as standardized mean differences (d) with values
>0.2, >0.5, and >0.8, indicating small, moderate, and large
effects, respectively. The effects of measurement time on
activity level or percent analyzability of PPG data were verified
using univariate repeated measurement analysis of variance
(ANOVA). Following the findings of the sex comparisons
(comparing the outcomes between males and females), the
ANOVA was conducted irrespective of sex using the whole
sample (N=41). Bonferroni post hoc tests were used to verify
localized differences. Practical relevance was estimated using

partial eta squared (ηp
2) with values ≥0.01, ≥0.06, or ≥0.14

indicating small, moderate, or large effects, respectively [18].
Pearson product-moment correlations were calculated to
examine linear associations between activity level and the
analyzability of PPG data. The following criteria were adopted
for interpreting the magnitude of correlations (r) between
measures: <0.2, trivial; 0.2 to 0.3, small; 0.3 to 0.5, moderate;
0.5 to 0.7, large; 0.7 to 0.9, very large; and 0.9 to 1.0, almost
perfect.

Results

The comparisons of means did not reveal differences between
sexes (P>.10) and for the PAD (P>.30) in any of the time
intervals (P1 to P8). The only effect on a moderate level
(d=0.52) was found for ACC in P5. No effects (for ACC d<0.19)
were found for the PAD in P1, P2, P5, and P6, as well as for
ACC in P4. All remaining sex comparisons resulted in small
effect sizes (0.20<d<0.45).

In principle, the temporal changes in the PAD and ACC
followed a characteristic but opposite trend throughout the day
(Figure 3A and B) that roughly showed a u-shaped (PAD) or
inverted u-shaped (ACC) pattern, respectively. The univariate

ANOVA showed a large effect (ηp
2>0.6; P<.001) of the time

interval on ACC and the PAD (Table 1). Accordingly, ACC
values were significantly lower (P<.01) in P1 and P2 than in
the remaining intervals (P3 to P8). This resulted in a PAD above
94% between midnight and 6 AM (P1 to P2; Table 1). In the
time frame between 9 AM and 9 PM (P4 to P7), ACC values
reached a plateau without significant changes (Table 1) on the
highest level across the day (Figure 3A). During this period,

the ACC average was approximately 37×10−3 m/s2. In
accordance with ACC, there was little change in the PAD
between 9 AM and 9 PM (P4 to P7). During this phase, values
for this percentage ranged between 55% and 60%, on average.
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At the same time, these values represented the minimum over
the span of a day. Moreover, the values of this parameter in P3
and P8 were clearly higher (73% to 80%), though not reaching
the level of P1 and P2.

Interindividual variations in the PAD (SD<7%) and ACC

(SD<5×10-3 m/s2) were lowest at night (P1 to P2) and highest

around midday (P3 to P4; SD [ACC] 15×10-3 m/s2 to 18×10-3

m/s2; SD [PAD] 10% to 15%).

The PAD and ACC showed an inverse correlation in all
investigated periods (Figure 4A). Except for P2 (r=–0.37), all
correlations were large (P1, P4, P5, P7) or very large (P3, P6,
P8). The linear regression analysis of the averaged data resulted

in an almost perfect coefficient of determination (r2=0.99; Figure
4B).

The values of the PAD ranged between 34% and 100%, with
an average of 71.5% for the whole day, which is equivalent to
a period of 17.2 hours.

Figure 3. Activity level and analyzability of photoplethysmographic (PPG) data during a 24-hour period representing everyday life with respect to sex.
(A) The average standard deviation of the acceleration (ACC). (B) The percentage of PPG data that could be analyzed for arrhythmia screening by the
Preventicus Heartbeats algorithm. In both panels, mean values and 95% confidence intervals are symbolized by error bars. Data for males (n=22) and
females (n=19) are depicted by filled or blank circles, respectively. The grey dotted lines represent the sex-independent mean.
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Table 1. The average standard deviation of the acceleration and percentage of analyzable data during each phase of the day (N=41).

