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Abstract

Background: Smartphones are increasingly used in health research. They provide a continuous connection between participants
and researchers to monitor long-term health trajectories of large populations at a fraction of the cost of traditional research studies.
However, despite the potential of using smartphones in remote research, there is an urgent need to develop effective strategies
to reach, recruit, and retain the target populations in a representative and equitable manner.

Objective: We aimed to investigate the impact of combining different recruitment and incentive distribution approaches used
in remote research on cohort characteristics and long-term retention. The real-world factors significantly impacting active and
passive data collection were also evaluated.

Methods: We conducted a secondary data analysis of participant recruitment and retention using data from a large remote
observation study aimed at understanding real-world factors linked to cold, influenza, and the impact of traumatic brain injury
on daily functioning. We conducted recruitment in 2 phases between March 15, 2020, and January 4, 2022. Over 10,000 smartphone
owners in the United States were recruited to provide 12 weeks of daily surveys and smartphone-based passive-sensing data.
Using multivariate statistics, we investigated the potential impact of different recruitment and incentive distribution approaches
on cohort characteristics. Survival analysis was used to assess the effects of sociodemographic characteristics on participant
retention across the 2 recruitment phases. Associations between passive data-sharing patterns and demographic characteristics
of the cohort were evaluated using logistic regression.

Results: We analyzed over 330,000 days of engagement data collected from 10,000 participants. Our key findings are as follows:
first, the overall characteristics of participants recruited using digital advertisements on social media and news media differed
significantly from those of participants recruited using crowdsourcing platforms (Prolific and Amazon Mechanical Turk; P<.001).
Second, participant retention in the study varied significantly across study phases, recruitment sources, and socioeconomic and
demographic factors (P<.001). Third, notable differences in passive data collection were associated with device type (Android
vs iOS) and participants’ sociodemographic characteristics. Black or African American participants were significantly less likely
to share passive sensor data streams than non-Hispanic White participants (odds ratio 0.44-0.49, 95% CI 0.35-0.61; P<.001).
Fourth, participants were more likely to adhere to baseline surveys if the surveys were administered immediately after enrollment.
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Fifth, technical glitches could significantly impact real-world data collection in remote settings, which can severely impact
generation of reliable evidence.

Conclusions: Our findings highlight several factors, such as recruitment platforms, incentive distribution frequency, the timing
of baseline surveys, device heterogeneity, and technical glitches in data collection infrastructure, that could impact remote
long-term data collection. Combined together, these empirical findings could help inform best practices for monitoring anomalies
during real-world data collection and for recruiting and retaining target populations in a representative and equitable manner.

(JMIR Form Res 2022;6(11):e40765) doi: 10.2196/40765
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Introduction

Background
Smartphones offer an unprecedented anytime-anywhere medium
for researchers to engage with and assess health-related
behaviors in large populations in real-world settings [1,2]. As
of 2020, the rate of smartphone ownership in the United States
has reached over 80% [3]. The large-scale, high-frequency daily
use of such devices coupled with increasingly multimodal
onboard sensing capabilities offers an effective approach for
conducting large-scale health research [4,5]. The adoption of
digital health tools to develop and deploy digitally augmented
trials has been rising steadily since the first fully remote
decentralized trial in 2011 [6-8]. Recent studies have shown the
benefits of remote monitoring using smartphones for assessing
real-world behavior [9,10], for managing chronic pain [11],
cancer care [12], diabetes [13], Parkinson symptom severity
[14], and cardiovascular health [15] and for the delivery of
remote interventions [16]. The COVID-19 pandemic has further
accelerated this growth, enabling over 220 digitally augmented
trials in 2021 alone [17,18].

Using smartphones for health research can also help achieve
operational efficiency by relying less on traditional research
facilities or intermediaries for data collection, which require
in-person contact between the study participants and the research
team [6,19,20]. Researchers can communicate asynchronously
and synchronously with participants and assess their health by
actively and passively collecting individualized real-world data
[4,21,22]. Active data are defined as data generated through
effortful participation (eg, completing a survey). In contrast,
passive data are collected without direct input from participants
(eg, the number of daily steps estimated through onboard
sensors) [23]. Such scalable remote observational models [6,20]
could help investigators to understand people’s day-to-day
experiences of living with a health condition [4] and the
relationship between individualized real-world behavior and
health outcomes [22].

Challenges in Remote Participant Recruitment and
Retention
However, despite the promise of decentralized health research,
several challenges related to the representation and inclusiveness
of recruitment and the retention of target populations have
surfaced [21,24,25], resulting in sparse, unbalanced, and

nonrepresentative real-world data collection [21]. Typically,
decentralized studies recruit from various web-based sources
such as social media (Facebook [26] and Reddit [27]),
crowdsourced platforms (Prolific [28]; Amazon Mechanical
Turk, MTurk [29]; Centiment [30]; and CloudResearch [31]),
and partnerships with patient registries or advocacy groups
[32,33]. Although these recruitment channels have shown the
potential to reach and recruit large populations remotely [34-36],
the long-term and uniform retention of remote participants has
been challenging. Recent findings show that retention rates vary
from 1% to 50% [24], with monetary incentives being able to
significantly improve long-term retention [10]. With large-scale
open recruitment approaches, including the use of financial
incentives, the risk of enrolling gamers or malicious actors
increases [37].

