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Abstract

Background: Real-time air pollution monitoring is a valuable tool for public health and environmental surveillance. In recent
years, there has been a dramatic increase in air pollution forecasting and monitoring research using artificial neural networks.
Most prior work relied on modeling pollutant concentrations collected from ground-based monitors and meteorological data for
long-term forecasting of outdoor ozone (O3), oxides of nitrogen, and fine particulate matter (PM2.5). Given that traditional, highly
sophisticated air quality monitors are expensive and not universally available, these models cannot adequately serve those not
living near pollutant monitoring sites. Furthermore, because prior models were built based on physical measurement data collected
from sensors, they may not be suitable for predicting the public health effects of pollution exposure.

Objective: This study aimed to develop and validate models to nowcast the observed pollution levels using web search data,
which are publicly available in near real time from major search engines.

Methods: We developed novel machine learning–based models using both traditional supervised classification methods and
state-of-the-art deep learning methods to detect elevated air pollution levels at the US city level by using generally available
meteorological data and aggregate web-based search volume data derived from Google Trends. We validated the performance
of these methods by predicting 3 critical air pollutants (O3, nitrogen dioxide, and PM2.5) across 10 major US metropolitan statistical
areas in 2017 and 2018. We also explore different variations of the long short-term memory model and propose a novel search
term dictionary learner-long short-term memory model to learn sequential patterns across multiple search terms for prediction.

Results: The top-performing model was a deep neural sequence model long short-term memory, using meteorological and web
search data, and reached an accuracy of 0.82 (F1-score 0.51) for O3, 0.74 (F1-score 0.41) for nitrogen dioxide, and 0.85 (F1-score
0.27) for PM2.5, when used for detecting elevated pollution levels. Compared with using only meteorological data, the proposed
method achieved superior accuracy by incorporating web search data.

Conclusions: The results show that incorporating web search data with meteorological data improves the nowcasting performance
for all 3 pollutants and suggest promising novel applications for tracking global physical phenomena using web search data.

(JMIR Form Res 2022;6(12):e23422) doi: 10.2196/23422
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Introduction

Background
Web-based crowd surveillance has been used to track emergent
risks to public health [1-3]. Most commonly, these efforts
involve the collection of web-based search queries to document
acute changes in the incidence or symptom occurrence of
primary infectious disease agents, such as influenza [4-7], Ebola
[8], dengue fever [9], and COVID-19 [10]. These methods have
the potential to provide public health and medical professionals
with benefits over traditional health surveillance and
environmental epidemiology in their ability to capture both
personal exposures and response dynamics at more sensitive
spatial and temporal scales [2].

Despite the promise of these approaches for infectious diseases,
only a limited number of studies have examined how crowd
surveillance approaches can be used to track environmental
exposures and, less frequently, responses to noninfectious
environment-mediated disease processes [11-13]. The global
burden of disease attributable to outdoor and indoor air pollution
has been quantified by recent efforts and has increased public
awareness of the severity of this public health crisis worldwide
[14]. Therefore, urban air pollution provides a key test case for
the evaluation of web-based surveillance approaches for
noninfectious environmental risks. The web-based surveillance
approach is distinct from traditional approaches for measuring
urban air pollution exposure. Therefore, it could possibly serve
as a substitute to or complement the existing approaches.
Traditional indicators of air pollution exposure, namely,
concentrations measured at ambient monitoring sites, are widely
used to assess the health effects associated with air pollution in
epidemiological studies. However, the use of ambient
monitoring measurements as surrogates of exposure may result
in the misclassification of health responses and potential risks,
especially for those not living near pollutant monitoring sites
[15-17]. Moreover, ambient monitoring, by design, provides
information on measured outdoor pollutant concentrations and
may not necessarily reflect accurate personal exposures for
individuals spending most of their time indoors or for those
with preexisting biological susceptibility to air pollution. Several
recent studies have focused on using smartphones within
distributed air pollution sensing networks, where users record
and upload local air pollution conditions to crowd-generated,
geospatially refined pollution maps [11-13]. These studies
demonstrate the feasibility of web-based crowd-generated
participation in projects predicted on urban air pollution
awareness.

To the best of our knowledge, few studies have investigated the
feasibility of using web search data to produce accurate
“nowcasts” of urban air pollution levels in real time. Conducting
accurate predictions using web search data is a challenging task
with 2 major challenges. The first is the selection of search
terms to comprehensively capture people’s responses. Several
approaches have been proposed to select search terms. For
example, some studies preliminarily prepare keywords related
to the target disease and then use these keywords to filter the
search terms, which is often difficult because finding related

keywords could be difficult for some diseases or be costly when
conducting for multiple diseases. The second is the selection
of the appropriate models. Although the literature on data-driven
nowcasting methods for estimating infectious disease activity
is well developed from an epidemiological standpoint, the
machine learning methods used lag behind the state-of-the-art
methods. The nowcasting models introduced to date mainly use
variations of regularized linear regressions or, less often, random
forests (RFs) or support vector machines. From a machine
learning perspective, the problem of disease activity estimation
is most suited to a more sophisticated and time series–specific
model architecture. Because of the growing volume of recorded
environment-mediated disease data, the use of recurrent neural
networks (RNNs) and, more specifically, their variants long
short-term memory (LSTM) and gated recurrent unit networks
is increasingly feasible. The vanilla LSTM model makes
predictions solely relying on the time series of the search activity
while ignoring the semantic information in the search query
phrases. Previous studies have pointed out that search queries
could be semantically related, and ignoring their correlation
would lead to a decrease in model performance [18,19]. Recent
advances in natural language processing have led to the
development of a technique called word embeddings to represent
the semantic information in phrases, and fine-tuning of word
embeddings has been encouraged for downstream tasks (Wu,
Y, unpublished data, September 2016) [20-22]. However, there
is still a lack of knowledge on incorporating both the semantic
information of search queries and time series of search activities
to make predictions.