Bonferroni post hoc

comparisons (P<.01)b
ηp

2P valueaPhase, mean (SD)Outcome

P8jP7iP6hP5gP4fP3eP2dP1c

P1<P3; P1<P4; P1<P5;
P1<P6; P1<P7; P1<P8;
P2<P3; P2<P4; P2<P5;
P2<P6; P2<P7; P2<P8;
P3<P5; P3<P6; P4>P8;
P5>P8; P6>P8; P7>P8

0.61<.00116.4
(10.1)

34.8
(15.8)

38.3
(16.0)

37.1
(15.3)

36.6
(17.4)

25.9
(15.3)

5.00
(3.70)

5.50
(4.70)

ACCk in 10-3

m/s2

P1>P3; P1>P4; P1>P5;
P1>P6; P1>P7; P1>P8;
P2>P3; P2>P4; P2>P5;
P2>P6; P2>P7; P2>P8
P3>P4; P3>P5; P3>P6;
P3>P7; P4<P8; P5<P8;
P6<P8; P7<P8

0.75<.00180.2

(13.2)

60.1

(11.0)

57.4

(12.0)

57.0

(9.82)

55.4

(10.7)

73.3

(14.9)

94.3

(6.50)

94.2

(6.30)
PADl

aP value from the univariate analysis of variance.
bP<.01 for the comparison of each pair of phases.
cP1: midnight to 3 AM.
dP2: 3 AM to 6 AM.
eP3: 6 AM to 9 AM.
fP4: 9 AM to noon.
gP5: noon to 3 PM.
hP6: 3 PM to 6 PM.
iP7: 6 PM to 9 PM.
jP8: 9 PM to midnight.
kACC: averaged standard deviation of the acceleration.
lPAD: percentage of analyzable data.

Figure 4. The relationship between activity level as expressed by the average standard deviation of the acceleration (ACC) and the analyzability of the
photoplethysmographic data for arrhythmia screening generated by the Preventicus Heartbeats algorithm over 8 periods of a single day (P1-P8, compare
to Figure 3). (A) Data from different time intervals are symbolized by diamonds, squares, and triangles, and Pearson product-moment correlations (r)
are given for each period. (B) Mean values across all subjects for the ACC versus percentage of analyzable data (PAD) in each of the 8 periods. The

dashed line represents the linear regression and the corresponding equation with the coefficient of determination (r2) is given.
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Discussion

Principal Findings
The present study demonstrates a strong relationship between
activity level during a routine day and the analyzability of
smartwatch-derived PPG data. In addition, a large effect of
daytime on the ACC and PAD was found that was mainly based
on differences between day and night.

The inverted u-shaped ACC pattern (Figure 3A) represents the
rest-activity circadian rhythm of the persons investigated, which
reflects the function of the circadian timing system [19]. Since
people working in shifts were excluded from this study, it can
be reasonably expected that all participants were sleeping and
therefore hardly moving between midnight and 6 AM (P1, P2).
In accordance with that, the average ACC values and the
corresponding variations were minimal. By contrast, the ACC
was the highest between 9 AM and 9 PM, which is equivalent
to the main activity phase of the day for most people and
typically comprises daily working as well as leisure activities.
The comparatively high variability in the ACC data during this
period can be explained by intraindividual differences in the
load level and the temporal course of the everyday activities
performed. Furthermore, in the 2 intervals (P3, P8), on an
intermediate ACC level, differences in the times for waking up
and going to bed are reflected. Since an almost perfect inverse

linear relationship (r2=0.99) has been found between the ACC
and the PAD (Figure 4B), all aforementioned statements for
ACC also apply in an inverse manner for the PAD.

