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Abstract

Background: Wearable devices collect physiological and behavioral data that have the potential to identify individuals at risk
of declining mental health and well-being. Past research has mainly focused on assessing the accuracy and the agreement of heart
rate (HR) measurement of wearables under different physical exercise conditions. However, the capacity of wearables to sense
physiological changes, assessed by increasing HR, caused by a stressful event has not been thoroughly studied.

Objective: This study followed 3 objectives: (1) to test the ability of a wearable device (Fitbit Versa 2) to sense an increase in
HR upon induction of psychological stress in the laboratory; (2) to assess the accuracy of the wearable device to capture short-term
HR variations caused by psychological stress compared to a gold-standard electrocardiogram (ECG) measure (Biopac); and (3)
to quantify the degree of agreement between the wearable device and the gold-standard ECG measure across different experimental
conditions.

Methods: Participants underwent the Trier Social Stress Test protocol, which consists of an oral phase, an arithmetic stress
phase, an anticipation phase, and 2 relaxation phases (at the beginning and the end). During the stress protocol, the participants
wore a Fitbit Versa 2 and were also connected to a Biopac. A mixed-effect modeling approach was used (1) to assess the effect
of experimental conditions on HR, (2) to estimate several metrics of accuracy, and (3) to assess the agreement: the Bland-Altman
limits of agreement (LoA), the concordance correlation coefficient, the coverage probability, the total deviation index, and the
coefficient of an individual agreement. Mean absolute error and mean absolute percent error were calculated as accuracy indices.

Results: A total of 34 university students were recruited for this study (64% of participants were female with a mean age of
26.8 years, SD 8.3). Overall, the results showed significant HR variations across experimental phases. Post hoc tests revealed
significant pairwise differences for all phases. Accuracy analyses revealed acceptable accuracy according to the analyzed metrics
of accuracy for the Fitbit Versa 2 to capture the short-term variations in psychological stress levels. However, poor indices of
agreement between the Fitbit Versa 2 and the Biopac were found.

Conclusions: Overall, the results support the use of the Fitbit Versa 2 to capture short-term stress variations. The Fitbit device
showed acceptable levels of accuracy but poor agreement with an ECG gold standard. Greater inaccuracy and smaller agreement
were found for stressful experimental conditions that induced a higher HR. Fitbit devices can be used in research to measure HR
variations caused by stress, although they cannot replace an ECG instrument when precision is of utmost importance.
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Introduction

The health and well-being of the population are a growing
concern for clinicians and researchers. The World Health
Organization (WHO) reported that noncommunicable diseases
(eg, heart disease, stroke, cancer, diabetes, and chronic lung
disease) were the cause of 71% of deaths worldwide in 2017
[1]. In addition, the exceptional regulatory measures taken to
fight the COVID-19 pandemic have had a negative impact on
the psychological health of citizens as made evident by a surge
in incidences of psychological crises [2]. The extraordinary
context generated by the COVID-19 pandemic has posed
unprecedented challenges for governments [3,4] and has led to
a redefinition of human activities within our societies, namely
an acceleration in the digital transformation of health care [5].
The limitations of the current human health management model,
which operates primarily downstream (ie, once problems
emerge), are increasingly apparent. Moreover, the prevalence
of health problems in the world far exceeds the current capacity
of professionals and health services [6]. With the ever-increasing
presence of technology in human life, researchers have taken
an interest in the use of consumer wearable devices, such as
smartwatches, armbands, rings, and other accessories, designed
to be worn all day, to collect real-time physiological (eg, cardiac
activity, skin temperature) and behavioral measures (eg,
frequency of physical activity, step count, and sleep patterns).
Moreover, these measures can be used to identify individuals
at risk of declining mental health and well-being. Importantly,
this information may provide relevant insight into the early
detection and prevention of disease and well-being deterioration
[7,8].

