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Abstract

Background: Across each state, the emergence of the COVID-19 pandemic in the United States was marked by policies and
rhetoric that often corresponded to the political party in power. These diverging responses have sparked broad ongoing discussion
about how the political leadership of a state may affect not only the COVID-19 case numbers in a given state but also the subjective
individual experience of the pandemic.

Objective: This study leverages state-level data from Google Search Trends and Centers for Disease Control and Prevention
(CDC) daily case data to investigate the temporal relationship between increases in relative search volume for COVID-19 symptoms
and corresponding increases in case data. I aimed to identify whether there are state-level differences in patterns of lag time across
each of the 4 spikes in the data (RQ1) and whether the political climate in a given state is associated with these differences (RQ2).

Methods: Using publicly available data from Google Trends and the CDC, linear mixed modeling was utilized to account for
random state-level intercepts. Lag time was operationalized as number of days between a peak (a sustained increase before a
sustained decline) in symptom search data and a corresponding spike in case data and was calculated manually for each of the 4
spikes in individual states. Google offers a data set that tracks the relative search incidence of more than 400 potential COVID-19
symptoms, which is normalized on a 0-100 scale. I used the CDC’s definition of the 11 most common COVID-19 symptoms and
created a single construct variable that operationalizes symptom searches. To measure political climate, I considered the proportion
of 2020 Trump popular votes in a state as well as a dummy variable for the political party that controls the governorship and a
continuous variable measuring proportional party control of federal Congressional representatives.

Results: The strongest overall fit was for a linear mixed model that included proportion of 2020 Trump votes as the predictive
variable of interest and included controls for mean daily cases and deaths as well as population. Additional political climate
variables were discarded for lack of model fit. Findings indicated evidence that there are statistically significant differences in
lag time by state but that no individual variable measuring political climate was a statistically significant predictor of these
differences.

Conclusions: Given that there will likely be future pandemics within this political climate, it is important to understand how
political leadership affects perceptions of and corresponding responses to public health crises. Although this study did not fully
model this relationship, I believe that future research can build on the state-level differences that I identified by approaching the
analysis with a different theoretical model, method for calculating lag time, or level of geographic modeling.
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Introduction

Background
Incidence of COVID-19 cases in the United States has widely
varied across states and across time, as have state-level policies
and some of the rhetoric heard in response. There has been
ongoing investigation about how mitigation measure mandates
such as mask wearing [1,2], social distancing [3], and vaccines
[4] affect uptake of these measures as well as how they are
associated with actual case numbers. One existing study focused
on the political dimensions of mandates and cases [5] by trying
to understand the broader social forces that are associated with
the response to the pandemic and to mandates, but it is
challenging to observe and understand the informal behaviors
and tacit unreported beliefs that drive state-level differences in
case numbers and response to the pandemic. There has been
significant ongoing debate regarding theories for why individual
behavioral responses to the pandemic have diverged so
significantly over time, and many of these theories have
involved analysis of political and administrative messaging.
This research enters this conversation by exploring the
intersection of political affiliation and perceptions of the
pandemic. Increases in search traffic seem to reflect individual
concerns about the pandemic as well as information seeking for
individuals who are experiencing and observing symptoms.
This study aimed to specifically analyze the effects that political
affiliation has on this dynamic; there has been plenty of concern
about the danger of public health becoming more politicized,
and this research intended to add granularity to our
understanding.

Both anecdotally and in popular media, there is discussion about
how trends in COVID-19–related Google searches might be
associated with ongoing COVID-19 case numbers as reported
to the Centers for Disease Control and Prevention (CDC) [6].
Using Google Trends search data about COVID-19–related
symptoms along with CDC data concerning state-level case
numbers, I investigated 2 questions:

1. RQ1: Are there state-level differences in the lag time
between spikes in searches for COVID-19 symptoms and
spikes in reported COVID-19 cases?

2. RQ2: If these state-level differences do exist, do covariates
related to political leadership contribute to state-level
variance in lag time?

I hypothesized that state-level political outcomes, as a marker
of the dominant or collective political identification of a state’s
voters, offer a route to investigating how social behavior via
self-identified group affiliation explains differences in the
temporal relationship between spikes in COVID-19–related
searches and later spikes in total confirmed COVID-19 cases.
I expected to find that political variables marking Republican
identification are associated with a decrease in lag time, given
what we know about the differences in compliance with
mitigation measures and vaccine uptake and what this suggests
about broader COVID-19 risk beliefs and self-surveillance of

symptoms. This lag time relationship may give us insight into
how people think about COVID-19: Are they proactive about
watching for and managing symptoms, or do they only start
noticing symptoms once cases begin to increase and spike?