With large studies using multiple web-based sources to reach
and recruit participants remotely, there is a need to assess the
impact that such strategies have on the characteristics of the
enrolled cohorts and their retention in the studies. In addition,
further research is needed to understand how variations in study
participation incentives (eg, time and frequency of payments)
and differences between Android and iOS operating systems
[38] affect long-term data collection in decentralized studies.

Objectives
To investigate some of these challenges in collecting health
data through smartphones in real-world settings, we examined
the recruitment, retention, and passive data-sharing patterns of
more than 10,000 participants in a large, decentralized research
study. Specifically, we evaluated the following three key
questions: (1) Does combining different recruitment and
incentive distribution approaches lead to a heterogeneous cohort
with varying characteristics? (2) Can the participant retention
and uniformity of data collection in remote studies be affected
by cohort heterogeneity? (3) What are the factors that can affect
passive data collection in real-world settings?

Methods

Ethics Approval
This study was approved and monitored by the Institutional
Review Board of the University of Washington
(STUDY00004997) and the Department of Defense Human
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Research Protection Office; the approval for the study was
granted on February 11, 2020.

Study Overview
The participants in the Warfighter Analytics Using Smartphones
for Health (WASH) study were volunteers who lived in the
United States and agreed to engage in a 12-week
smartphone-based study. The primary goal of the study was to
understand the real-world factors that could help with the early
prediction of cold, influenza, and the impact of traumatic brain
injury on daily functioning. The eligible participants were
individuals aged ≥19 years, English speakers, residents of the
United States, owners, and primary users of iPhone or Android
smartphones with internet access. The potential participants
were required to complete an eligibility screener before

consenting, and those who did not meet the inclusion criteria
were not permitted to complete subsequent procedures.

Recruitment
Participant recruitment started on March 15, 2020, with rolling
enrollment until January 4, 2022. The participants for the study
were recruited in 2 phases, using different recruitment and
incentive distribution approaches (Figure 1). Participants could
receive up to US $90 for completing the baseline survey and
12 weeks of follow-up surveys. The final participation incentive
was determined on the basis of the number of complete surveys.
Participants were not informed about the financial breakdown
during the consent process; however, additional details regarding
when they would receive compensation and how much
compensation they would receive were provided upon request.
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Figure 1. (A) Schematic representation of different study recruitment and participation incentive distribution approaches during phases 1 and 2.
Participants recruited during phase 1 were paid weekly (12 times) starting their first day in the study. Anyone who had participated up to October 3,
2020 (who was recruited close to the recruitment pause date) still received weekly payments. Participants recruited during phase 2 were paid every 3
weeks (a total of 4 times) starting their first day in the study. (B) Details of smartphone-based active and passive data collected through the study app
during the study observation period (84 days). *Indicates that sharing of accelerometer and gyroscope was made mandatory on August 28, 2020.

Participation Incentives

Phase 1 (March 15, 2020, to July 11, 2020)
Participants were primarily recruited by placing advertisements
on social media platforms that directed potential participants to
a study recruitment website. Press releases in local news outlets
also served as a recruitment source [39,40]. Participants
recruited during this phase were paid weekly on the basis of the
days a participant completed all daily surveys. The amount
received per day increased throughout the 12 weeks (eg,
approximately US $4 in weeks 2 to 4, approximately US $6 in
weeks 5 to 8, and US $7 in weeks 9 to 11, with more significant
payments made for weeks 1 and 12 because of higher incentives

rewarding those who completed the baseline survey in week 1
and the exit survey in week 12). However, a significant increase
in study enrollment in June 2020, which seemed to be
inconsistent with planned recruitment, led the study team to
pause enrollment on July 11, 2020. The analysis of participant
activity during this period indicated that some malicious actors
were engaged in the study. Further details on the assessment of
malicious actors can be found in the study by Bracken et al [37].

Phase 2 (August 30, 2020, to the Data Freeze Date,
February 9, 2022)
Recruitment resumed on August 30, 2020, after implementing
additional strategies to stop fraudulent attempts to join the study,
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such as disallowing the autofilling of surveys in the study app,
changing recruitment sources, and changing incentive payment
frequency [37]. Participants were recruited from 2 web-based
recruitment platforms, Prolific and MTurk, from January 4 to
December 28, 2021, and from May 15 to December 21, 2021.
Prolific is a web-based research platform that includes several
safeguards for preserving data quality [41-44]; minimizes
gamers or malicious actors; and has been shown to be reliable,
efficient, and affordable for remote data collection for behavioral
research [45]. Similar to Prolific, MTurk is another web-based
crowdsourcing platform regularly used in health research to
recruit study participants to complete tasks such as data
processing, problem-solving, and surveys [46]. In phase 2,
participants were paid every 3 weeks, with the first participation
incentive payment taking up to 5 weeks. The change in the
payment schedule was implemented for allowing sufficient time
to execute procedures intended to identify malicious actors.