Objectives
In this study, we investigate web search data as an important
source of a web-based crowd-based indicator. As web search
data are free and broadly accessible, we posit that they could
serve as a scalable means of tracking urban air pollution
exposures and corresponding population-level health responses.
To measure search interest, we used the freely accessible Google
Trends service, which reports aggregate search volume data at
a city-level geographical resolution. For this analysis, we use
known health end point terms and topics, such as “difficulty
breathing,” and observations (eg, “haze”) suggested by public
health researchers, augmented by automatic term expansion
based on semantic and temporal correlations, to estimate the
levels of search activities related to air pollution, and ultimately
to predict whether the pollution levels were elevated [23,24].

Compared with existing air pollution classification models, this
study explores the use of web search anomalies as an auxiliary
signal to detect air pollution. We compared our approach with
the state-of-the-art physical sensor–based models that
incorporate various pollutant covariates such as historical
pollutant concentrations and meteorological data [25]. Using
web search data for prediction introduces several challenges,
including an unclear relationship between search interest and
pollution levels and the trade-off between model complexity
and convergence for the inclusion of web search data in a
data-deficient scenario.

In summary, our contributions are as follows:
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• We proposed a novel search term dictionary learner-LSTM
(DL-LSTM) model to learn sequential patterns from broad
historical records of web search data for air pollution
nowcasting.

• We compared the DL-LSTM models with a variety of
baseline models on the efficacy of using web search data
to indicate exposure to a noninfectious environmental
stressor (ie, air pollution) and demonstrate that the proposed
models are effective across different experimental settings.

• We evaluated the efficacy of combining web search data
and meteorological data for air pollution prediction and
showed that the inclusion of web search data improves the
prediction accuracy and provides a promising substitute
when historical pollutant data are unavailable.

Methods

We now describe the methodology. First, we formalize our
problem setting, then describe the data, and then introduce our
modeling approaches.

Problem Statement
We formalized this task as a classification problem and adapted
state-of-the-art machine learning models. We constructed a
multivariate autoregressive model and an RF model fit on
historical air pollutant concentrations as well as search and
meteorological data as baseline models. We evaluated the
performance of our proposed models (described below) in
comparison with the baselines in terms of prediction accuracy
and other standard classification prediction metrics.

Ethical Considerations
The data available to the public are not individually identifiable
and therefore analysis does not involve human subjects. The
International Review Board (IRB) recognizes that the analysis
of de-identified, publicly available data does not constitute
human subjects research and therefore does not require IRB
review.

Data Collection
We collected daily air pollutant concentration data as well as
temperature and relative humidity in the 10 largest US.
metropolitan statistical areas (MSAs) from January 2007 to
December 2018. We focused on 3 air pollutants: ozone (O3),
nitrogen dioxide (NO2), and fine particulate matter (PM2.5). The
in-situ pollutant concentrations and meteorological data such
as temperature, relative humidity, and dew point temperature
were retrieved from the US Environmental Protection Agency,
Air Quality System, and AirNow database. To create a single
daily pollutant concentration for each city, we used the median
pollutant concentration from all available monitoring sites within
each city to avoid outlier bias.

We collected the daily search frequency of pollution-related
terms from Google Trends for the same 12-year period and
cities. We created a curated list of 152 pollution-related terms
based on our previous air pollution epidemiology studies and
in reviewing the environmental health literature [14,26-30], and
we downloaded the reports of trending results terms using
PyTrends [31]. For each PyTrends request, we downloaded the
search history of pollution-related terms over a 6-month window
with 1 overlapping month for calibration. PyTrends provided
us with a search frequency scaled on a range of 0 to 100 based
on a topic’s proportion to all searches on all topics. Because of
the PyTrends restriction, we downloaded the reports of trending
results multiple times, and the search frequencies were scaled
separately in each 6-month window, which required us to
calibrate the search frequency for the 12-year period. We
calibrated the search frequencies by joining the search logs on
the overlapping periods (1 out of 6 months) for intercalibration
[32].

We investigated the available input features from meteorological
data (temperature and relative humidity), historical pollutant
concentrations, and web search data (Table 1).
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Table 1. Input features calculated per time step in the input sequence.