In line with other studies, it can therefore be concluded that
movement strongly impacts the quality of the PPG signal
[9,10,15]. During ambulatory monitoring, various types of
motion (eg, walking, stretching, and finger tapping) are present
that can cause periodic or nonperiodic motion artifacts (MA)
[20]. Besides whole-body movements, the relative movement
between the PPG sensor and human skin is a potential source
of MA, as well. Therefore, it is essential to tighten the wristband
of the smartwatch in such a way that the device cannot shift,
but keep it loose enough to avoid cutting off blood circulation.
Although all participants were instructed to do so in this
investigation, it cannot be ruled out that in some cases, the
device was not fitted correctly. This may be a potential
explanation for the occurrence of some erroneous measurements
during the night as well, besides nightly physical movement
like going to the bathroom.

The reduction of MA remains a major challenge in processing
PPG data since they can be in the same frequency range as the
heart rate signal [21]. Although various signal processing
methods have been proposed, satisfactory performance in
removing or reducing MA has not yet been achieved [21]. Thus,
efforts have been made to improve the performance of noise
reduction algorithms through adaptations in sensor design.

Nowadays, multichannel PPG measurement systems comprising
multiple sensor modules with LEDs of different wavelengths
or colors (ie, green, red, or infrared), constitute the standard
across multiple models of current PPG-based smartwatches (eg,
Polar Vantage series, Samsung Galaxy Watch3, Apple Watch
Series 6, and Withings ScanWatch) [21]. Given this, the sensor
module used in this study comprised of only 2 LEDs with one
wavelength and one photodiode fails to comply with the current
standard. Consequently, the PAD is likely significantly higher
when measured with newer smartwatches. This hypothesis must
be investigated in further studies.

However, the present findings identified a nocturnal time frame
of 6 hours with an excellent PAD. Of the 360 minutes between
midnight and 6 AM, on average, only about 20 minutes were
not exploitable for the PHA, suggesting that AF screening may
be particularly effective during this phase. This strategy is
supported by several studies showing that AF typically occurs
at night or in the early morning hours [22-25].

Limitations
Some limitations must be mentioned. Firstly, the participants
were mainly recruited from occupational groups performing
office work. We assume that the participants have similar
activity profiles (ie, sleep during P1 and P2, wake up during
P3, active during P4 to P7, go to sleep during P8). The
participants did not keep a diary detailing their activities.
Furthermore, no actigraphy techniques were used, either. Other
occupational groups such as craftspeople or postal workers
might show clearly different activity patterns during the same
time of day, which might have an impact on the analyzability
of PPG data. In addition, our results only apply for weekdays
and not for weekends, when activity profiles most likely look
different, especially among the working population. Finally,
this study only involved healthy participants and excluded
patients with cardiovascular diseases. Hence, the present
findings cannot be generalized to the overall older adult
population. The analyzability of smartwatch-derived PPG data
for a population with major disorders requires further
investigation.

Conclusions
This study showed a strong relationship between activity level
and the analyzability of smartwatch-derived PPG data and a
large effect of time of day on both parameters. That effect was
mainly based on the differences between day and night. In
conclusion, the present findings suggest that nocturnal AF
screening may be particularly effective since the yield of
analyzable data was the highest in the time interval between
midnight and 6 AM. During this phase, around 94% of the PPG
recordings had an appropriate signal quality for rhythm analysis,
which is a crucial prerequisite for reliable screening for cardiac
arrhythmias such as AF.

Conflicts of Interest
SM is employed full-time as a research developer at Preventicus GmbH, the company involved in the development of the
Preventicus Heartbeats algorithm (PHA).