Active Surveys
Assessments were divided into 1 longer baseline survey and
brief daily assessments. The baseline survey assessing
participants’ health history, mood, physical activity, and phone
use was administered 24 hours after consent was obtained in
phase 1 of the study. However, in phase 2, the baseline health
survey was administered immediately after consent was
obtained. In both phases, the participants were administered the
same scheduled health-related surveys twice daily for 12 weeks.
The survey asked participants about their mood, physical
activity, and phone use.

Sensor-Based Data Collection
Sensor-based data were collected actively and passively from
participants through the study app. Participants completed
performance outcome measures [47] such as standing and
walking tests and sharing voice recordings. The participants
were also asked to allow the study app to collect passive data
from their smartphones. Passive data included, but were not
limited to, device movement and orientation; actual and relative
location; the device’s status (eg, active use or connected to a
data network); and local environmental information such as
ambient light, temperature, and humidity. Participants had the
option to not share the passive data and remain in the study.
However, all participants enrolled in the study on or after August
28, 2020 (before the start of phase 2), were required to allow
the study app to passively collect the accelerometer and
gyroscope sensor data from their smartphones.

Data Access

Overview
All the data collected from the participants were deidentified.
The data collected through the app were encrypted on the phone
and stored on secure servers, separate from any identifiable
information. Raw data, such as image, proximity, voice, and
actual location data of participants, were stored separately from
all other sensor data and were not shared with the research team.
For this study, data from the enrolled participants between the
study launch date (March 15, 2020) and the data freeze date
(February 9, 2022) were used for analysis.

Data Cleaning
Before analysis, data from 6788 suspected malicious actors
were removed based on the rules for flagging such actors that
were defined in the study by Bracken et al [37]. Test data
collected before the study launch date on March 15, 2020, were
removed. If a survey was submitted more than once, we used
the most recent submission to assess the participant’s
compliance in the study. If participant responses had values
outside the expected range of valid values, they were marked
as invalid data.

Data Harmonization
To investigate participant retention in the study, we classified
the data collected by the study app into two broad categories:
(1) survey data, representing any active survey data shared by
participants through the study app, and (2) sensor data,
representing passive continuous sensor data gathered by the
study app without active input from participants as well as active
sensor data collected during a performance outcome assessment
(eg, walking test data collected from accelerometers and
gyroscopes).

Statistical Analysis

Overview
Statistical analyses were performed using data from 10,768
participants after excluding 6788 malicious actors from the data
set (6788/17,556, 38.66%). Descriptive analyses of recruitment
and cohort characteristics for categorical variables were based
on frequencies and percentages. Levels of categorical baseline
variables that contained <5% of the cohort were omitted or
combined with other levels that contained <5% of the cohort to
reduce data sparsity in the analysis. We used median values
with the 25th and 75th percentile (IQR) for summarizing
continuous variables that were not normally distributed. The
differences in cohort characteristics were compared using
bivariate analysis methods. The chi-square test was used for
testing statistically significant differences between categorical
variables; the Fisher exact test was used when table cell counts
were <5, and the Mann-Whitney U test was used for continuous
variables. We used the logistic regression model to assess any
statistically significant association between patterns of passive
data sharing and participants’ sociodemographic characteristics
and technical variables. These included race, ethnicity, age, sex,
education level, income level, device type, and recruitment
phase. Specifically, we compared 3 data-sharing patterns of
participants sharing at least 25% (2/8), 50% (4/8), or 75% (6/8)
of the 8 common passive data streams between Android and
iOS devices. The 95% CIs and P values were computed using
a Wald Z distribution approximation.

We adjusted P values by using false discovery rate correction
to correct for multiple comparisons across different sensor types.
The analyses were conducted using R (version 4.1.1). Statistical
significance was assumed when the false discovery
rate–corrected P value was <.05.

Retention Analysis
To examine overall retention in the study, we used the univariate
Kaplan-Meier survival curves [48], which were tested for
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statistically significant differences using the nonparametric
log-rank test [49]. A participant’s last day in the study was
determined by the last day of their data sharing. To assess the
difference in retention between active and passive data sharing,
we also computed study retention for active and passive data
streams separately. We used right-censored data for the
Kaplan-Meier estimator, given that participants could have
continued to use the study app beyond the end of the study
period (84 days).

To assess the joint effect of multiple variables of interest,
including sociodemographics, on participants’ retention in the
study, we initially used a multivariate Cox proportional hazards
(CoxPH) model [50]. However, one of the key assumptions for
CoxPH models (the effect of covariates should not change over
time) tested using the Schoenfeld individual test was not met
[51]. Multimedia Appendix 1 presents test statistics showing
that the CoxPH model assumption is not being met. With the
underlying retention data not supporting the CoxPH model
assumption, we used a nonparametric log-rank test [52] to assess
the statistically significant impact of individual variables on
retention within each phase. We cross-compared the median
retention for each level of a variable of interest across the 2
study phases.