Feature transformationInput feature

Meteorological data (Meta) • Maximum temperature (Temp_maxb)
• Mean temperature (Temp_meanc)
• Relative humidity (humidity)
• Square of Temp_mean
• Cube of Temp_mean
• Square of humidity
• Cube of humidity
• Dew point temperature

Pollutant concentration (Pold) • Concentration on day t-7e

• Concentration on day t-6e

• Concentration on day t-5e

• Concentration on day t-4e

• Concentration on day t-3e

• Concentration on day t-2e

• Concentration on day t-1e

Search • Search volumes of search terms

aMet: meteorological data.
bTemp_max: maximum temperature
cTemp_mean: mean temperature
dPol: pollutant concentration.
eDay t-7,..., t-1: days preceding the prediction day t.

Missing Data Imputation and Normalization
Smoothing and interpolation are simple and efficient data
imputation methods [33], and we applied linear interpolation
to fill the missing data in historical pollutant concentration,
temperature, and humidity, with a rolling window size of 3. To
fill in the missing data in infrequent search terms for which
Google Trends does not return a count, we used random numbers

close to 0 (e-10~e-5). We normalized all the input features to
standard scores by subtracting their mean values and dividing
them by the respective SDs.

Search Term Expansion
As web-based search queries may reflect individual exposure
to ambient air pollution, the seed terms were mostly related to
symptoms, observations, and emission sources (Table S1 in
Multimedia Appendix 1). However, because an exhaustive list
of user queries was not available, reliance on only
expert-generated seed words may result in poor prediction
because of the high mismatch rate between the user queries and
our expected search words.

Query expansion is a common approach for resolving this
discrepancy. A recent study [18] showed that the initial set of
seed words could be effectively expanded through semantic and
temporal correlations. Thus, for each seed word, we used Google
Correlate [34] to retrieve the top 100 correlated query terms.
Then, we used the pretrained word2vec model [21] to retrieve
the vector representation of each query; phrases were mapped
to the centroid of the constituent terms. A utility score was
calculated for each candidate query by measuring the maximum
cosine similarity between the query and seed words. Queries

with a high utility score were retained, and the remaining queries
were eliminated, and we empirically set the utility cutoff to
0.55. This method expanded the set of search terms for the 152
search terms to track (Table S2 in Multimedia Appendix 1).

Modeling and Evaluation

Problem Definition

Given sequences of physical sensor data P = [pt-L,..., pt-1]
T with

the dimension of L times dp, and search interest data S =

[st-L+2,..., st+1]
T with the dimension of L times ds, the task is to

classify day t as polluted or not, where a positive class label
indicates that the air pollution was above a predefined threshold.
L denotes the sequence length, and dp and ds are the number of
physical sensor features and the number of search-related terms,
respectively.

Autoregressive and RF Classification Models
Previous work has shown that simple autoregressive models
using web search data can generate nowcast estimates for
influenza-like illnesses at the US national level [19]. We adapted
autoregressive models with a logistic regression (LR) classifier
for classification purposes. Furthermore, we applied elastic net
regularization, which is a linear combination of l1 and l2
regularization, as proposed in previous studies [18,19].
LR+Elastic Net was implemented using the Python scikit-learn
package, using cross-validation to set the model’s
hyperparameters to maximize the F1-score on the validation
set, with class_weight set to “balanced.”
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RF is an ensemble learning model that is robust against
overfitting and provides a strong baseline for the development
of nonlinear predictive models [35]. We used the scikit-learn
implementation of RFs. The number of trees and maximum
depth of individual trees were selected to maximize the F1-score
on the validation set, with balanced class_weight for positive
and negative samples.

LSTM and Its Variants
LSTM units [36] are RNN models designed for sequence
modeling, which can learn nonlinear relationships in time series
data [37]. First, we describe a baseline LSTM model with 2
subnetworks to separate the search data and meteorological
data. As shown in Figure 1, there are 4 layers in the model, that
is, the sequence embedding layer, LSTM layer, fully connected
hidden layer, and output layer [38].

Figure 1. The architecture of the long short-term memory (LSTM) model.

In the left subnetwork of the LSTM model with search data as
input, we propose 2 methods for capturing semantic information
in search terms. The first is the LSTM semantic model (GloVe
[Global Vectors for Word Representation]; LSTM-GloVe). As
a variant of the vanilla LSTM model, for the sequence
embedding layer of the right subnetwork in Figure 1, we
introduce the matrix multiplication operation to project the
search values of search terms to their semantic embedding space
(GloVe embeddings), as shown in equation 1.

Given the search interest data S = [s1,..., s7]
T with the dimension

of 7 times ds, and their GloVe embedding G = [g1,..., gdg] with
the dimension of ds times dg, where dg = 50 (GloVe
50-dimensional word vectors trained on tweets [22]). The matrix
multiplication operation is defined as

Specifically, the tensor generated by the matrix multiplication
operation was then fed into the LSTM layer for further
calculations. This matrix multiplication is designed specifically
for the model consistency problem when introducing collinear
predictors after search term expansion (STE).

The second variation of the LSTM model is the DL-LSTM
model, which is theoretically based on the idea of matrix
multiplication, as shown in LSTM-GloVe. However, instead
of directly applying the GloVe embedding for matrix
multiplication, it introduces the fine-tuning of the word
embeddings via a dg by de rectified linear unit–activated fully
connected layer. As shown in Figure 2, the rectified linear
unit–activated fully connected layer was applied to the initial
GloVe embedding, where de=100 is the size of the new
embedding. In this architecture, the GloVe 50-dimensional word
vectors are used to initialize the search term embedding
dictionary, and the matrix multiplication operation is used to
transform the input embedding of search terms into the semantic
embedding space [39].

