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Abstract

Background: Parkinson disease (PD) is a neurodegenerative disorder with a variety of motor and nonmotor symptoms. Many
of these symptoms can be monitored by eHealth solutions, including smartphone apps, wearable sensors, and camera systems.
The usability of such systems is a key factor in long-term use, but not much is known about the predictors of successful use and
preferable methods to assess usability in patients with PD.

Objective: This study tested methods to assess usability and determined prerequisites for successful use in patients with PD.

Methods: We performed comprehensive usability assessments with 18 patients with PD using a mixed methods usability battery
containing the System Usability Scale, a rater-based evaluation of device-specific tasks, and qualitative interviews. Each patient
performed the usability battery with 2 of 3 randomly assigned devices: a tablet app, wearable sensors, and a camera system. The
usability battery was administered at the beginning and at the end of a 4-day testing period. Between usability batteries, the
systems were used by the patients during 3 sessions of motor assessments (wearable sensors and camera system) and at the
movement disorder ward (tablet app).

Results: In this study, the rater-based evaluation of tasks discriminated the best between the 3 eHealth solutions, whereas
subjective modalities such as the System Usability Scale were not able to distinguish between the systems. Successful use was
associated with different clinical characteristics for each system: eHealth literacy and cognitive function predicted successful use
of the tablet app, and better motor function and lower age correlated with the independent use of the camera system. The successful
use of the wearable sensors was independent of clinical characteristics. Unfortunately, patients who were not able to use the
devices well provided few improvement suggestions in qualitative interviews.

Conclusions: eHealth solutions should be developed with a specific set of patients in mind and subsequently tested in this
cohort. For a complete picture, usability assessments should include a rater-based evaluation of task performance, and there is a
need to develop strategies to circumvent the underrepresentation of poorly performing patients in qualitative usability research.
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Introduction

Parkinson disease (PD) is a neurodegenerative disorder
characterized by a variety of motor and nonmotor symptoms.
Despite the neurodegenerative nature of the disease, dopamine
replacement therapy can drastically improve symptoms and
quality of life, especially in the early stages of the disease [1].
With longer disease duration, symptoms often begin to fluctuate
during the day, making the exact timing and dosage of
medication more important [2]. eHealth solutions are becoming
increasingly available, offering the potential to remind patients
of their medications, assess the extent and timing of motor
fluctuations, and ultimately help guide the decision for advanced
therapeutic options such as deep brain stimulation and
medication pumps [3-5]. In addition, eHealth solutions enable
clinicians to assess patients over extended periods of time in
their home environment. This method can help improve patient
care but also provide more precise and more relevant end points
for clinical trials [6].

A wide range of eHealth solutions has been examined in patients
with PD, but most studies focus on selected subgroups of
patients, such as those in earlier stages of the disease [7]. In the
clinical routine, however, patients with PD are distributed across
a wide range of age groups with diverse educational
backgrounds, distinct motor impairments and—in many
patients—important psychiatric and cognitive comorbidities
[8]. There is a paucity of studies systematically investigating
barriers for the successful implementation of eHealth solutions
in the heterogeneous population of patients with PD [9].

In this context, usability research provides a variety of
user-based methods that can be categorized into subjective and
objective measures and quantitative and qualitative assessments
[10]. Quantitative methods primarily include questionnaires
and task completions, with questionnaires being the most
frequently used method in eHealth research. The questionnaire
with the broadest implementation among usability studies is the
Systems Usability Scale (SUS) [11], which provides a subjective
assessment of usability by the patient. Task completions provide
objective information but require a system-specific setup, which
can be difficult and time-consuming and potentially limits
comparability. Qualitative methods include focus groups,
interviews, and think-alouds. In contrast to quantitative methods,
they can be more useful in identifying specific usability
problems but suffer from a lack of comparability. Moreover,
qualitative methods require trained evaluators and laborious
data analysis. Think-alouds and qualitative interviews were the
most frequently used methods in the usability testing of eHealth
solutions [11]. For patients with PD specifically, usability
assessments have mainly relied on questionnaires as well as
adherence monitoring and mostly reported positive results for
sensor systems and smartphone/tablet apps [12-15]. Although
mixed methods approaches have become more common
recently, there is substantial heterogeneity in the methods, and
only a minority of studies focused specifically on the usability.
In the broader context of chronic conditions, a recent systematic
review concluded that the usability of wearable devices is poorly
measured and reported [15]. Furthermore, there is no consensus
regarding the methodology to assess usability in older adults,

even though investigations about the sensitivity of different
methods have been explicitly recommended [16].