Results

Recruitment
As of the data freeze date (February 9, 2022), the study recruited
10,768 participants. Most participants (6494/10,768, 60.3%)
were recruited during phase 1, and the remaining (4274/10,768,
39.69%) were recruited during phase 2 (see the Methods
section). A significant proportion of participants, most notably
in phase 1, did not complete the baseline survey (phase 1:
3135/6494, 48.27%, vs phase 2: 918/4274, 21.47%). Figure 2
compares the recruitment rate of the study with the baseline
survey submission rate over time. The number of baseline
surveys completed generally was in line with the number of
participants recruited during the study period. Recruitment
peaked in mid-April and mid-May 2020 for phase 1 and in
mid-January and early March 2021 for phase 2. However, during
phase 1, between May and July 2020, the number of baseline
surveys completed was significantly lower than the number of
recruited participants, which explains the large proportion of
missing baseline data in phase 1. We further assessed the effect
of missing baseline surveys on participant engagement in the
study (see the Retention Analysis section). Additional statistics
on missingness and invalid data entries in the baseline surveys
are summarized in Multimedia Appendix 2.

Figure 2. Comparison of the 7-day moving average between the number of participants recruited (black) and the number of baseline surveys completed
(red) during the study period. Gray shaded area shows the study recruitment pause phase from July 11, 2020, to August 29, 2020.

Cohort Characteristics
Most of the participants who completed the baseline
sociodemographic survey were female (3817/6574, 58.06%).
The median age was 30 (IQR 24-40) years, with a larger
proportion of participants being aged 19 to 29 years (2949/6267,
47.05%). The non-Hispanic White population was the largest
(3938/6677, 58.97%), followed by the Asian (931/6677,
13.94%) and Hispanic or Latino (783/6677, 11.72%)

populations. Most participants were iOS users (5883/10,583,
55.58%). Table 1 summarizes the sociodemographic
characteristics of the overall cohort.

The population recruited in phase 2 had a higher proportion of
younger adults (aged 19 to 29 years; 1685/3194, 52.75%) and
a lower proportion of older adults (aged ≥60 years; 94/3194,
2.94%) than that recruited in phase 1 (P<.001; Table 1). A
higher proportion of Black or African American participants
were recruited in phase 2 (phase 1: 267/3342, 7.98%; phase 2:
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456/3339, 13.65%; P<.001). Notably, a larger proportion of
participants (1942/3308, 58.71%) with lower levels of annual
income (≤US $49,999) were recruited in phase 2 than in phase
1 (1062/2483, 42.77%; P<.001). The proportion of Android
versus iOS users also varied across the recruitment phases. A

significantly higher proportion of iOS users (P<.001) were
recruited in phase 1 (3958/5883, 67.27%) than in phase 2
(1925/5883, 32.72%). Multimedia Appendix 3 further compares
the sociodemographic characteristics of Android and iOS users
across the 2 recruitment phases.
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Table 1. Characteristics of the overall study cohort (N=10,768) along with comparison of participants recruited between phase 1 (n=6494) and phase
2 (n=4274).

P value (phase 1 vs
phase 2)

Test statistics, chi-
square (df)

Participants recruited
during phase 2

Participants recruited
during phase 1

Overall cohort

<.001235.29 (4)3194 (74.73)3073 (47.32)6267 (58.21)Age (years), n (%)

——a1685 (52.8)1264 (41.14)2949 (47.05)19-29

——898 (28.11)739 (24)1637 (26.12)30-39

——345 (10.8)459 (14.9)804 (12.82)40-49

——172 (5.4)318 (10.3)490 (7.81)50-59

——94 (2.96)293 (9.51)387 (6.37)≥60

——108034214501Missing and invalid datab

<.00115.25 (1)3270 (76.54)3304 (50.92)6574 (61.13)Sex, n (%)

——1820 (55.73)1997 (60.41)3817 (58.11)Female

——1450 (44.37)1307 (39.64)2757 (41.9)Male

——100431904194Missing and invalid datab

<.001101.02 (4)3339 (78.15)3342 (51.57)6681 (62.03)Race, n (%)

——1985 (59.41)1953 (58.44)3938 (58.95)Non-Hispanic White

——444 (13.32)487 (14.67)931 (13.93)Asian

——359 (10.81)424 (12.75)783 (11.72)Hispanic, Latino, or Spanish

——456 (13.77)267 (8.02)723 (10.82)Black or African American

——95 (2.85)211 (6.32)306 (4.61)Other

——93531524087Missing and invalid datab

<.001134.02 (3)3341 (78.21)3341 (51.42)6681 (62.03)Marital status, n (%)

——1873 (56.13)1439 (43.14)3312 (49.65)Single

——1273 (38.12)1549 (46.47)2821 (42.22)Married or in a domestic
partnership

——135 (4.03)275 (8.28)410 (6.11)Divorced

——60 (1.81)78 (2.39)138 (2.16)Other

——93331534087Missing and invalid datab

<.001245.48 (4)3310 (77.47)2483 (38.24)5793 (53.85)Income level (US $), n (%)