JMIR Form Res 2022 | vol. 6 | iss. 3 | e29479 | p. 7https://formative.jmir.org/2022/3/e29479
(page number not for citation purposes)

Merschel & ReinhardtJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


References

1. GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the
Global Burden of Disease Study 2016. Lancet Neurol 2019 May;18(5):439-458 [FREE Full text] [doi:
10.1016/S1474-4422(19)30034-1] [Medline: 30871944]

2. Wafa HA, Wolfe CDA, Emmett E, Roth GA, Johnson CO, Wang Y. Burden of stroke in Europe. Stroke 2020
Aug;51(8):2418-2427. [doi: 10.1161/strokeaha.120.029606]

3. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial
fibrillation. Circulation 2014 Feb 25;129(8):837-847. [doi: 10.1161/circulationaha.113.005119]

4. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, et al. 2020 ESC Guidelines for the diagnosis
and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery
(EACTS). Revista Española de Cardiología (English Edition) 2021 May;74(5):437. [doi: 10.1016/j.rec.2021.03.009]

5. Dilaveris PE, Kennedy HL. Silent atrial fibrillation: epidemiology, diagnosis, and clinical impact. Clin Cardiol 2017 Jun
08;40(6):413-418 [FREE Full text] [doi: 10.1002/clc.22667] [Medline: 28273368]

6. Sanna T, Diener H, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, CRYSTAL AF Investigators. Cryptogenic
stroke and underlying atrial fibrillation. N Engl J Med 2014 Jun 26;370(26):2478-2486. [doi: 10.1056/NEJMoa1313600]
[Medline: 24963567]

7. Lopez Perales CR, Van Spall HGC, Maeda S, Jimenez A, Laţcu DG, Milman A, et al. Mobile health applications for the
detection of atrial fibrillation: a systematic review. Europace 2021 Jan 27;23(1):11-28 [FREE Full text] [doi:
10.1093/europace/euaa139] [Medline: 33043358]

8. Turakhia MP, Kaiser DW. Transforming the care of atrial fibrillation with mobile health. J Interv Card Electrophysiol 2016
Oct;47(1):45-50 [FREE Full text] [doi: 10.1007/s10840-016-0136-3] [Medline: 27306552]

9. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 2007
Mar;28(3):R1-39. [doi: 10.1088/0967-3334/28/3/R01] [Medline: 17322588]

10. Nilsson L. Respiration signals from photoplethysmography. Anesth Analg 2013 Oct;117(4):859-865. [doi:
10.1213/ANE.0b013e31828098b2] [Medline: 23449854]

11. Brasier N, Raichle CJ, Dörr M, Becke A, Nohturfft V, Weber S, et al. Detection of atrial fibrillation with a smartphone
camera: first prospective, international, two-centre, clinical validation study (DETECT AF PRO). Europace 2019 Jan
01;21(1):41-47 [FREE Full text] [doi: 10.1093/europace/euy176] [Medline: 30085018]

12. Koenig N, Seeck A, Eckstein J, Mainka A, Huebner T, Voss A, et al. Validation of a new heart rate measurement algorithm
for fingertip recording of video signals with smartphones. Telemed J E Health 2016 Aug;22(8):631-636. [doi:
10.1089/tmj.2015.0212] [Medline: 26938673]

13. Krivoshei L, Weber S, Burkard T, Maseli A, Brasier N, Kühne M, et al. Smart detection of atrial fibrillation. Europace
2017 May 01;19(5):753-757 [FREE Full text] [doi: 10.1093/europace/euw125] [Medline: 27371660]

14. Proesmans T, Mortelmans C, Van Haelst R, Verbrugge F, Vandervoort P, Vaes B. Mobile phone-based use of the
photoplethysmography technique to detect atrial fibrillation in primary care: diagnostic accuracy study of the FibriCheck
app. JMIR Mhealth Uhealth 2019 Mar 27;7(3):e12284 [FREE Full text] [doi: 10.2196/12284] [Medline: 30916656]

15. Bashar SK, Han D, Hajeb-Mohammadalipour S, Ding E, Whitcomb C, McManus DD, et al. Atrial fibrillation detection
from wrist photoplethysmography signals using smartwatches. Sci Rep 2019 Oct 21;9(1):15054 [FREE Full text] [doi:
10.1038/s41598-019-49092-2] [Medline: 31636284]