Against this background, we aimed to identify which methods
are suitable for comprehensive usability testing in our primarily
older cohort of patients with PD and which factors can predict
the successful use of devices for telemedicine and home
monitoring. For this objective, we designed a mixed methods
usability battery based on the most commonly used quantitative
and qualitative methods for eHealth solutions and tested the
usability of 3 different devices, including (1) a tablet app, (2)
wearable sensors, and (3) a camera system.

Methods

Study Population
In all, 18 patients were recruited from the ward for movement
disorders at the University Hospital Dresden between July 2020
and September 2021. Written informed consent was obtained
from all participants before inclusion in the study. Inclusion
criteria were the clinically probable diagnosis of idiopathic PD
by a specialist for movement disorders according to the current
guidelines of the International Movement Disorders Society
[17] and sufficient German language skills. Exclusion criteria
were the inability to walk and any psychiatric comorbidity that
excluded the patients from participating in the study according
to the discretion of the investigator.

Ethics Approval
The study was approved by the institutional review board of
Technische Universität Dresden, Germany (BO-EK-212052020).

Tested Systems
We assessed 3 eHealth solutions that use different paradigms:
(1) guided measurements at specific time points by a camera
system; (2) continuous, implicit monitoring of mobility by
wearable sensors; and (3) a combination of guided and
continuous measurements by a tablet app. The systems were
described in detail previously [18].

Briefly, the 3D-camera system (Motognosis Amsa; Motognosis
GmbH) consisted of a stand-alone PC and a depth camera
(Microsoft Kinect; version 2). Patients were instructed to
perform motor exercises by prerecorded videos and audio
instructions. Kinematic parameters were derived from the
exercises to describe patients’ mobility and symptoms.

The wearable system (PD Neurotechnology Ltd) consisted of
five 9-axis inertial measurement unit sensors, worn on wrists,
shanks, and the trunk. The data from the sensors were used to
analyze patients’motor status [19]. The PDMonitor mobile app
was not used in this study nor was the device used for motor
symptom clinical assessment and treatment modification.

The tablet app (TelePark tablet app; Intecsoft group) included
a medication alert, questionnaires, fall documentation, activity
documentation, and a task reminder.

The tablet app represented a system that was still at an early
stage of development, whereas the 3D-camera system and the
wearable sensors were already fully developed and licensed
medical products.

JMIR Form Res 2022 | vol. 6 | iss. 10 | e39954 | p. 2https://formative.jmir.org/2022/10/e39954
(page number not for citation purposes)

Bendig et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Study Schedule
Inpatients completed 4 assessments on 4 days within a maximum
period of 7 days during their stay at the movement disorders
ward (Figure 1). On day 1, patients performed the baseline
assessment and the first mixed methods usability testing battery
(detailed below). Routine motor testing was carried out on days
2 and 3 (detailed below). Patients were filmed with the camera
system and wore the wearable sensors during the motor testing

sessions. Between assessments, patients used the TelePark app
to complete questionnaires and an electronic version of the
Hauser diary [20]. The wearable sensors and the camera system
were only used or worn during the motor tests and usability
batteries. Patients were encouraged to put on or remove the
sensors independently but received help from the study
personnel if requested. On day 4, patients performed a final
round of motor testing and the second usability testing battery.

Figure 1. Schematic overview of the study schedule. To keep the assessments efficient, only 2 of the 3 devices (tablet app, camera system, and wearable
sensors) were tested per patient, resulting in 3 groups of patients that used the same set of devices. UEQ: User Experience Questionnaire; SUS: System
Usability Scale.