——1137 (34.42)599 (24.11)1736 (30.05)<25,000

——805 (24.33)463 (18.64)1268 (21.91)25,000 to 49,999

——537 (16.21)349 (14.15)886 (15.37)50,000 to 74,999

——367 (11.14)343 (13.85)710 (12.33)75,000 to 99,999

——464 (14.05)729 (29.41)1193 (20.62)≥100,000

——96440114975Missing and invalid datab

<.00135.34 (2)3337 (78.11)3340 (51.43)6677 (62.04)Level of education, n (%)

——420 (12.65)448 (13.41)868 (13.09)High school or lower

——2054 (61.62)1827 (54.71)3881 (58.16)College

——863 (25.93)1065 (31.94)1928 (28.91)Graduate school

——93731544091Missing and invalid datab

aNot available.
bThe proportion is based on the number of participants who completed the baseline survey, and missing and invalid data are presented in Multimedia
Appendix 2.
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Passive Data Sharing
The number of data modalities that were passively collected by
the study app varied across the Android (31 data modalities)
and iOS (14 data modalities) operating systems. The variation
in the number of passive data modalities available across
Android and iOS devices is because of the available onboard
sensors and data collection restrictions across the two operating
systems [38]. Of the 31 Android passive data streams, 18 (58%)
were shared by at least 50% of the Android users across the 2
study phases (Table 2). In contrast, 86% (12/14) of the distinct
passive data streams were shared by at least 50% of the
participants using iOS devices. Multimedia Appendix 4
summarizes data-sharing proportions per sensor stratified across
Android and iOS devices. None of the participants with iOS
devices shared passive data from the camera or barometer.
Similarly, participants with Android devices did not share any
data from some passive data streams, including temperature,
camera, and humidity (Multimedia Appendix 4). This variation
in passive data sharing could also be linked to the heterogeneity
and nonavailability of specific sensors in some devices. It is
worth noting that phase 2 of the study required participants to

share accelerometer and gyroscope data passively. However, a
small yet notable proportion of the cohort recruited in phase 2
did not share accelerometer (503/4089, 12.31%) and gyroscope
(856/4089, 20.89%) data.

In addition, across the 8 passive data streams that were common
between Android and iOS devices, the participants’ passive
data sharing was linked to sociodemographic characteristics
and device type. In total, 3 data-sharing patterns of participants
sharing at least 2 (25%), 4 (50%), or 6 (75%) of the total 8
passive data streams were tested. Across all 3 data-sharing
patterns, Black or African American participants were found to
be statistically significantly less likely to share passive sensor
data than non-Hispanic White participants (odds ratio [OR]
0.44-0.49, 95% CI 0.35-0.61; P<.001). Furthermore, participants
sharing ≥75% (6/8) of the passive data streams were more likely
to be iOS device users (OR 1.98, 95% CI 1.71-2.28; P<.001)
and earning more than US $25,000 per year (OR 1.27-1.55,
95% CI 1.06-1.93; P<.001). Multimedia Appendix 5 provides
further details on the association between participants’
sociodemographic characteristics and passive data sharing.
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Table 2. Comparison of the impact of individual sociodemographic variables on the median retention (95% CI) of participants (in days) in the Warfighter
Analytics Using Smartphones for Health study across 2 phases.

Phase 2Phase 1

P valueRetention median (95% CI)P valueRetention median (95% CI)

<.00151 (49-53)<.00137 (37-37)Data streams

44 (43-46)37 (37-37)Passive

47 (44-49)36 (36-36)Active

<.001<.001Baseline data missingness

59 (57-62)36 (36-37)Yes

19 (16-24)37 (37-38)No

<.001.01Age (years)

59 (55-63)36 (34-37)19-29

59 (53-64)36 (34-37)30-39

60 (50-66)37 (36-38)40-49

69 (61-79)37 (37-38)50-59

83 (78-N/Aa)38 (37-38)≥60

.50<.001Race or ethnicity

60 (54-69)39 (38-49)Asian

68 (63-72)6 (4-10)Black or African American

58 (50-65)20 (14-25)Hispanic, Latino, or Spanish

57 (54-61)37 (37-38)Non-Hispanic White

55 (35-67)5 (3-17)Other

.56<.001Income level (US $)

61 (56-65)37 (36-38)<25,000

60 (55-66)34 (31-36)25,000 to 49,999

62 (56-68)36 (33-37)50,000 to 74,999

55 (49-64)24 (19-30)75,000 to 99,999

55 (50-61)24 (19-30)>100,000

.001<.001Level of education

50 (46-56)5 (4-10)High school or lower

60 (57-64)38 (37-38)College

62 (57-67)36 (35-37)Graduate school

<.001<.001Device type

59.5 (56-63)22 (17- 27)Android

49 (46-52)37 (37-37)iOS

aN/A: not available.

Participant Retention
The median retention time of the overall cohort was 38 days,
within the 84-day study observation period. No meaningful
difference was observed in cohort retention across the active
(median 37 days) and passive (median 38 days) data streams
(Multimedia Appendix 6). The sensitivity analysis of participant
retention also showed no significant difference in median
survival across the active and passive data streams (Multimedia
Appendix 7). Consequently, all subsequent retention analyses

were conducted by combining the active and passive data
streams.