Literature Review

Theoretical Approach
Social cognitive theory (SCT) [7] frames learning and behavior
socially, noting that there is a reciprocal relationship between
an individual, their environment, and their behavior—while
emphasizing the specifically social nature of this triad. That is,
people tend to learn through observing the actions of those in
their environment along with their own experiences. The
essential lens to understand SCT in this context is how it focuses
specifically on personal but environmentally contextualized
agency. The social identity approach (SIA) by Abrams and
Hogg [8] is a complementary perspective, adding that not only
is learning and behavior social but also that knowledge of being
in social groups affects how people attach emotion and value
to certain behaviors and circumstances. They also emphasize
the influence of one’s own in-groups and out-groups as part of
this individual/group relationship.

In terms of compliance with health behaviors, the research has
settled around 3 major factors that tend to drive an individual’s
level of compliance: perceived risk to oneself, belief in behavior
effectiveness, and observed risk to others. During the H1N1
influenza pandemic, a review of 26 studies found consistently
strong associations between an individual’s perceived
susceptibility to the virus and increased compliance with
recommended behaviors; this effect was strengthened when
perceived severity of infection increased and was consistent
across many countries and cultures [9]. Perceived risk to self is
affected by factors such as perceived personal vulnerability
[10], level of cultural individualism [11], fear [12,13], and anger
[14].

Belief in the effectiveness of health behaviors is driven by a
number of affective and epistemological factors as well;
laypeople tend to create their own justifications for health
behaviors by pulling from not only both establishment and
nonestablishment sources [15] but also their preferred mass
media sources [16]. Although this belief is reduced in all groups
when they perceive recommendations to predominantly be
moralistic [17], general trust in government is strongly
associated with affecting perceived risk in complicated and
sometimes counterintuitive ways [10,17,18]. Finally, observed
risk to specific others and a more generalized community tends
to be positively affected by a general sense of conscientiousness
[12]. This is true when individuals feel an ethical responsibility
to their community [19] but is also true on a more individual
level when individuals experience the vulnerability of their
close ties [20] and so avoid the perception that health concerns
are “overhyped” [21].

In this paper, I do not explore the details of how particular
political ideologies specifically affect compliance behaviors.
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Instead, the context described in the previous paragraphs serves
to highlight the power that political identities and
communication have on individual compliance. From both
Democratic and Republican politicians, we frequently hear
justifications for COVID-19 behaviors that speak directly to
these 3 factors. These justifications are often oriented around
personal ethical responsibility, the meaning of a sense of
community, and the epistemological justifications for agency
recommendations; each of these threads is an important part of
building the set of beliefs that ultimately drive behaviors. More
recent research extends these claims further, demonstrating that
political affiliation is associated with particular pandemic
responses that cannot be explained solely via these 3 factors
[5], highlighting how at least part of an individual’s response
is related to affinity-related dogma or that operational constraints
and diverging priorities tend to be privileged over more objective
risk assessments [22].

Using Search Data in Public Health Research
Public health professionals and researchers have broadly been
discussing the value of search data for both detection and
surveillance for quite some time, initially highlighting its value
in a landmark paper that advocated for its use but cautioned that
it should be predominantly used in areas with widespread
internet access [23]. Given that American internet usage is now
frequent and widespread across most settings, researchers have
been able to turn their attention specifically to its use in early
detection of emergent diseases [24].

There is also evidence that search volume is effective for
ongoing monitoring and surveillance, both for active and
predictive surveillance [25], and for passive or retrospective
surveillance that aims to understand how factors such as the
media affect the relationship between search interest and cases
[26].

Search data have been used as a lens specifically for
understanding COVID-19 data, but this research has had
different areas of focus: searches as predictive of local
metropolitan-level data [27,28], impacts on mental health [29],
and more rare symptoms (anosmia and ageusia) as ineffective
predictors of case incidence [30]. Eysenbach [31] took a
somewhat similar approach to my own but concerning flu
symptoms and incidence instead of COVID-19, finding strong
correlations between clicks on sponsored flu-related links and
flu diagnoses 7 days later.