Regarding the validity and reliability of wearable activity
monitors, systematic reviews have shown that these devices are
somewhat accurate and stable to estimate heart rate (HR) and
step count in adults. However, they provide an unreliable
estimate for energy expenditure under different activities [9-12].
First, as several studies have pointed out, the sensors used to
detect HR in most wearables (including Fitbit) are more sensitive
to motion-induced artifacts (signal interference) than
electrocardiogram (ECG) technology [13-15]. Accordingly,
insufficient pressure and sensor-skin contact, as well as too
much pressure such that blood flow was constricted, can affect
HR measures. Despite these shortcomings, wearable activity
monitors can provide important insight into physiological
patterns. Importantly, small longitudinal studies have found
support for the use of wearables to measure stress levels among
adults [16,17]. Sano et al [18] conducted a monthlong
longitudinal study of 201 university students to evaluate the
possibility to predict mental health and stress using data
collected with Q-sensor and Motion Logger wearable devices.
The results revealed electrodermal activity (ie, skin conductance
and temperature) as a predictor of mental health and stress.

Additionally, several studies have revealed the variability in
HR to be a valid indicator of stress and have applied this
measure in the study of major depressive disorder, stress
resilience, stress regulation, and recovery from mental and
physical stress [19-22], although to our knowledge, only one
study has examined the feasibility of using wearable activity
monitors to measure HR as a direct indicator of stress [23].
However, a limitation of this study was the lack of comparison
measures. As such, the validity of the relationship between
wearable activity monitors measured HR and stress, as well as
the potential applications, remain unclear. Moreover, to our
knowledge, no laboratory study has assessed the relationship
between HR and psychological stress using a wearable activity
monitor. Thus, the aim of this study was threefold: (1) to test
the ability of a wearable activity monitor, specifically a Fitbit
device, to sense an increase in HR upon induction of
psychological stress; (2) to assess the accuracy (ie, the closeness
of the agreement between the result of a measurement and a
true value of the thing being measured [24]) of a Fitbit device
to capture a physiological change (increased HR) caused by
psychological stress compared to a gold-standard ECG measure;
and (3) to quantify the degree of agreement (ie, the degree of
concordance or extent to which one measure can replace
another) between the Fitbit device and a gold-standard ECG
measure across different experimental conditions.

Methods

Recruitment
Participants were recruited through the mailing list from the
authors’ university. Eligibility criteria were being between 18
and 65 years of age; being registered as a full-time student;
having access to a smartphone; absence of current or past,
non-BMI-related, pathology (somatic, psychiatric, or both); not
taking painkillers, medications that affect the heart rhythm, or
medication for major depression or other mood disorders; not
being pregnant or breastfeeding; and understanding French
(spoken and written).

Ethical Considerations
This study was approved by the Human Research Ethics
Committee of Université Laval (2020-053/10-11-2020).
French-speaking participants provided written informed consent
in French prior to participation in the study. All study data were
deidentified to protect the privacy and confidentiality of
participants. Upon completion of the study, the participants
received a CAD $40 (US $29.31) monetary compensation.

Participants
A total of 34 healthy university students were recruited for this
study. Participant demographic data are presented in Table 1.
The study occurred during the winter 2021 and summer 2021
semesters.
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Table 1. Participant demographic data (N=34).

Study sampleDemographics

26.8 (8.5)Age (years), mean (SD)

Gender, n (%)

13 (35)Male

21 (58)Female

2 (5)N/Aa

Ethnicity, n (%)

23 (67)Caucasian

4 (11)African

3 (8)Hispanic

1 (2)N/A

2 (5)Middle Eastern

Education level, n (%)

14 (41)Bachelor

10 (26)Master

8 (23)Doctoral

3 (8)N/A

Program of study, n (%)

8 (23)Health Science

5 (14)Science and Engineering

3 (8)Languages

3 (8)Arts and Humanities

3 (8)Psychology

2 (5)Social Science

2 (5)Administration

1 (2)Education

7 (20)N/A

aN/A: not applicable.

Fitbit Device as an HR Monitor
Fitbit (Fitbit Inc) is one of the most popular wearable activity
monitors and the most frequently studied [9]. While Fitbit’s
market shares have diminished from its peak in 2018, as of
2019, the company remains in the top 5 wearable companies
by shipment volume and market share [25]. Recent studies have
investigated the capacity of Fitbit devices to measure HR under
different exercise conditions. Benedetto et al [26] in their
controlled assessment of the Fitbit Charge 2 accuracy in
measuring HR found wide variability in precision during
different intensities on a stationary bike. In another study,
Thomson et al [27] compared the HR measurement of the Apple
Watch and the Fitbit Charge HR 2 with an electrocardiogram
(ECG) among healthy young adults across different treadmill
exercise intensities. The results showed diminished accuracy
with increased exercise intensities for all devices, while the
Fitbit had comparably greater relative error rates (ranging from
4.91% for very light exercise to 13.04% for very vigorous

exercise) compared to the Apple Watch. Indeed, a general lack
of accuracy at higher exercise intensities has been repeatedly
reported in the literature for Fitbit devices [28-30]. Nevertheless,
Fitbit data may still be useful for other purposes, such as
providing a proxy measure of psychological stress, as
investigated within the context of the present study.