Notable differences in retention were observed across the
population recruited between phases 1 and 2. Participants
recruited in phase 2 had a significantly higher median retention
(+14 days) than those recruited in phase 1 (phase 1: median 37
days; phase 2: median 51 days; P<.001; Figures 3A and 3B).
Older participants (≥60 years), recruited in both phases,
remained engaged in the study for the longest duration (phase
1 and phase 2 median retention 38 days and 83 days,
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respectively) relative to the younger cohort (Figures 3E and
3F).

It is worth noting that certain characteristics, including
socioeconomic factors, distinctly impacted participant retention
across the cohorts recruited in phases 1 and 2 (Table 2).
Participants who completed the baseline survey administered
immediately after enrollment in phase 2 were retained for a
significantly longer period (with median values of baseline
survey: yes 59 days vs no 19 days in phase 2; Figure 3D).
However, the same trend was not observed for participants
recruited from social media platforms in phase 1. Similarly, in
phase 1, the non-Hispanic White population was retained in the
study for a significantly longer time (median 37 days) than the
Hispanic or Latino population (median 20 days; Figure 3G).
No meaningful differences were observed among non-Hispanic
White and Hispanic, Latino, or Spanish populations in phase 2

(Figure 3H). Education level mainly impacted retention in phase
1. Participants reporting high school or lower education levels
had the shortest retention (median 5 days) than other participants
(median ≥36 days) in phase 1. Such a large difference in
retention because of educational level was not seen in the
population recruited in phase 2 from crowdsourcing platforms
(Figures 3I-3K). Participants’ self-reported income was also
found to be significantly associated with retention in phase 1
only. Participants with incomes of <US $49,999 were retained
longer than participants earning >US $100,000 (phase 1: US
$49,999 vs US $100,000 median retention 34 days vs 24 days,
respectively; P<.001; Figures 3I and 3J). We also noticed a
dramatic difference in median participant retention between
Android and iOS users enrolled in phase 1 (iOS 37 days and
Android 22 days; P<.001). Table 2 and Multimedia Appendix
8 provide additional results and details on the survival analysis.

Figure 3. Study retention patterns across the 2 recruitment phases using Kaplan-Meier survival curves. (A)-(B) Cohort retention stratified by active
(purple), passive (orange), and overall (ie, active or passive; blue) data streams. (C)-(D) Difference in retention based on completion of the baseline
survey; cohort retention by (E)-(F) age group, (G)-(H) race or ethnicity, (I)-(J) income level, and (K)-(L) education level. The shaded region shows the
95% CIs based on the survival model fit.

Discussion

Principal Findings
Our results from the analysis of over 330,000 days of
engagement data collected from over 10,000 participants in
real-world settings showed that combining different recruitment

and incentive distribution approaches can yield heterogeneous
cohorts. To the best of our knowledge, this is one of the first
studies to empirically assess real-world differences in
participants’ sharing of multimodal passive data collected from
iOS and Android devices using a bring your own device
(BYOD) approach.
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Overall, there were 5 key learnings. First, recruiting participants
using different media, for example, digital advertisements on
social media and web-based newspapers or crowdsourcing
platforms, could result in heterogeneous subcohorts with varying
characteristics. Second, participant engagement could vary
significantly based on the recruitment source (eg, social media
vs crowdsourced platforms) and incentive distribution
approaches. Third, passive data collection could be substantially
affected by technical variations in Android and iOS devices and
the sociodemographic demographics of the cohort. Fourth, there
is a greater likelihood of participants completing baseline health
surveys if they are administered immediately after consent or
enrollment. Fifth, monitoring patterns in real-world data
collection at the study level could reveal technical glitches that
could help guide contextual data filtering and cohort selection,
leading to more reliable evidence generation. We now
contextualize our principal findings to inform strategies to
recruit, retain, and monitor trends in remote data collection to
help collect real-world health data in a representative and
equitable manner.

Combining Recruitment Platforms Could Yield
Heterogeneous Real-world Cohorts
Notable differences were observed between the demographic
and socioeconomic characteristics of participants recruited from
web-based advertisements in social media and newspapers
(phase 1) versus crowdsourcing platforms (phase 2). This
indicates that combining multiple web-based recruitment sources
could yield heterogeneous cohorts, resulting in nonuniform data
collection. Future remote studies should assess the potential
impact of combining the real-world data obtained from
participants enrolled through different recruitment media.
Furthermore, the web-based advertisement–based open
enrollment approach in phase 1 while successfully recruiting a
large cohort quickly also resulted in a significant proportion of
bad actors joining the study to receive monetary incentives [37].
On the other hand, crowdsourcing platforms (MTurk and
Prolific) were slower in recruiting participants, but their
retention was notably higher than that of participants recruited
using social media advertisements in phase 1. Indeed, as we
have noted in an earlier paper, news outlets and social media
recruitment are more likely to attract malicious actors [37] and,
as we demonstrate here, less-committed research participants.
However, despite the benefits of paid crowdsourcing platforms
in effectively reaching and recruiting participants, researchers
should carefully consider other factors that could influence the
findings of a study [53-57] when recruiting participants from
such platforms. These include (1) the primary motivation to
remain engaged in remote studies, which may be tied to
monetary incentives linked to task completion, and (2) the
recruited population may not be representative of the general
population [58] or of target health conditions. The characteristics
of recruited participants may also vary substantially across
recruitment platforms. (3) Nonnaivety-recruited people could
be routine participants in research, which could impact the
assessment of the actual underlying effect and (4) assessment
of the fitness for the purpose of crowdsourced workers for a
particular task or study [59-61].