There are ongoing challenges to using search data as well as
other novel data streams (NDS) such as social media posts;
although there is some evidence that they can help to
retroactively explore associations and wield predictive power,
there are still unresolved issues of how to assess reliability and
validity of these data [32]. Some challenges such as lack of
transparency and reproducibility [33] can be resolved by
establishing accepted best practices such as sharing specific
search strings and Boolean operators, but others are more related
to complex sociological and psychological phenomena such as
a panic-induced search increase that will likely prove to be much
more difficult to solve [34]. Given the established value and
unresolved challenges of using NDS such as search traffic, the
use of Google Trends data should be seen as a supplemental

tool for public health researchers along with more traditional
and localized practices instead of as a substitute [35].

This paper addressed these methodological limitations by using
search data indirectly; although this means that some of these
concerns become endogenous to the modeling, it is beneficial
insofar as this captures these complex dynamics within the lag
time variable. Instead of relying on search trends data as an
accurate predictive or surveillance tool, I used it to highlight
areas of difference across regions and explore the reasons for
those differences.

Methods

Although there is discussion in popular media about using trends
data in a predictive way and some push toward this in technical
methods literature [36], there is not yet evidence that search
data are defensible for use in a predictive way about future
health trends [30] given that access to real-time or otherwise
timely raw data is not possible. Instead, trends data are most
useful for monitoring and evaluating relationships between
events in the past, especially as one predictive element within
a larger model [37,38].

For the purposes of this study, I used the publicly available
COVID-19 Search Trends data set, which tracks the incidence
of more than 400 symptoms associated at various levels with
COVID-19. Typically, Google does not allow for large-scale
downloads of granular daily search trends data except through
use of their API. However, the company made this
COVID-19–specific search data available specifically for
researchers and journalists; the data include both daily data as
well as state-level geographic data. The data set allows for what
Google calls “metro areas,” but these do not include shapefiles
that could be used to match the search data with CDC data via
geographic information system (GIS) software. Like all Google
Search Trends data, it is normalized on a 0-100 scale,
contextualized within the geography and time range in question,
and based on a particular search string’s incidence in proportion
to all searches in that same geography and time frame. This
study used daily trends data from each state for the time period
from March 11, 2020, through April 4, 2022, and was retrieved
on April 15, 2022, via Google’s internally hosted GitHub.

The beginning of the study period is the day on which
COVID-19 was declared a global pandemic by the World Health
Organization, and the end of the period is the final day of trends
data from Google’s data set; so, the total number of days in the
study period is 762. Although not every region experienced
their first case by the beginning of the trends data time period,
I was specifically interested in the lag time between increases
in searches and increases in cases. Given that there was already
widespread discussion of COVID-19 in popular media and so
this is broadly reflected in the search data, search volume was
already increasing across all regions by March 11, 2020, and
this allowed me to examine state-level differences in when cases
began to increase.

The CDC makes daily data detailing new cases, new
hospitalizations, and new deaths associated with COVID-19
available to the public. These data are available to the county
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level, but this study exclusively used state-level data in order
to look at these variables alongside the state-level search trends
data. These data are raw numbers, but population is controlled
for in regression modeling to account for this. There are likely
data gaps related to submission logistics and other issues;
additionally, the data had some level of daily noise within the
data as states catch up with missed submissions and correct
submissions from previous days, but this has been accounted
for in the process of examining the data closely in the
calculations for lag time as the dependent variable.

The analytic strategy used a linear mixed model with fixed
effects for all included predictors and controls and random
intercepts for each state to investigate the state-level differences
named in the research questions. Additionally, I included a
random effect for the political predictor nested within state
clusters, recognizing how SCT indicates that behavior is affected
in an ongoing reciprocal way by environment—here, the state
and its political climate are considered as that environment.

I called the key outcome variable “lag time,” and it measures
the amount of time in days between a spike in COVID-19
symptom searches and a (typically) later corresponding spike
in reported COVID-19 cases. This variable was calculated
manually using the raw data and plots as a guide. Each state
had 4 identifiable case peaks of varying magnitudes. After
marking these and accounting for any noise or reporting gaps
in the data, I turned to the search data to identify whether there
was a corresponding spike in symptom searches that preceded
the case spike. In nearly all cases, there was an associated spike,
and this was measured in number of days.

Political variables under consideration included the proportion
of Trump popular votes within a state in the 2020 election, a
dummy variable indicating whether a Republican holds the
Governor office, and a variable measuring the proportion of a
state’s federal representatives in the House of Representatives
and Senate that is Republican. The latter 2 variables did not
lead to a strong model fit in any case and were discarded, so
the Trump proportion variable remained as the main predictor
in this model. Controls for mean daily cases, mean daily deaths,
and state population were also included in the model. All
predictors and controls were normalized using z scores.