Experimental Procedure
Students interested in the study were invited to the laboratory.
Upon arrival, participants were asked to read and sign an
informed consent document. Participants who consented to the
study were then asked to complete a web-based self-reported
questionnaire to gather sociodemographic information. Next,
they were asked to install the wearable activity monitor’s (Fitbit)
mobile app on their cell phone. In order to assess Fitbit detection
of stress-induced change in HR, the participants were then given
a Fitbit Versa 2 to wear on their nondominant hand during the
experiment. Participants were asked to sit in front of 3 cameras.
Once seated, the research assistant installed 3 electrodes, located
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on the left and right of the chest, as well as below the ribs on
the left of the abdomen of the participant. Once the electrodes
were placed, the research assistant started the physiological
recordings and made a visual inspection of the signal to ensure
that the electrodes made good contact with the skin. Afterward,
the research assistant started the stress protocol (described
below). At the end of the stress protocol, the research assistant
debriefed the participant and explained the purpose of the
protocol. This step was important to ensure that the participant
would not experience anger toward the research assistant when
leaving. The experimental procedure took on average 1 hour
and 30 minutes to complete.

Stress Protocol
The Trier Social Stress Test (TSST) was used to induce
psychological stress. The TSST is a standardized psychosocial
stress test that has been extensively used by researchers
worldwide [31]. The TSST has been recognized to be an
especially successful way of triggering stress [32]. The TSST
consists of a waiting period, stress period, and rest period which
can be divided into 5 experimental phases: relaxation,
anticipation, oral, arithmetic, and relaxation. During the waiting
period (the relaxation phase), the participant was left alone in
the room and was told to relax for 5 minutes. The stress period
was divided into 3 parts. First, a 3-minute anticipatory stress
period (anticipation phase) during which the participant was
asked to prepare a speech about why they would be a good
candidate for their dream job. Second, a 5-minute speech task
(oral phase) during which they delivered their speech in front
of the research assistant. The research assistant was instructed
to prompt the participant to continuously talk for the entire 5
minutes. If the participant were to stop talking before the end
of the condition, the research assistant would use verbal prompts
to pressure the participant to continue talking. Third,
immediately after the speech task, the participant was asked to
verbally perform a 5-minute mental arithmetic task (arithmetic
phase). For this task, the participant was required to continuously
subtract 13 from the number 1687. If the participant made a
mistake or hesitated for more than 3 seconds, the research
assistant triggered a loud buzzer and instructed the participant
to start again from the initial number. Following the arithmetic
task, the participant was asked to relax for 5 minutes (the
relaxation phase). During the TSST, the participant was filmed
from 3 angles (front, 45° left, and 45° right) and was informed
that these recordings would be analyzed by 2 language analysis
experts.

Material and Measures

Fitbit Versa 2
The experimental device was the wrist-worn Fitbit Versa 2,
Version 35.72.1.9 (Fitbit Inc). Fitbit HR data were retrieved
from the Fitabase platform (Small Steps Labs) and then stored
in a secure S3 bucket maintained by the authors’ university for
analysis.

Electrocardiography
Surface electrodes were used for ECG recordings using a Biopac
MP150 acquisition system for physiological data acquisition.
The electrodes recorded electrical impulses from the heart. Data

were sampled at 1000 Hz. The recording was performed by a
NeuroScan system (NeuroScan Inc, SynAmps). Heartbeats per
minute (bpm) were calculated as an indicator of physiological
stress arousal.

Statistical Analysis
Descriptive statistics for HR measurements (mean and standard
deviation) were calculated for the Fitbit Versa 2 and the Biopac
across experimental phases (relaxation, anticipation, oral, and
arithmetic). The relaxation phase at the beginning and the one
at the end of the experimental protocol were merged to create
a single relaxation phase for the analyses.