16. Dörr M, Nohturfft V, Brasier N, Bosshard E, Djurdjevic A, Gross S, et al. The WATCH AF trial: smartWATCHes for
detection of atrial fibrillation. JACC Clin Electrophysiol 2019 Feb;5(2):199-208 [FREE Full text] [doi:
10.1016/j.jacep.2018.10.006] [Medline: 30784691]

17. Selder J, Proesmans T, Breukel L, Dur O, Gielen W, van Rossum A, et al. Assessment of a standalone photoplethysmography
(PPG) algorithm for detection of atrial fibrillation on wristband-derived data. Comput Methods Programs Biomed 2020
Dec;197:105753 [FREE Full text] [doi: 10.1016/j.cmpb.2020.105753] [Medline: 32998102]

18. Cohen J. Statistical Power Analysis for the Behavioral Sciences, Second Edition. Hillsdale, NJ: Lawrence Erlbaum Associates;
1988.

19. Innominato PF, Focan C, Gorlia T, Moreau T, Garufi C, Waterhouse J, et al. Circadian rhythm in rest and activity: a
biological correlate of quality of life and a predictor of survival in patients with metastatic colorectal cancer. Cancer Res
2009 May 26;69(11):4700-4707. [doi: 10.1158/0008-5472.can-08-4747]

20. Zhang Y, Song S, Vullings R, Biswas D, Simões-Capela N, van Helleputte N, et al. Motion artifact reduction for wrist-worn
photoplethysmograph sensors based on different wavelengths. Sensors (Basel) 2019 Feb 07;19(3):673 [FREE Full text]
[doi: 10.3390/s19030673] [Medline: 30736395]

21. Lee J, Kim M, Park H, Kim IY. Motion artifact reduction in wearable photoplethysmography based on multi-channel
sensors with multiple wavelengths. Sensors (Basel) 2020 Mar 09;20(5):1493 [FREE Full text] [doi: 10.3390/s20051493]
[Medline: 32182772]

JMIR Form Res 2022 | vol. 6 | iss. 3 | e29479 | p. 8https://formative.jmir.org/2022/3/e29479
(page number not for citation purposes)

Merschel & ReinhardtJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://linkinghub.elsevier.com/retrieve/pii/S1474-4422(19)30034-1
http://dx.doi.org/10.1016/S1474-4422(19)30034-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30871944&dopt=Abstract
http://dx.doi.org/10.1161/strokeaha.120.029606
http://dx.doi.org/10.1161/circulationaha.113.005119
http://dx.doi.org/10.1016/j.rec.2021.03.009
https://doi.org/10.1002/clc.22667
http://dx.doi.org/10.1002/clc.22667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28273368&dopt=Abstract
http://dx.doi.org/10.1056/NEJMoa1313600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24963567&dopt=Abstract
http://europepmc.org/abstract/MED/33043358
http://dx.doi.org/10.1093/europace/euaa139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33043358&dopt=Abstract
http://europepmc.org/abstract/MED/27306552
http://dx.doi.org/10.1007/s10840-016-0136-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27306552&dopt=Abstract
http://dx.doi.org/10.1088/0967-3334/28/3/R01
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17322588&dopt=Abstract
http://dx.doi.org/10.1213/ANE.0b013e31828098b2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23449854&dopt=Abstract
http://europepmc.org/abstract/MED/30085018
http://dx.doi.org/10.1093/europace/euy176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30085018&dopt=Abstract
http://dx.doi.org/10.1089/tmj.2015.0212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26938673&dopt=Abstract
http://europepmc.org/abstract/MED/27371660
http://dx.doi.org/10.1093/europace/euw125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27371660&dopt=Abstract
https://mhealth.jmir.org/2019/3/e12284/
http://dx.doi.org/10.2196/12284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30916656&dopt=Abstract
https://doi.org/10.1038/s41598-019-49092-2
http://dx.doi.org/10.1038/s41598-019-49092-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31636284&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2405-500X(18)30825-9
http://dx.doi.org/10.1016/j.jacep.2018.10.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30784691&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0169-2607(20)31586-8
http://dx.doi.org/10.1016/j.cmpb.2020.105753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32998102&dopt=Abstract
http://dx.doi.org/10.1158/0008-5472.can-08-4747
https://www.mdpi.com/resolver?pii=s19030673
http://dx.doi.org/10.3390/s19030673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30736395&dopt=Abstract
https://www.mdpi.com/resolver?pii=s20051493
http://dx.doi.org/10.3390/s20051493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32182772&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