Changes in the Incentive Distribution Can Have an
Impact on Recruitment and Retention
By increasing the interval at which participants were paid, a
significant reduction was observed in the number of malicious
actors joining the study in phase 2. Furthermore, keeping the
total incentive paid the same, participants who received less
compensation weekly (phase 1) remained engaged in the study
for a significantly shorter duration than those receiving a larger
sum every 3 weeks (phase 2). Although higher retention in phase
2 cannot solely be attributed to a change in incentive distribution
(because of a lack of randomization), it is indicative of a
potentially interesting behavioral economics model [62] that
addresses the perceived burden of participants with episodic
but more significant rewards. The value of incentives relative
to the study burden also varied by socioeconomic characteristic.
In both phases, participants in lower-income groups engaged
for longer, likely driven by the incentives, than those in
higher-income groups, a finding evident in other studies [63].
Past research has shown that incentives can be an effective way
to retain such participants, as small incentives could constitute
a way of dealing with monetary barriers [64]. However,
researchers should use such incentive-based engagement
strategies in a noncoercive manner [65,66] so that potential
study participants are not unduly influenced to join and share
their data in a research study.

Assessing Patterns in Real-world Data Collection Can
Reveal Underlying Technical Issues
The evaluation of day-to-day study-level data revealed several
patterns indicating transient technical glitches in data collection
that, if unaddressed, could bias downstream evidence generation.
First, a significant drop in the relative rate of enrollment for
baseline survey completion was observed in phase 1 (Figure 2).
This could be indicative of a technical glitch in the data
collection system or an attempt by a large number of bad actors
to join the study to gain monetary incentives (if applicable).
Second, active and passive data collection patterns varied
notably across the study recruitment phases. For example, we
identified 2 periods during the second phase of the study, when
the study app collected no passive data despite the completion
of active tasks by participants (Multimedia Appendix 9). This
is likely a technical glitch in passive data collection that could
severely impact the passive data density for the participants
who were active during this period. Understanding the context
and period in which the data are missing can guide cohort and
data selection for a reliable and unbiased downstream analysis.
Third, a small but substantial subset of participants recruited in
phase 2 did not share the 2 mandatory passive data streams,
accelerometer (503/4089, 12.3%) and gyroscope (856/4089,
20.9%), but continued to remain active in the study (Table 2).
Near real-time comparison of data modalities shared by
participants can help the study teams triage participants who
do not meet the required inclusion criteria per the approved
study protocol. Fourth, the retention analysis stratified by
technical variables (eg, device type) revealed latent idiosyncratic
patterns. We observed a notable trend in retention for the
participants recruited in phase 1 (Multimedia Appendix 8; Figure
3G). Participants with iOS devices showed a dramatic drop in
retention around day 37 compared with a gradual decline for
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those with Android devices. There may be several plausible
reasons for this significant yet idiosyncratic retention pattern,
seen only in phase 1 of the study. The sociodemographic
characteristics varied significantly between the iOS and Android
cohorts in phase 1 compared with phase 2 (Multimedia
Appendix 3). In addition, there could have been a bug in the
iOS app around week 6 (days 35-42) that could have impacted
participant experience and data sharing in phase 1. Taken
together, these findings show an urgent need to prioritize
real-time monitoring of data collection in real-world settings
while the study is in progress. This also provides a just-in-time
intervention opportunity to understand, document, and fix the
root cause, preventing lower-quality data collection.

Passive Data Collection Can Vary Substantially in BYOD
Studies
Passive data collected from the participants’ own devices
showed that the onboard sensors available across Android and
iOS devices can vary substantially. Even for the common
passive data streams available on both Android and iOS devices,
there can be substantial differences in the sharing of multiple
passive data streams linked to participants’ sociodemographic
characteristics and device types. For example, in this study,
Black individuals or African Americans were significantly less
likely to share multimodal passive sensor data (Multimedia
Appendix 5). Researchers should expect a high degree of
heterogeneity in passive sensor data streams in large BYOD
studies and consider the impact of device heterogeneity on data
collection, analysis, and evidence generation [38,67-70].

Impact of Participants’ Sociodemographic
Characteristics on Retention
Older participants (aged ≥60 years) were retained in the study
for the longest duration. This finding is consistent with a
previous large cross-study comparison of retention [63].
However, the impact of sociodemographic characteristics on
participant retention was considerably different between the
cohorts recruited using social media advertisements (phase 1)
versus crowdsourcing platforms (phase 2). The relative
difference in median retention within individual categories (eg,
non-Hispanic White vs Hispanic or Latino) was remarkably
higher and aligned with prior research [63] in the phase 1 cohort
than the cohort recruited in phase 2 (Table 2). This indicates a
significant discrepancy in how sociodemographic characteristics
may affect participant retention based on recruitment sources.
Our findings offer evidence that the population recruited from
web-based crowdsourcing platforms shows more homogeneous
engagement in research studies than the general population, a
behavior that is likely driven by underlying motivation and
monetary incentives.