First, to assess the ability of the Fitbit Versa 2 to sense an
increase in HR, differences across experimental phases were
examined using a mixed-effect model that was constructed using
the “lme4 [33]” package available in R (R Foundation for
Statistical Computing). The model included the experimental
phases as a fixed effect, whereas the participants and the
interaction between participants and experimental phases were
treated as random effects. For the overall model, a Satterthwaite
adjustment was used to compute the degrees of freedom. Partial

η2 was computed using the “effectsize [34]” package available
in R. Post hoc tests were conducted using the “emmeans [35]”
package available in R with the Kenward-Roger method to
compute the degrees of freedom, and the P-values were adjusted
using the Tukey method.

Second, to assess the accuracy of the Fitbit Versa 2 measured
HR compared to a gold-standard ECG measure, mean absolute
error (MAE), and mean absolute percentage error (MAPE)
between the Biopac and the Fitbit Versa 2 were calculated as
overall measurement error. The clinically acceptable difference
(CAD) was set as 10 bpm, such that differences in MAE of less
than 10 bpm were regarded as clinically insignificant, thus
showing good accuracy for the Fitbit Versa 2. This was based
on the American National Standard of “Cardiac monitors, heart
rate meters, and alarms” that permit “readout error of no greater
than ±10% of the input rate or ±5 bpm, whichever is greater
[36].” A MAPE threshold of 10% was used to assess the
accuracy of the Fitbit Versa 2 [37,38].

Third, to quantify the degree of agreement between the Fitbit
Versa 2 and the Biopac across different experimental phases, 5
metrics of agreement were calculated. First, limits of agreement
between the Biopac and the Fitbit Versa 2 were evaluated using
a mixed-effect model to account for the effect of the participant,
the experimental phases, and time (ie, repeated measures) as
recommended by Parker et al [39]. Bias-corrected and
accelerated bootstrapping with 5000 replications were used to
estimate the 95% CI. The analysis was conducted using the
“SimplyAgree [40]” package in R. Second, the concordance
correlation coefficient (CCC) with 95% CI was estimated from
a linear mixed model using the appropriate intraclass correlation
coefficient [41]. The CCC indicates the proportion of the total
variability accounted for (1) by the participant, (2) the
experimental phase, and (3) their interaction. The CCC is a
standardized coefficient taking values from 1 (perfect
disagreement) to 1 (perfect agreement). In other words, a CCC
of 1 indicates the absence of variability in the device across
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participant and experimental phases [42]. In this study, the
following guidelines [43] were used to interpret the CCC: <0.90
(poor), 0.90 to 0.95 (moderate), 0.95 to 0.99 (substantial), and
>0.99 (perfect). The CCC was calculated using the “cccrm”
package in R [44]. Third, the coverage probability index
proposed by Lin et al [45] was estimated by calculating the
probability that the between-device differences lie within the
boundary of the predefined CAD. As such, a larger probability
indicates closer agreement. A mixed-effect modeling approach
was used to calculate the coverage probability index, which
required the range of CADs and the mean square deviation. The
mean squared deviation is the expected squared difference
between readings by 2 different devices on the same individual
performing the same activity at the same time. Similar to Parker
et al [42], the mean squared deviation was obtained based on
the mixed-effect model. Fourth, the total deviation index was
estimated based on the mean squared deviation from the
mixed-effect model. This index provides the boundary within
which the differences between devices will be contained p ×
100% of the time. The predefined CAD of ±10 bpm was used
to interpret whether the interval signified agreement. An interval
contained between the CAD would indicate that the 2 devices
can be used interchangeably. Finally, the coefficient of
individual agreement (CIA [46,47]) was calculated. The CIA
is a scaled coefficient that quantifies the magnitude of variability
between devices compared to the replication variability within
devices. A CIA value of 1 indicates that using different devices

makes no difference to the variability of repeated measurements
taken under the same conditions within the same subject.
Following past studies [42,48,49], the CIA was calculated based
on the mean squared deviation as the disagreement index. A
CIA >0.80 is considered acceptable [46,48,49]. A 95% CI was
calculated using a bootstrapping procedure with 5000
replications. All statistical analyses were conducted using R
version 4.0.3 [50].