Baseline Assessment
Patients were assessed with rater-based scales and self-report
questionnaires to evaluate motor and cognitive function as well
as eHealth literacy. The questionnaires were filled out digitally
by the patients in the TelePark app. If patients were not able to
independently complete the questionnaires on the tablet, they
were supported by the investigators. The following scales and
questionnaires were used in the baseline assessment: the
Freezing of Gait Questionnaire (FOG-Q) [21], Hoehn and Yahr
scale [22], Unified Parkinson’s Disease Rating Scale III
(UPDRS III) [23], Beck Depression Inventory-II [24], Montreal
Cognitive Assessment (MOCA) [25], and eHealth Literacy
Scale (EHEALS) [26]. The total score of the EHEALS ranges
between 8 and 40, with higher scores indicating higher
self-perceived eHealth literacy.

Motor Testing
Motor testing consisted of a UPDRS III, a timed up-and-go test
[27], a freezing of gait test [28], a Mini-BESTest [29], fast 360°
turns, the video-instructed Motognosis Amsa protocol (finger
tapping, stand up and sit down, stance with closed feet,
comfortable 360° turns, stepping in place, short comfortable
speed walk, and short maximum speed walk), and the
operator-instructed Motognosis PASS-PD protocol (finger
tapping, hand grasping, arm holding, finger-nose test, foot
tapping, stand up and sit down, stance with closed feet,
comfortable 360° turns, stepping in place, comfortable walk,
and maximum speed walk). During the period of the assessment,
patients were filmed by the 3D-camera system and wore the
wearable sensors.

Usability Testing Battery
The usability testing battery was performed on the first and the
last day of the study. To reduce patient burden, each patient
assessed the usability of only 2 of the 3 study components (tablet
app and camera, tablet app and wearables, or camera and
wearables). The devices were assigned randomly to the patients
by a prespecified permuted list. Usability was assessed for each
device separately.

First, patients were given a standardized explanation of the
device. Patients were then instructed to carry out 7
device-related tasks, which covered all important functions of
the systems, as independently as possible. These tasks were
setting up the camera and performing different tasks in the Amsa
protocol (camera system), putting on the sensors and handling
the charging procedure and the data transfer processes (wearable
sensors), and using all relevant functions in the app (tablet app).
The execution of the tasks was observed by the investigators
and rated on a 6-item ordinal scale according to the
independence of task execution (ranging from 5=“Does not
need help; does not consult manual” to 0=“Can contribute
nothing or almost nothing to the implementation of the task”).
The sum of all 7 independence ratings was transformed into a
rater-based independence score ranging from 0% (no
independent use in any tasks) to 100% (fully independent use
in all tasks) with the following formula:

After the task-related device testing, patients filled out the SUS
[30] and were asked again how confident they felt now to use
the devices alone in a home monitoring setting (confidence
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score from 0% to 100%). The SUS is a 10-item Likert scale to
assess subjective usability, containing questions such as the
perceived complexity of a system, the user’s confidence in using
a system, or its learnability. The SUS has been widely used,
and normative data exist allowing SUS ratings to be positioned
relative to other systems [31]. Furthermore, it has been shown
that the SUS can provide valid scores even with small sample
sizes [32].

Finally, we conducted an interview based on domains of
established usability instruments (SUS and user experience
questionnaire [33]). This interview took 15 to 30 minutes and
consisted of 12 open-ended questions concerning the following
domains: attractivity, independent use, learnability, perspicuity,
efficiency, stimulation, and novelty. For each domain, the
patients were asked 2 open-ended questions about their opinion
on the domain quality and about improvement suggestions in
that specific domain. The same procedure was then carried out
for the second device.

Data Analyses and Sample Size
Data are depicted as median with 25th and 75th percentile or
as mean with SD depending on data normality as assessed by

a visual inspection of histograms. To assess the differences
between the systems, a Kruskal-Wallis test with post hoc Dunn
test was used. Due to the small sample size and the exploratory
nature of the study, no correction for multiple testing was used.
Predictors of successful use were identified by correlation
analysis (Spearman ρ). Significant correlations (P<.05) were
visualized in a network graph with the ForceAtlas2 algorithm
[34]. The temporal stability of usability outcomes was assessed
by comparing the first and the second measurement with a
Wilcoxon signed-rank test. Data visualization and statistical
analyses were performed with Python (Statsmodels, Scipy,
Matplotlib, and Seaborn packages) and Gephi software. The
sample size of 12 patients per system was determined using
guidelines for conducting qualitative research [35].