In addition, the demographic composition of the United States
is becoming increasingly multiethnic and pluralistic, and it is
projected that there will be no majority racial or ethnic groups
by 2060 [71]. The sociodemographic characteristics of the
enrolled cohort together with nonuniform participant attrition
show that large observational studies may not enroll and collect
health outcomes from a diverse and representative population
uniformly. Future studies should emphasize enrolling diverse
populations, such as an All of Us cohort [72], and retaining a

diverse sample throughout the study period to ensure that their
learnings apply to diverse populations. In addition, some of the
challenges in recruiting a diverse cohort have been identified
to be related to participants’ perceptions, trust, and willingness
to enroll and share their data with researchers, governments,
and academic institutions [46,71].

Timing of Administration of Baseline Surveys May
Impact Completion Rates
The engagement data showed that the timing of administration
of the baseline survey could be linked to survey completion
rates. The missingness rates of the baseline survey were notably
different between the 2 phases (phase 1: 3135/6494, 48.27%;
phase 2: 918/4274, 22.47%; Figures 3C and 3D). This indicates
that participants were more likely to complete the baseline
assessments if they were administered immediately after consent
or enrollment (phase 2). This is likely due to a higher level of
engagement when enrolling for the study than at subsequent
time points, when attention may be captured by other activities.
This finding is aligned with some prior research in which
participants were more likely to engage with a mobile health
app within 24 hours if prompts were provided when participants
are most receptive [73]. Moreover, Bidargaddi et al [73] revealed
that the degree of engagement is also influenced by other
contexts, such as the time of day and the day of the week. These
results could help us understand the importance of time of
administering an assessment and its impact on data quality in
research studies.

Limitations and Future Directions
The analysis of participant recruitment and retention data from
the WASH study should be interpreted within the context of
certain limitations. First, large-scale, fully remote data collection
started close to the declaration of the COVID-19 pandemic in
the United States, which is known to have changed our behavior
and interaction with technology and devices [74]. Indeed,
Inverso et al [75] showed higher engagement rates during the
COVID-19 pandemic because of an increased reliance on
technology during the lockdown. The WASH study began
recruitment on March 15, 2020, shortly after the World Health
Organization declared COVID-19 a pandemic on March 11,
2020. Therefore, we did not have pre-post pandemic data to
account for the potential impact of the pandemic on participant
engagement with technology and devices. Second, the original
purpose of the WASH study was to use the study app to detect
cold and influenza symptoms. Thus, participants were not
randomized among different recruitment platforms, incentive
distribution frequency, and timing of baseline surveys that varied
between phases 1 and 2 of the study. Consequently, our findings
are not causal or linked to the impact of 1 factor on participant
recruitment and retention between phases. For example, this
analysis compares the population characteristics of those
recruited from web-based crowdsourcing platforms (phase 2)
compared with participants enrolling based on social media and
local advertisements (open enrollment phase 1) as a whole. We
were not able to explore within-phase recruitment differences;
that is, between those recruited from social media versus those
recruited from local news media advertisements. This is mainly
because of the limited information available in the study data,
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which does not allow for such differences to be investigated.
Further research studies using a randomized design are needed
to investigate the impact of individual changes in recruitment
and retention strategies and their effectiveness for use in
decentralized research. Third, we could not control for the
participants’ previous experience in crowdsourcing platforms
and research tasks, which can be a confounder [41] depending
on the nature of the assessment. Future research studies should
assess participants’ prior participation in similar or other
research studies to assess any differential impact on primary
outcomes. Fourth, in phase 1, participant recruitment via press
releases was centered in the Greater Seattle area, which may
not be representative of the population of the United States. In
addition, because of the high proportion of missingness in the
baseline geolocation data, we could not determine the geospatial
representativeness of the cohort. Future studies should prioritize
collecting high-level geolocation data, such as the state, city,
or zip code, to help assess the geospatial representativeness of

the study cohort. Fifth, we could not account for all the
underlying within-study differences in the outcomes; for
instance, the probable technical glitches concerning the steep
drop in participant engagement at the participant level on day
36 in phase 1 and fluctuations in sensor data collection or
management in phase 2 (Multimedia Appendix 9). These
technical issues could have impacted the participants’
willingness to remain engaged and increased the perceived
burden of participants who were active in the study at the time
of technical glitches. Sixth, despite our filtering out bad actors,
some could still have been successfully enrolled by creating
multiple accounts or using multiple devices. We suggest that
future digital health research studies specifically report and
compare the impact of different temporal recruitment and
incentive strategies on enrolled cohorts’ characteristics and
engagement metrics as well as fraudulent enrollments to allow
for future replication and the establishment of a set of guidelines
for successful methods of participant recruitment and retention.
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