Results

HR Mean Differences Across Experimental Phases
Figure 1 displays boxplots of the bpm across experimental
phases and between devices. The results from the mixed-effect
model revealed significant variations from the Fitbit Versa 2
HR measurements among experimental phases (F3,103=44.03;

P<.001; η2
partial=0.56, 90% CI 0.45-0.64). A post hoc Tukey

test revealed that the mean HR from the relaxation phase was
significantly lower than all other experimental phases
(anticipation, oral, and arithmetic) at P<.001. Furthermore, the
mean HR from the anticipation phase was significantly lower
than the oral (P<.001) and arithmetic (P=.02) phases. Finally,
the mean HR from the oral phase was significantly higher than
the arithmetic phase (P=.02). Overall, the results revealed the
capacity of the Fitbit Versa 2 to detect short-term variations in
levels of psychological stress.

Figure 1. Boxplots of the bpm across experimental phases and between devices. bpm: beats per minute.

Accuracy
Analysis of the measurement error between the Biopac and the
Fitbit Versa 2 showed an overall MAE of 5.87 (SD 6.57, 95%
CI 3.57-8.16) bpm, which is below the predefined CAD of ±10

bpm showing good accuracy of the Fitbit Versa 2. Moreover,
the results revealed an overall MAPE of 7.24% below the
predefined threshold of 10% for acceptable accuracy. Table 2
shows the MAE (and SD) and MAPE for each experimental
phase.

Table 2. Accuracy of the Fitbit Versa 2 across experimental phases.

Mean absolute percentage error (%)95% CIMean absolute error (SD)Phase

6.082.03-6.614.32 (4.92)Relaxation

9.836.65-11.248.94 (8.92)Anticipation

7.884.30-8.896.60 (6.33)Oral

7.163.84-8.436.13 (6.88)Arithmetic
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Agreement
Results from the mixed-effect limits of agreement method
revealed a mean bias of −1.91 (95% LoA −18.37 to 14.58).
Figure 2 shows the corresponding Bland-Altman plot with its
95% LoA. The CCC was estimated to be 0.76 (95% CI
0.66-0.83). The coverage probability index with a CAD of ±10
bpm was estimated to be 0.72 (95% CI 0.66-0.81). The

mixed-effect model estimated a mean squared deviation of 85.69
(95% CI 57.84-111.51). The total deviation index was calculated
to be 18.14 (95% CI 14.91-20.70). Prior to analyzing the CIA,
the residual error variance was calculated. The results showed
a Bland-Altman repeatability coefficient of 15.11, which
signifies an approximate 95% probability that the repeated bpm
values are within 15 bpm of each other. The CIA was estimated
to be 0.69 (95% CI 0.57-0.84).

Figure 2. Bland-Altman plot. Mean bias and limits of agreement are shown by the full lines, while confidence intervals are shown by the dashed lines.
bpm: beats per minute.

The variance component estimates of the mixed-effect model
were evaluated to find the principal sources of disagreement
(Table 3). Results showed substantial within-subject variability

(σ2=116.57). Moreover, the variability of the experimental

phases (σ2=22.58), within-subject residual (σ2=29.72), and the

subject-phase interaction (σ2=14.47) was high. To better
understand the effect of the specific experimental phase on the

agreement between devices, mixed-effect models were analyzed
for each phase separately.

In sum, results revealed that, when compared with a
gold-standard device, the Fitbit Versa 2 shows overall poor
agreement on all metrics analyzed. Further analyses conducted
for each experimental phase revealed adequate agreement during
the relaxation phase, whereas the preparation phase showed the
worst agreement between the 2 devices (Table 3).

Table 3. Metrics of agreement between the Fitbit Versa 2 and the gold-standard ECG across experimental phases.

Coefficient of indi-
vidual agreement
(95% CI)

Total deviation
index (95% CI)

Coverage probabil-
ity index (95% CI)

Concordance correla-
tion coefficient (95%
CI)LoAa (95% LoA)Phase

0.98 (0.88 to 0.99)13.76 (11.85 to
15.69)

0.85 (0.79 to 0.90)0.78 (0.67 to 0.84)−0.27 (−8.70 to 8.16)Relaxation

0.52 (0.35 to 0.69)25.94 (20.18 to
29.93)

0.55 (0.49 to 0.67)0.56 (0.44 to 0.67)−6.70 (−20.36 to 6.97)Preparation

0.61 (0.41 to 0.79)17.37 (14.17 to
19.74)

0.74 (0.68 to 0.83)0.81 (0.71 to 0.87)0.65 (−11.08 to 12.38)Oral

0.59 (0.38 to 0.86)18.42 (12.70 to
22.23)

0.71 (0.62 to 0.88)0.74 (0.58 to 0.87)−1.32 (−12.95 to 10.31)Arithmetic

aLoA: limits of agreement.