Within the search data, I identified the 11 most common
symptoms of COVID-19 as reported by the CDC and created

a construct to represent the collective incidence of these search
terms. These symptoms included headache, nasal congestion,
rhinorrhea, fever, sore throat, nausea, anosmia, ageusia, fatigue,
and diarrhea. This symptom construct has a Cronbach alpha
score of .812. An alpha value greater than .8 generally indicates
a strong level of construct reliability. Reliability analysis showed
that the alpha value would not be improved by removing any
variable from the construct.

Descriptive analysis for daily new case and death data by state,
initial bivariate linear regression modeling, calculations for
construct reliability, lag time calculations, mixed modeling, and
model comparisons were all completed in R. The primary
packages used were lubridate for parsing date variables, plotly
for examining ggplot2 results in more detail, lme4 and lmerTest
for fitting linear mixed models, sjPlot for plotting data to test
model assumptions, stargazer for table and figure creation, and
all of the packages within the “tidyverse” (primarily dplyr and
ggplot2) for cleaning, organizing, and preparing data for analysis
and presentation.

Results

Descriptive statistics for all variables included in the final model
are included in Table 1. These data are the raw numbers, but
predictors and controls were standardized for analysis to control
for the vastly different scales for many of the variables. Given
the extremely large volume of daily case and search data, this
is not included in this table.

Assumptions for linear mixed model regression were checked,
confirming that there was a linear relationship between the
predictor and outcome variable and that the residuals were
independent, uncorrelated, and normally distributed. The
residual plot for homoscedasticity of residuals is in Figure 1.

A linear mixed model was fitted using the proportion of 2020
Trump votes within a state as the primary predictive variable.
This variable was also nested within state-level clusters to allow
its effect to vary within each state. Models using the proposed
Governor and Congressional proportion variables were discarded
due to comparatively poor model fit statistics. Akaike
information criterion (AIC) and Bayesian information criterion
(BIC) scores for discarded models were in the range of 600 to
800 points higher, indicating poorer fit.
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Table 1. Descriptive statistics.

Daily
deaths,
mean

Daily cases,
mean

PopulationGOP propor-
tion of
Congress

GOP gov-
ernor

Proportion
of Trump
votes

Search peaksCase peaksState

43214321

25.481700.4850248030.8310.62707581342157728584349185AL

1.38314.217324410.8310.53714589273176729612319187AK

39.212639.6071779860.4510.49718579342156732585348162AZ

14.461092.8230122320.9210.62718496342156729576346199AR

116.0611713.8394997380.1600.34714463344169727589354183CA

15.751775.1057843080.3900.42708461302181717457297189CO

14.17969.8936002600.0000.397075672945272060531792CT

3.76341.149918860.0000.4070856732257718598354104DE

96.487696.68215699320.5810.51708567342157718583345172FL

48.403628.51107258000.6110.49707579343158713591353185GA

1.80308.2714519110.0000.34701537273174707586287204HI

6.43583.0518477720.7510.64727592300119729631323176ID

49.534045.41127852450.3000.4170846229357720444297101IL

30.792218.9767856440.8210.577085792935772059831797IN

12.42990.5131886690.6710.5371460129392724602297102IA

11.141010.4529358800.8300.5671451830189729597307100KS

22.521532.3935039580.8800.6270757934454731590351101KY

22.521532.3946512030.8200.58707554342157713590351173LA

2.98312.9413622800.1200.44707448293107722450352119ME

18.861334.1061726790.1010.32707615317111719613318119MD

31.382246.8670222200.0510.3270856735053720603335394MA

39.683134.87100676640.4400.48708442293111728440294115MI

16.371869.4457071650.3500.45714462300105729441298107MN

14.621029.3929568700.8310.58707578342157728576353181MS

22.751841.1861544810.8010.577085672595571356029398MI

4.24355.3810861930.6710.5771964125757734643298107MT

4.97598.2719614550.8010.5871457430157727603302107NE

13.34895.1931140710.3300.48714587343169728598352177NV

3.23399.0813778480.0010.4571440025957728444348101NH

41.262919.7692797430.0700.417075673505771760435473NJ

9.39680.6631175660.0900.43707567302174728569303188NM

36.213541.09210549330.2800.377075673505771760535378NY

30.483452.16104571770.7200.50708596342158723590346184NC

2.95314.867789620.6710.65707449295113729440297121ND

45.093502.58117905870.7110.537085953025772559832289OH

17.051358.2639620310.9310.65718550343158727582343168OK

9.70927.8842415440.1400.40718567300128728584318180OR

58.223635.72129896250.5000.497084623145771844832579PA

4.62454.2510962290.0000.39709568258106716602317108RI
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Daily
deaths,
mean