JMIR Form Res 2022 | vol. 6 | iss. 12 | e23422 | p. 5https://formative.jmir.org/2022/12/e23422
(page number not for citation purposes)

Lin et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. The architecture of the dictionary learner-long short-term memory model.

In summary, we evaluate the following models in this paper:

• LR: LR is LR classifier with elastic net regularization.
• RF: RF is RF classifier with the number of trees and

maximum depth tuned for prediction.
• LSTM: The baseline LSTM model, as shown in Figure 1,

combines physical sensor features, if available, with the
search interest volume data directly, providing a direct
adaptation of RNNs to this problem without any
problem-specific extensions.

• LSTM-GloVe: LSTM semantic model is a variant of the
LSTM model as described in equation 1, where we control
the input of search interest data (ie, 51 seed search terms
vs 152 terms after STE) in this model. We refer to the
variants as LSTM-GloVe and LSTM-GloVe with [w/] STE,
respectively.

• DL-LSTM: The DL-LSTM model is shown in Figure 2.
We control the input of the search interest data (ie, 51 seed
search terms vs 152 terms after STE) in this model and refer

to the variants as DL-LSTM and DL-LSTM w/STE,
respectively.

Validation
To tune the model parameters and validate the model
performance, we split the available data into training (from
January 2007 to December 2014), validation (from January
2015 to December 2016), and testing (from January 2017 to
December 2018) sets. This 8-year training period provides a
broad history for learning the relationship between input and
output variables, and the predictive models are evaluated based
on their ability to make predictions for completely unseen
periods. For evaluating our model, we made predictions for
each day from January 2017 to December 2018 in the test data
set. The distribution of the classes in the training, validation,
and test data sets is presented in Table 2. Note that the positive
and negative classes are heavily imbalanced, with positive
classes comprising, for instance, only 16% of the training
samples when PM2.5 is the target pollutant.
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Table 2. The distribution of classes in the training, validation, and test sets.

Positive samplesNegative samplesPollutant

TestValidationTrainingTestValidationTraining

982103848966311626924,322O3
a

961118852926332611923,926NO2
b

53656249216757674524,297PM2.5
c

aO3: ozone.
bNO2: nitrogen dioxide.
cPM2.5: fine particulate matter.

Evaluation Metrics
As we defined this task as a classification problem, we used the
standard classification evaluation metrics. We report the
accuracy and F1-score of the positive class (the harmonic mean
of precision and recall) of the predictions as evaluation metrics
for all models. Although accuracy measures the total fraction
of correct predictions and could misrepresent model performance
in the presence of heavily imbalanced classes, the F1-score
considers class imbalance and is, therefore, a more appropriate
metric for our problem.

Where TP, TN, FP, and FN are the number of true positive
samples, true negative samples, false positive samples, and false
negative samples, respectively.

Results

Overview
In this section, we first present the findings of the data
exploration. Next, we present the principal findings of this study.

Insights From Collected Data
In this section, we describe the thresholds of abnormal air
pollutant concentrations and present the lag between the search
anomalies and air pollution.

Thresholds of Abnormal Air Pollutant Concentrations
The major MSAs chosen for this study have different
distributions of pollutant concentrations over time and almost
always fall below the Environmental Protection Agency standard
24-hour threshold (Figure 3). However, multiple studies have
shown that even at low concentrations, chronic exposure to air
pollution negatively affects human health [26,27]. Therefore,
calibrating a meaningful threshold for each city, especially those
with generally lower levels of air pollution (eg, Miami), may
be critical for adequately protecting population health. A natural
way to do this may be to set the threshold to 1 SD above the
mean daily pollutant concentration within each city, which was
adopted in this study. The input predictors were also normalized
within each city to reflect the city-level dynamics. The resulting
thresholds for the 3 pollutants and cities under investigation are
reported in Table 3.
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Figure 3. Distribution of pollution values for Atlanta, Los Angeles, Philadelphia, and Miami, with city-specific elevated pollution level (dashed line)
and the general Environmental Protection Agency–mandated standard (dotted line), for ozone (O3; left column), nitrogen dioxide (NO2; middle column),
and fine particulate matter (PM2.5; right column). EPA: Environmental Protection Agency.
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Table 3. Classification thresholds for 3 pollutants across 10 major metropolitan statistical areas in the United States.

HoustonChicagoMiamiNew YorkBostonAtlantaDallasPhiladelphiaDistrict of ColumbiaLos AngelesPollutant

49494549485353535455O3
a (ppbb)

27.743.725.545.330.727.825.23638.143.7NO2
c (ppb)

14.416.210.613.912.415.613.116.415.118.7PM2.5
d (µg/m3)

aO3: ozone.
bppb: parts per billion.
cNO2: nitrogen dioxide.
dPM2.5: fine particulate matter.