Discussion

Main Study Findings
Regarding the first objective of testing the ability of a Fitbit
device to sense an increase in HR upon induction of
psychological stress, results from a mixed-effect model revealed
that the HR measurements from the Fitbit Versa 2 showed

significant mean differences across all experimental phases.
Regarding the second objective of assessing the accuracy of a
Fitbit device to capture change in HR compared to a
gold-standard ECG, the MAE index and MAPE results showed
acceptable accuracy across all phases. Regarding the third
objective of quantifying the degree of agreement between the
Fitbit device and the gold-standard ECG measure, the 95% CI
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was fairly large and lies outside of the predefined CAD,
indicating that the 2 devices did not reach the desired LoA.
Moreover, the 95% CI indicated that HR measurements could
be underestimated by almost 19 bpm. Visual inspection of the
Bland-Altman plot showed small differences between the 2
devices for bpm <90 and greater differences for higher bpm.

Unsurprisingly, the differences in HR detected across
experimental phases were markedly more important between
the relaxation condition and the oral and arithmetic conditions,
a pattern that is echoed in previous studies that have investigated
HRV using the TSST [51-53]. These results are also in line with
longitudinal research that found support for the use of wearable
devices to measure stress levels [17-19,26] and indicate that
short-term variations in levels of psychological stress can be
detected using a Fitbit device. Additionally, although this is the
first study to quantify the accuracy of a Fitbit device under
experimentally induced psychological stress, accuracy estimates
from Fitbit devices under different exercise intensities have
been published [27-29]. Regarding the overall MAE, results
from this study revealed similar accuracy to what has been found
in a past study comparing a Fitbit device to an ECG gold
standard [25]. In this study, MAPE estimates show a loss in
accuracy under the stressful phases compared with the relaxation
phase. Similar patterns were found in past studies where lower
MAPEs were associated with light exercise and higher MAPEs
with more vigorous exercise [25,28]. Overall, the evidence from
several studies including the present one showed that under a
normal or relaxed state, Fitbit devices provide accurate HR
measurements. However, a loss in the accuracy of these devices
can be observed, especially under high HR-inducing physical
or psychological stress. Finally, though Bland-Altman LoA
revealed a small mean bias compared to previous studies on
exercise intensities [25], results regarding the degree of
agreement between both devices echo previous findings
revealing that wearable devices tend to not perform well
compared to gold-standard devices at higher bpm conditions
[25,26,54]. Interestingly, the highest mean bias was found in
the anticipation phase. The high variability in HR measurements
across participants from both devices (especially from the
Biopac) may partly explain this result. This variability may
emerge from individual differences, in coping with anticipation
of a stressful event, especially since the majority of participants
were female. Indeed, previous research indicates that men tend
to show higher levels of stress than women during the
anticipation of a psychosocial stress task [55].

The CCC indices found in this study consistently showed poor
agreement between the devices. When compared to past research
on physical activity, the CCC found in this study revealed better
agreement than what has been found by Thomson et al and
worse agreement than the results from Wang et al [56].
Evaluation of the variance components of the mixed-effect
model showed important between-subjects variability which is
not surprising given the nature of the stressful phases used in
this study. For example, some participants may experience more
stress during a verbal task than others. A review found that 30%
to 50% of people have a fear of public speaking with 40%
reporting anxiety about being negatively evaluated by others
[57]. Moreover, interparticipant variability in HR changes is

echoed in a previous study that used Fitbit-measured HR as an
indicator of stress [24]. As such, to account for this expected
variability, the CIA was computed as it is less dependent on the
between-subjects variability compared to the CCC [47,58].
However, the repeatability coefficient of Bland-Altman was
found to be unacceptably high and warrants caution when
interpreting the CIA. Based on past guidelines suggesting a
value of at least 0.80 to conclude good agreement [46,49], the
overall estimated CIA in this study suggested poor agreement
between the devices. The only CIA that reached a good
agreement was for the relaxation phase indicating the similarities
between the two devices for low bpm. This result provides
further evidence that Fitbit devices tend to show greater
precision for low bpm conditions for physical activities [25,26].