Daily cases,
mean

PopulationGOP propor-
tion of
Congress

GOP gov-
ernor

Proportion
of Trump
votes

Search peaksCase peaksState

43214321

23.201927.3851308290.8310.55708587342158732584353181SC

3.79310.058870991.0010.6270757630157729679296109SD

30.822633.4169201190.8210.61707582343158730599330192TN

113.088525.78292176530.6610.52707587343158722596350178TX

6.191217.0632816850.9210.58714596300126728664398177UT

0.78144.456424950.0010.307155614605772860443674VT

25.942202.5486320440.3110.44708601342111720597361125VA

16.461920.4577187850.2500.39715567301113737561322167WA

8.81653.5017897980.8010.69707553265159713612346183WV

18.842085.4858923230.6000.49707615293111727623297143WI

2.35204.825772671.0010.69722603301159748589301189WY

Figure 1. Homoscedasticity (constant variance of residuals). Note: amount and distance of points scattered above and below the line is equal.

The model results are in Table 2; note that the scales displayed
for predictors and controls are standardized, but lag time remains
measured in days. I used 762 observations for 50 states to
calculate 4 intervals of lag time, which led to a sample for the
model of 50 states, or units of analysis with 4 repeated
measurements per state. The model is a significant improvement
over the null model with a single predictor (Trump proportion),
no controls, and random intercepts for states. The AIC and BIC
scores for the null model were 1776.04 and 1785.93,
respectively—the selected model’s scores were 588.85 and
618.535, respectively, and so were a significant improvement
in terms of model fit.

However, none of the predictors within the final model were
statistically significant, even those that were considered but
excluded from the model (Governor party and Congressional
delegation parties) because of worse overall model fit. The only
significant independent variable in the selected model was mean
daily deaths, which had a small negative relationship with lag
time, at P<.10.

Random elements in the model were individual state-level
intercepts and Trump proportion nested within state as a random

effect. There was sufficient variance (σ2
state=0.099 and

σ2
trump=0.049) in this random portion of the model to justify
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their inclusion. The random intercepts for state clusters captured
a portion of and thereby reduced the fixed effect residuals, but
the model itself lacked predictive power. Thus, the model’s
fixed effect error term still captured a relatively high amount

of the variance in the data. As Figure 2 shows, there was a range
of positive and negative values for each effect, but the relatively
wide confidence intervals (95% CI) were another artifact of the
relatively low predictive power for this model.

Table 2. Linear mixed model results (dependent variable is lag time in days).

P valueStatisticVariable

.490.063 (0.091)Proportion of Trump 2020 votes, β (SE)

.420.461 (0.569)Mean daily cases, β (SE)

.07–0.670 (0.356)Mean daily deaths, β (SE)

.700.168 (0.430)Population, β (SE)

.88–0.012 (0.076)Constant, β (SE)

Overall model

N/Aa200Observations

N/A–285.425Log likelihood

N/A588.850Akaike information criterion

N/A618.535Bayesian information criterion.

aN/A: not applicable.

Figure 2. Random effect estimates (intercept and 95% CI) in lag time by state; red: negative; blue: positive.
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Discussion

Principal Findings
I have identified evidence to support a positive answer for the
first research question but not the second. Results suggest that
yes, there are meaningful state-level differences in the lag time
between spikes in COVID-19–related search traffic and spikes
in COVID-19 cases. However, my hypothesis that political
covariates would contribute to a portion of this variation in a
statistically significant way was not supported. My findings
indicate that including proportion of 2020 Trump voters in the
final linear mixed model leads to a model fit that is overall much
stronger than a null model with control variables only, but this
political affiliation variable is not itself statistically significant
or appropriate for predictive inference.

Although this is a partially negative finding, it challenges further
work to explore how environmental factors and social group
forces (both structural and interpersonal) may cause diverging
responses to shared societal crises. The statistically significant
differences in lag time across states demonstrate that there are
meaningful differences across states that are at least partially
causing these changes. I propose 3 potential causes for the
mismatch between my theorized model and the results that also
suggest directions for future research: level of geographic
modeling, approach to calculating lag, and theoretical model
mismatch.