22. Black N, D'Souza A, Wang Y, Piggins H, Dobrzynski H, Morris G, et al. Circadian rhythm of cardiac electrophysiology,
arrhythmogenesis, and the underlying mechanisms. Heart Rhythm 2019 Feb;16(2):298-307 [FREE Full text] [doi:
10.1016/j.hrthm.2018.08.026] [Medline: 30170229]

23. Andresen D, Brüggemann T. Heart rate variability preceding onset of atrial fibrillation. J Cardiovasc Electrophysiol 1998
Aug;9(8 Suppl):S26-S29. [Medline: 9727672]

24. Shusterman V, Warman E, London B, Schwartzman D. Nocturnal peak in atrial tachyarrhythmia occurrence as a function
of arrhythmia burden. J Cardiovasc Electrophysiol 2012 Jun;23(6):604-611 [FREE Full text] [doi:
10.1111/j.1540-8167.2011.02263.x] [Medline: 22429736]

25. Mitchell ARJ, Spurrell PAR, Sulke N. Circadian variation of arrhythmia onset patterns in patients with persistent atrial
fibrillation. Am Heart J 2003 Nov;146(5):902-907. [doi: 10.1016/S0002-8703(03)00405-8] [Medline: 14597942]

Abbreviations
ACC: mean acceleration
AF: atrial fibrillation
ANOVA: analysis of variance
ECG: electrocardiography
ESC: European Society of Cardiology
LED: light-emitting diode
MA: motion artifacts
mHealth: mobile health
MMT: Manufacture Modules Technologies SA
PAD: percentage of analyzable data
PHA: Preventicus Heartbeats algorithm
PPG: photoplethysmography

Edited by A Mavragani; submitted 08.04.21; peer-reviewed by A Vehkaoja, Z Liang; comments to author 04.08.21; revised version
received 14.12.21; accepted 30.12.21; published 28.03.22

Please cite as:
Merschel S, Reinhardt L
Analyzability of Photoplethysmographic Smartwatch Data by the Preventicus Heartbeats Algorithm During Everyday Life: Feasibility
Study
JMIR Form Res 2022;6(3):e29479
URL: https://formative.jmir.org/2022/3/e29479
doi: 10.2196/29479
PMID:

©Steve Merschel, Lars Reinhardt. Originally published in JMIR Formative Research (https://formative.jmir.org), 28.03.2022.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information,
a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.

JMIR Form Res 2022 | vol. 6 | iss. 3 | e29479 | p. 9https://formative.jmir.org/2022/3/e29479
(page number not for citation purposes)

Merschel & ReinhardtJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://linkinghub.elsevier.com/retrieve/pii/S1547-5271(18)30827-0
http://dx.doi.org/10.1016/j.hrthm.2018.08.026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30170229&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9727672&dopt=Abstract
http://europepmc.org/abstract/MED/22429736
http://dx.doi.org/10.1111/j.1540-8167.2011.02263.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22429736&dopt=Abstract
http://dx.doi.org/10.1016/S0002-8703(03)00405-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14597942&dopt=Abstract
https://formative.jmir.org/2022/3/e29479
http://dx.doi.org/10.2196/29479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