The estimated overall coverage probability index (CPI) was
well below the predefined 0.95 threshold to represent reasonable
agreement, suggesting unsatisfactory agreement between
devices. Unsurprisingly, the lowest CPI estimate was found in
the anticipation phase, which showed the largest
between-subjects and between-devices variation in bpm. Results
from the total deviation index (TDI) indicated that differences
between the Biopac and the Fitbit Versa 2 are expected to lie
within ±18.14 bpm 95% of the time. Compared with the
predefined CAD of ±10 bpm, all TDI values showed poor
agreement and were too large to conclude that the 2 devices
could be used interchangeably. Overall, the indices of agreement
computed in this study showed that the HR measurements from
the Fitbit Versa 2 vary significantly from an ECG gold standard,
especially for higher bpm. In light of these results, it appears
that although the Fitbit Versa 2 can capture short-term variations
in bpm under different stress and relaxation conditions, the
precision of these variations is questionable.

Limitations
This study contains limitations that need to be acknowledged
to fully appreciate its results. First, the sample size of 34
participants may be considered small and did not specifically
exclude participants using substances of abuse that may affect
their heart rate (eg, nicotine and alcohol). However, our
recruitment criteria and size are comparable to previous similar
studies that also did not specifically exclude individuals using
substances of abuse and have sample sizes that range from 15
to 50 participants [26-29]. Second, the levels of psychological
stress were experimentally induced in a controlled laboratory
setting, and further research is needed to test whether these
results also apply in natural living conditions. However, the
psychological stress and relaxation conditions were induced
using a well-validated protocol (TSST). Moreover, efforts were
made to ensure rigor in analyses, namely through the use of 5
different metrics estimated with their corresponding 95% CI to
determine agreement between the Fitbit Versa 2 and the
gold-standard device. Third, we used the Biopac as the
gold-standard device for measuring HR. While this ECG-based
instrument provides medical-grade HR data, it involves the use
of electrodes which, when placed incorrectly, can generate noise
in the signal and even lead to less accurate data [59]. Despite
this potential limitation, the authors believe it was important to
have a gold-standard device with which to compare the Fitbit
device for the purpose of concurrent validation. Fourth, we did
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not consider the skin color or the skin photosensitivity, factors
that have previously been suggested to affect the signal
resolution of sensors that use photoplethysmography technology
such as Fitbit. In this study, over 30% of the participants were
non-Caucasian, this could have also affected the accuracy of
Fitbit readings [60,61]. Similarly, individual variables of body
mass index, prior level of physical activity, and presence of
symptoms of psychological disorders (with or without a
diagnosis) were beyond the scope of this research and therefore
not considered during analyses. However, these variables should
be considered in future research interested in quantifying the
impacts of individual variables on HR measurements. Finally,
while the Fitbit Versa 2 was found to be able to capture
short-term stress variation, longitudinal studies are needed
before concluding on the potential of this device to capture
mid-to-long-term stress levels to predict psychological distress
and diminished well-being. Nevertheless, a strength remains
that this is the first study to quantify the accuracy of a Fitbit
device under experimentally induced psychological stress and
can serve as an important foundation for future research
regarding wearable activity monitors and psychological stress.

Conclusions
With the ubiquity of wearable devices and the growing interest
to use the data they provide in the health sector, research is
needed to test the reliability and validity of these instruments.
To our knowledge, this is the first study to test the accuracy and
agreement of a wearable device (Fitbit Versa 2) under different
psychological stress-inducing experimental conditions. Results
showed that the short-term variations in psychological stress
levels were successfully captured by the Fitbit Versa 2.
Moreover, MAE and MAPE estimates were all below the
predefined threshold of ±10 bpm, indicating acceptable accuracy
of the Fitbit Versa 2. However, across the 5 metrics of agreement
analyzed, results revealed poor agreement between the HR
measurement from the Fitbit device and the Biopac. Importantly,
the results of this study have implications in advancing research
involving the use of wearable devices as it provides preliminary
evidence that the HR measurement from the Fitbit Versa 2 can
be used to detect psychological stress among a nonclinical adult
population.
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