Level of Geographic Modeling
My approach considered state as the geographic unit primarily
for logistical reasons. State is an easily available unit in both
the trends and cases data, meaning that they can be reliably
matched for analysis. However, in doing so, I lost the
opportunity for more localized nuance in my political covariates:
Even using local city elections as a proxy for political
identification might lead to stronger model fit and predictive
power, but it may also be possible to use smaller blocks such
as census tracts to map the trends data onto already narrowly
geotagged CDC case data. However, the Google search data
are limited by the lack of GIS shapefiles as well as the lack of
city or tract-level data for areas outside of its large metro areas.
An analysis with more granular geographic modeling would
require the theoretical model to be reconsidered, given that it
would exclude data from smaller cities and rural areas. If these
localized variables were included in a hypothetical model, it
would also likely be wise to include controls such as income
and educational attainment, assuming that these are available
for the census tracts or areas in question. On a smaller scale,
these controls would likely contribute more significantly to a
model than the same statistics at a broad state level.

Approach to Calculating Lag
Although I believe that the method I used to calculate lag is
defensible, it is possible that another approach may uncover a
significant relationship that is not present here. Pelat et al [39]
provided one option within the same domain, describing a
method that calculates correlations between increases in searches
and incidence of a disease at predefined intervals (eg, 1 week,

1 month). These correlations were stored and used for further
regression analysis along with selected predictors.

Effenberger et al [40] took another approach that accounts for
lag specifically via time lag correlational analysis. Instead of
calculating lag as a repeated measure in longitudinal analysis,
they instead mapped multiple models as a network, examining
how associations changed at predefined time intervals. This
would require a significant reconfiguring of how the research
questions were operationalized but may uncover relationships
that were not established here.

Theoretical Model Mismatch
In short, my proposed theoretical model was that, per Bandura’s
SCT [7], individuals act as part of a constantly changing and
reciprocal triad that is bound by personal factors, environmental
influences, and past behavior. As part of this triad, the SIA also
tells us that individuals sort themselves into groups by
categorizing others, giving meaning to those categories, and
then self-sorting into one of these groups. Given how politicized
the ongoing cultural response to COVID-19 and mitigation
measures has been, I suspected that the competing political
understandings of the nature of the pandemic and appropriate
reaction would be part of these social processes. Eventually, I
hypothesized that this dynamic would affect how people
managed their own symptom surveillance and perceived risk,
meaning that we would discover differences in lag time between
search incidence and case incidence. This theoretical model was
not supported by the data here.

It is possible that another theoretical model, operationalized
with a different set of predictors, would generate a significant
statistical model to explain lag time variation. Barber and Pope
[41] approached political identity by investigating how one’s
political party identification is associated with his or her
individual political ideology; one element from their model that
is missing here is the influence of fellow members of a political
group. They also define the concepts of “party loyalist” and
“policy loyalist” in the context of Trump’s election, which
represented an opportune time for investigating this relationship,
as ideology and party often diverged. It may be possible to
capture these concepts in a more localized model as described
in the previous paragraphs.

Another potential theoretical model comes partially from
Agadjanian and Lacy [42], who investigated how individual
political leaders have a more significant influence on public
opinion and behavior than party or ideology. This suggests that,
if we could capture political leader characteristics and ideology
with some level of granularity, this could be folded into the
proposed SCT/SIA framework. As an example, coding leader
rhetoric (whether manually or via sentiment analysis) would be
possible under both a localized (city or tract-specific) or
state-level model.

Notably, a limitation of my approach to geographic modeling
is that it does not allow for investigation into whether state-level
data are reliably correlated with local provincial data; future
research could address this limitation via a study that specifically
considers larger cities in comparison with their states or even
extend this via propensity score matching at the metro and state
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levels. Further, the way that I chose to operationalize political
identity and affiliation is suboptimal because of the existing
geographic constraint. In taking an approach that allows for
more geographic granularity, future studies could also model
for more granular political variables such as voting by census
tract, city council representatives, and mayors.

Although there may be structural, demographic, and geographic
factors that contribute to these differences, I believe that the

effects of political affiliation and its rippling effects are also
closely tied to these significant differences in lag time across
states. In the context of not only increasing political polarization
and opportunities for political speech but also changing laws
and norms around American federalism that may give states
more control over shared social functions, it is more important
than ever to understand how political identity and political
communication affect the physical well-being of a state’s
residents.
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