Lag Between Search Anomalies and Air Pollution
A previous study showed that there could be a lag between
incident occurrence and Google search activity [40]. As shown
in Figure 4, the normalized search frequency of the term “cough”
is correlated with the concentration of NO2 in Atlanta with a
certain lag of time. To determine the lag between elevated
pollution levels and consequent pollution-related searches, the
mean absolute Spearman correlation between pollutant

concentrations and search interest data was calculated and
shifted forward in time for 0, 1, 2, and 3 days. As shown in
Table 4, for O3 and PM2.5, the mean absolute Spearman
correlation increased with an increase in the shifted days.
Considering that the task aimed to detect elevated pollution
levels as soon as possible, a lag of 1 day was applied to search
data. In other words, the search interest data from the current
day were used to estimate whether air pollution was elevated
on the previous day.

Figure 4. Daily nitrogen dioxide (NO2) levels and search interest for the term “cough” in October 2016 in Atlanta.
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Table 4. Cross-correlation of top 5 search terms with different lags for 3 pollutants in the Atlanta metropolitan area in 2016 (N=366).

P valueLag=3; search term
(Spearman correla-
tion)

P valueLag=2; search term
(Spearman correla-
tion)

P valueLag=1; search term
(Spearman correla-
tion)

P valueLag=0; search term
(Spearman correla-
tion)

Pollutant

O3
a

<.001Cough (−0.41)<.001Cough (−0.41)<.001Cough (−0.38)<.001Cough (−0.34)

<.001Bronchitis (−0.35)<.001Bronchitis (−0.33)<.001Bronchitis (−0.32)<.001Bronchitis (−0.31)

<.001Smoke (0.24)<.001Traffic (0.26)<.001Traffic (0.27)<.001Traffic (0.26)

<.001Traffic (0.23)<.001Chest pain (−0.23)<.001Chest pain (−0.23)<.001Smoke (0.23)

<.001Chest pain (−0.22)<.001Smoke (0.22)<.001Snoring (0.22)<.001Snoring (0.22)

NO2
b

.002Cough (0.16).002Sulfate (0.16)<.001Sulfate (0.20)<.001Asthma (0.20)

.003COPDc (−0.16).005Bronchitis (0.15).002Bronchitis (0.16)<.001Sulfate (0.19)

.008Bronchitis (0.14).008Cough (0.14).005Inhaler (0.15)<.001Cough (0.17)

.02Wheezing (−0.12).03Inhaler (0.11).006Cough (0.14).001Bronchitis (0.17)

.04Headache (−0.10).03Headache (−0.11).02Difficulty breathing
(−0.12)

.002Inhaler (0.16)

PM2.5
d

<.001Air pollution (0.18)<.001Air pollution (0.19).005COPD (−0.15).009Wildfires (0.14)

<.001COPD (−0.18).001COPD (−0.17).007Wildfires (0.14).03COPD (−0.11)

.004Wildfires (0.15).009Wildfires (0.14).008Air pollution (0.14).03Snoring (0.11)

.03Sulfate (−0.11).05Respiratory illness
(0.10)

.04Asthma attack (0.11).06Inhaler (0.10)

.04Traffic (0.11).06Traffic (0.10).05Respiratory illness
(0.10)

.08Difficulty breathing
(−0.09)

aO3: ozone.
bNO2: nitrogen dioxide.
cCOPD: chronic obstructive pulmonary disease.
dPM2.5: fine particulate matter.

Evaluation Outcomes
In this section, we consider 3 conditions to evaluate the
performance of using web search data to detect elevated
pollution, that is, using only search data, using search data as
auxiliary data for meteorological data, and using search data as
auxiliary data for meteorological data and historical pollutant
concentrations.

Using Only Search Data
For areas where ambient pollution monitoring is unavailable,
investigating whether web search data can be used as the only

signal for nowcasting elevated air pollution is a vital question.
When relying only on search data for air pollution prediction,
both the proposed DL-LSTM architecture and STE contribute
to the improvement of prediction accuracy. As shown in the
“Search” section of Table 5, the LSTM-based models exhibited
superior accuracy over the baseline LR and RF models for O3

and NO2. For PM2.5, the proposed models did not perform better
than the baseline LR or LSTM model because the validation
and test data sets were heavily imbalanced (Table 5). The
proposed DL-LSTM w/STE model achieved the highest F1-score
(32.44% for O3 and 27.70% for NO2) for detecting O3 and NO2

pollution.
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Table 5. Accuracy and F1-score of the logistic regression, random forest, and long short-term memory models for detecting elevated pollution across
10 major US cities, for varying input feature combinations: no prior knowledge, search data only (Search), meteorological data only (Met), meteorological
data and search data (Met+Search), meteorological data and historical pollutant concentration (Met+Pol) and all input features (Met+Pol+Search).

PM2.5
c, accuracy (F1-score; %)NO2

b, accuracy (F1-score; %)O3
a, accuracy (F1-score; %)Features and model

No prior knowledge

7.35 (13.69)13.18 (23.28)13.46 (23.73)All positives

92.65 (0.0)86.82 (0.0)86.54 (0.0)All negatives

50.65 (12.67)50.56 (20.68)50.29 (20.63)Random (prob of positive=0.5)

Search

78.29 (10.72)53.97 (24.17)36.93 (17.77)LRd

92.65 f (0.0)55.22 (18.1)33.53 (23.36)RFe

89.96 (7.58)69.68 (21.62)46.73 (23.63)LSTMg

90.09 (3.73)63.44 (27.4)53.23 (28.45)LSTM-GloVeh

91.73 (1.31)46.85 (26.51)69.17 (28.04)LSTM-GloVe w/STEi

88.61 (7.97)65.99 (26.19)62.46 (30.4)DL-LSTMj

87.59 (6.99)56.84 (27.7)69.61 (32.44)DL-LSTM w/STE

Met

58.58 (22)63.64 (37.25)62.57 (39.81)LR

73.78 (24.67)71.77 (39.88)78.76 (50.59)RF

67.89 (24.69)72.52 (41.27)76.54 (48.29)LSTM

Met+search

61.25 (21.5)62 (36.25)55.99 (36.56)LR

87.96 (23.78)73.77 (38.71)81.39 (45.35)RF

88.14 (21.29)77.75 (40.31)78.18 (47.65)LSTM

85.38 (26.99)72.75 (40.35)80.04 (49.37)LSTM-GloVe

85.42 (26.13)74.21 (41.49)81.85 (50.71)LSTM-GloVe w/STE

84.94 (24.07)74.81 (40.53)77.97 (48.94)DL-LSTM

87.04 (21.32)72.99 (40.34)80.16 (49.32)DL-LSTM w/STE

Met+pol

74.45 (32.82)70.05 (44.09)67.38 (44.61)LR

86.45 (40.63)80.35 (51.24)82.81 (57.23)RF

85.25 (43.19)84.64 (55.59)86.97 (63.01)LSTM

Met+pol+search

74.45 (32.82)69.13 (43.6)66.91 (43.71)LR

89.43 (37.57)78.91 (47.72)82.76 (55.91)RF

90.74 (44.81)84.71 (54.02)87.11 (61.54)LSTM

88.19 (46.55)82.98 (53.78)87.94 (63.81)LSTM-GloVe

88.24 (46.51)83.81 (54.59)87.63 (63.83)LSTM-GloVe w/STE

89.66 (47.35)82.65 (53.65)87.30 (63.02)DL-LSTM

89.25 (46.59)83.40 (53.58)87.60 (63.61)DL-LSTM w/STE

aO3: ozone.
bNO2: nitrogen dioxide.
cPM2.5: fine particulate matter.
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dLR: logistic regression.
eRF: random forest.
fThis high accuracy is simply due to class imbalance; this model always predicts negative class, and the corresponding F1-score is 0.
gLSTM: long short-term memory.
hGloVe: Global Vectors for Word Representation.
iSTE: search term expansion.
jDL-LSTM: dictionary learner-long short-term memory.

Using Search Data and Meteorological Data
When meteorological data were available, we investigated the
feasibility of using meteorological data with or without search
activity data to nowcast air pollution under this condition. As
shown in the “Met” and “Met+Search” sections of Table 5, the
inclusion of web search data improves the nowcasting accuracy
for all 3 pollutants. In addition, the LSTM-GloVe w/STE model
achieved the highest F1-score (50.71% for O3 and 41.49% for
NO2) for the detection of O3 and NO2 pollution. The
LSTM-GloVe without STE model achieved the highest F1-score
(26.99%) for detecting PM2.5 pollution.

Using Search Data, Meteorological Data, and Historical
Pollutant Concentration
When historical pollution concentration is available, search
activity data are added as auxiliary data to both meteorological
data and historical pollution data. As shown in the “Met+Pol”
and “Met+Pol+Search” sections of Table 5, the inclusion of
web search data improves the nowcasting accuracy for O3 and
PM2.5. However, for NO2, the inclusion of web search data does
not improve the nowcasting accuracy, which indicates that

increases in NO2 concentrations may not be directly noticeable
by people sufficiently to increase their search interest. This
difference in the performance for different pollutants and
locations merits further investigation.

City-Level Analysis of O3 Pollution Prediction

We investigated the potential of using search interest and
meteorological data to replace ground-based O3 sensor data for
predicting O3 pollution in individual cities. As shown in Table
6, including search interest data (Met+Search) to augment purely
meteorological data (Met) increases both the accuracy and
F1-score metrics for most cities. Although these metrics do not
reach performance when ground-level pollution sensors are
available (Met+Pol), at least for two of the major MSAs
(Philadelphia and Houston), search volume data indeed provides
a useful alternative to pollution monitors, with only 1.6% and
0.14% degradation in accuracy, respectively. In addition, the
differences in model performance across different cities indicate
that web-based search patterns could vary from city to city. As
shown in Table 7, the top 5 correlated terms differ across US
cities over 10 years. The variation in search patterns could lead
to degraded prediction performance in certain areas, leaving
promising directions for improvement.

Table 6. City-level accuracy and F1-score for detecting elevated ozone pollution in 10 US cities, with Met (long short-term memory model), Met+Search
(dictionary learner-long short-term memory w/search term expansion) and Met+Pol (long short-term memory model) as features.

HoustonChicagoMiamiNew YorkBostonAtlantaDallasPhiladelphiaDistrict of ColumbiaLos AngelesFeatures

Accuracy, %

85.8976.7158.0968.3675.6283.5683.4283.2977.472.6Meta

90.148069.2974.9378.6383.8479.8687.480.6876.71Met+search

9086.8582.0286.8584.6688.2289.0489.0486.9985.89Met+polb

F1- score, %

57.2656.1932.5244.0746.0648.7253.2853.7948.2851.69Met

59.0957.5635.8447.864842.7241.958.5650.5354.3Met+search

67.2670.7355.4863.6455.5656.1264.664.2960.5868.11Met+pol

aMet: meteorological data.
bPol: pollution data.
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Table 7. Top 5 correlated search terms for ozone pollution in 10 US cities: January 1, 2010, to December 31, 2019.

Spearman correlation (lag=1)City and search term

Los Angeles

−0.40Cough

−0.33Bronchitis

0.24Wildfires

0.14Traffic

−0.12Respiratory infection

District of Columbia

−0.25Bronchitis

−0.25Cough

−0.19Coughing

−0.14Headache

0.13Wildfires

Philadelphia

−0.33Cough

0.27Traffic

−0.20Bronchitis

−0.10Organic carbon

−0.09Respiratory infection

Dallas

−0.25Cough

−0.24Bronchitis

0.17Ozone

0.15Wildfires

−0.14Coughing

Atlanta

−0.14Bronchitis

−0.11Cough

−0.10Chest pain

−0.09Respiratory infection

−0.07Wheezing

Boston

−0.11Smoke

−0.07Haze

−0.06Code red

0.06Coughing

0.05Smog

New York

−0.31Bronchitis

0.29Traffic

−0.25Cough

0.19Wildfires

−0.15Wheezing
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Spearman correlation (lag=1)City and search term

Miami

0.14Bronchitis

0.13Air pollution

0.13Cough

0.09Power plants

0.08Nitrogen dioxide

Chicago

0.18Wildfires

0.08Smoke

0.04Shortness of breath

0.04Heart murmur

0.04Tail pipe

Houston

0.12Ozone

0.12Air pollution

0.06Asthma

0.05Organic carbon

0.05Wildfires

Sensitivity Analysis of Air Pollution Thresholds
Classification thresholds play an important role in our model.
In this study, an SD threshold from the mean of the
corresponding pollutants was used as a “probability threshold”
to detect air pollution at a spatial-temporal resolution. However,
the proposed method is sensitive to this threshold. We further

investigated the performance of the proposed method using a
variety of fixed classification thresholds. As shown in Figures
5-7, we fixed the classification thresholds for all 10 cities to
detect O3, NO2, and PM2.5 pollutions. The results show that the
meteorological and search data are complementary, and
combining the search and meteorological data leads to better
prediction performance for all classification thresholds.

Figure 5. Accuracy (left figure) and F1-score (right figure) for detecting ozone (O3) pollution on various classification thresholds, with Met (long
short-term memory model) and Met+Search (dictionary learner-long short-term memory w/search term expansion) as features. Met: meteorological
data; ppb: parts per billion.
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Figure 6. Accuracy (left figure) and F1-score (right figure) for detecting nitrogen dioxide (NO2) pollution on various classification thresholds, with
Met (long short-term memory model) and Met+Search (dictionary learner-long short-term memory w/search term expansion) as features. Met:
meteorological data; ppb: parts per billion.

Figure 7. Accuracy (left figure) and F1-score (right figure) for detecting fine particulate matter (PM2.5) pollution on various classification thresholds,
with Met (long short-term memory model) and Met+Search (dictionary learner-long short-term memory w/search term expansion) as features. Met:
meteorological data.

Discussion

Principal Findings
In this study, we explored various existing air pollution
prediction models and found that the use of a time series neural
network approach achieved the highest predictive accuracy in
most of our experiments. The results showed that the
LSTM-based models achieved superior accuracy for the 3 air
pollutants when both meteorological data and web search data
were available. Furthermore, our results on the inclusion of web
search data with meteorological data indicate that under short
reporting delays, the LSTM models could provide highly
accurate predictions compared with baseline models using
meteorological and historical pollution concentration data.

Compared with existing studies that predict urban air pollution
concentrations using linear and nonlinear machine learning
models [25,41-47], our proposed method can predict air
pollution when source emissions and remotely sensed satellite
data are infeasible (eg, sensed satellite data often suffer from a
high missing rate owing to frequent cloud cover [48]). Previous
studies using web-based search behavior have emphasized the
use of Google Trends [40,49] and applied regularized linear
regression to collinear web search queries to estimate disease

rates from social media or web-based search data [18,19,50-54].
Our research further explored the possibility of using LSTM
models with semantic embeddings of search queries to predict
air pollution. As shown in Figures 8 and 9, the semantic
embeddings of search terms fine-tuned by the DL-LSTM model
are less correlated compared with their initial GloVe
embeddings, which shows that the collinearity between search
terms is reduced during the training process.

We also explored various combinations of search terms and
found that a comprehensive set of user queries was critical for
accurately capturing people’s responses to urban air pollution.
In this study, we expanded the initial set of seed terms using
semantic and temporal correlations with search queries from
Google Correlate. We investigated the contribution of different
search term groups by manually classifying the search terms
into 4 categories, where the unclassified category includes terms
with ambiguous meanings. Table 8 shows the accuracy and
F1-score when we removed search terms by categories for
predicting O3, NO2, and PM2.5 pollution. Removing the search
terms in the symptom, observation, and source categories led
to a decrease in the accuracy score for detecting at least two
pollutants. At the same time, removing the search terms with
ambiguous meaning only led to a slightly higher accuracy score
for all 3 pollutants.
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Figure 8. Cosine similarity between GloVe embeddings of seed search terms. GloVe: Global Vectors for Word Representation.

Figure 9. Cosine similarity between trained embeddings of seed search terms.
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Table 8. Accuracy and F1-score of removing different categories of search terms for detecting ozone, nitrogen dioxide, and fine particulate matter
pollution using search (dictionary learner-long short-term memory w/search term expansion) as features.

F1-score (change; %)Accuracy (change; %)Pollutant and terms

O3
a

0.32440.6961All

0.3024 (−6.8)0.647 (−7.1)All wob symptom

0.3264 (+0.6)0.622 (−10.6)All wo observation

0.3033 (−6.5)0.6712 (−3.6)All wo source

0.3273 (+0.9)0.7057 (+1.4)All wo unclassified

NO2
c

0.27700.5684All

0.2418 (−12.7)0.4452 (−22.0)All wo symptom

0.2480 (−10.5)0.6125 (+7.8)All wo observation

0.2647 (−4.4)0.5452 (−4.1)All wo source

0.2134 (−23.0)0.6534 (+15.0)All wo unclassified

PM2.5
d

0.06990.8759All

0.1029 (+47.2)0.7897 (−9.8)All wo symptom

0.1049 (+50.1)0.7496 (−14.4)All wo observation

0.0393 (−43.8)0.8994 (+2.7)All wo source

0.0264 (−62.2)0.8991 (+2.6)All wo unclassified

aO3: ozone.
bwo: without.
cNO2: nitrogen dioxide.
dPM2.5: fine particulate matter.

By analyzing the coefficients of each search term, the results
show that several search terms contribute more than other search
terms. The average feature importance of the seed search terms
was calculated using the RF model. As shown in Figure S1,
Figure S2, and Figure S3 in Multimedia Appendix 2, search
terms including “particular matter,” “rapid breathing,” and
“throat irritation” have relatively high feature importance for
detecting O3, NO2, and PM2.5 pollution, respectively. The results
also indicated that no search terms worked best for all 3
pollutants.

Limitations
A key limitation of this study is the tuning of the neural network
model. First, the performance of neural network models is
sensitive to several hyperparameters, including optimization
choices, depth, width, and regularization. Owing to
computational limitations, we adopted a simple LSTM
architecture with a single 128-unit hidden layer and tuned the
model using validation data sets for other hyperparameters. In
addition, we noticed that stochastic components such as the
random seed for the RF model and the randomness in the
optimization process of LSTM models influenced the
interpretation of the results. Therefore, we repeated the
experiments 10 times with different random seeds for the RF

and LSTM models. As the time cost of repeating LSTM models
is high, we only repeated the RF, LSTM, and DL-LSTM models
10 times to predict O3 pollution with all input features. The
accuracy of the DL-LSTM model is mean 0.8744 (SD 0.0046).
Compared with the LSTM model (mean 0.8714, SD 0.0036),
the improvement was not significant (P=.11). Compared with
the RF model (mean 0.8273, SD 0.0017), the improvement was
significant (P<.001). The F1-score for the DL-LSTM model is
mean 0.6314 (SD 0.0058). Compared with both the LSTM
(mean 0.6019, SD 0.0096) and RF models (mean 0.5588, SD
0.0024), the improvements are significant (P<.001), which
shows that the results of the LSTM models are stable. There is
room for further exploration of more sophisticated neural
network model architectures for noninfectious disease prediction
[55-57]. We leave the exploration of deeper and wider
architectures to future work.

Another limitation relates to the biases introduced by relying
on search data, which may not reflect the underlying population
demographics or experiences. Although some of these issues
are alleviated automatically by training a model against ground
sensor pollution levels, understanding and correcting these data
biases requires further study. In the future, we plan to investigate
other sources of crowd-based surveillance data, such as
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self-reports on social media, to augment traditional physical
sensor methods, thus providing a more direct, human-centered
measure of how people experience elevated air pollution levels.

Conclusions
In this study, we posit that although web search data cannot yet
completely replace ground-based pollution monitors, it may
already serve as a valuable additional signal to augment
ground-based pollution data, providing significant accuracy

improvements for detecting unusual spikes in air pollution. We
also found that the correlation between search terms and
pollution concentration varies at the city level. Therefore, the
model must be fine-tuned when applied to specific cities. For
model and search term selection, we used the simplest LSTM
architecture with a dictionary learner module and found that no
search terms worked best for all the 3 pollutants. We propose
the use of our model to learn the semantic correlations between
available search terms to obtain better prediction results.
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Abbreviations
DL-LSTM: dictionary learner-long short-term memory
GloVe: Global Vectors for Word Representation
LR: logistic regression
LSTM: long short-term memory
MSA: metropolitan statistical area
NO2: nitrogen dioxide
O3: ozone
PM2.5: fine particulate matter
RF: random forest
RNN: recurrent neural network
STE: search term expansion
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