Results

In total, 19 patients were included in the study, and 1 patient
dropped out after the first usability battery due to personal
reasons (not named). The clinical and demographic data of the
remaining 18 patients are summarized in Table 1.

Table 1. Clinical and demographic data. Data are presented as mean with SD or median with absolute range.

Value

18Patient, n

69 (37-86)Age (years), median (range)

Sex (N=18), n (%)

7 (39)Female

11 (61)Male

3 (1-4)Hoehn and Yahr stage, median (range)

11 (7.3)Disease duration (years), mean (SD)

27 (9.0)UPDRS IIIa score, mean (SD)

25 (2.7)MOCAb score, mean (SD)

23 (8.8)EHEALSc score, mean (SD)

12 (7.4)BDI-IId score, mean (SD)

11 (5.1)FOG-Qe score, mean (SD)

aUPDRS III: Unified Parkinson’s Disease Rating Scale III.
bMOCA: Montreal Cognitive Assessment.
cEHEALS: eHealth Literacy Scale.
dBDI-II: Beck Depression Inventory-II.
eFOG-Q: Freezing of Gait Questionnaire.

Testing Usability Measures
The SUS is a widely used score for a quick and simple
assessment of usability [31]. SUS scores (second usability
battery) did not differ significantly between devices (P=.34,
Kruskal-Wallis test; Figure 2A). In addition, we compared the
empirical confidence scores (patient-rated) and the task-based
independence scores (investigator-rated) between the 3 systems
(Figure 2A). The confidence scores and the independence scores

showed a pronounced ceiling effect, whereas the SUS scores
were more evenly distributed (Figure 2B). Exclusively, the
independence scores differentiated between the app (ie, the
device that is still at an early stage of development) and the
fully developed and licensed systems (P=.006, Kruskal-Wallis
test; post hoc tests in Figure 2A). For the subsequent correlation
analyses in this study, we therefore selected the objective
independence score as the most relevant measure of successful
use.
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Figure 2. Comparison of independence scores, confidence scores, and SUS scores from the second usability battery: (A) Box plots and (B) histograms.
P values were from Dunn test without correction after significant Kruskal-Wallis test. Box plots depict median (black line), IQR (boxes), range (whiskers),
and outliers (diamonds; >75th percentile + 1.5 IQR or <25th percentile – 1.5 IQR). SUS: System Usability Scale.

Identifying Predictors for Successful Use
To identify factors that predict whether patients are able to use
a device well, we plotted correlation matrices to explore the
interdependence between the rater-based independence score,
the SUS, and baseline parameters. In addition to the
independence scores and SUS scores, the following variables
were used in the correlation analysis: age, sex, Hoehn and Yahr
stage, UPDRS III, FOG-Q, MOCA, and EHEALS. The network
graph of correlations visualizes that the rater-based
independence scores for wearable sensors (yellow), camera
system (green), and tablet app (red) do not cluster together
(Figure 3). This visualization indicates that the prerequisites for
successful use differ between the 3 systems. The independent
use of the wearable sensors did not correlate significantly with
any clinical characteristics (age: P=.07; sex: P=.38; Hoehn and
Yahr stage: P=.44; UPDRS III: P=.59; FOG-Q: P=.94; MOCA:
P=.40; EHEALS: P=.68), but only 3 (25%) out of 12 patients
were not able to use the system fully independently. This finding

implies that the sensors were usable for most of the patients
regardless of their clinical characteristics. The independent use
of the camera system correlated strongly with age and motor
scores (FOG-Q, UPDRS III, and Hoehn and Yahr stage), and
the independent use of the tablet app showed strong correlations
with cognition (MOCA) and eHealth literacy (EHEALS). Table
2 shows the strongest correlations with the rater-based
independence score for each system.

In contrast to the rater-based independence scores, we found
no significant correlations between the subjective and more
variable SUS scores with the clinical measures for the tablet
app (age: P=.79; sex: P=.89; Hoehn and Yahr stage: P=.85;
UPDRS III: P=.92; FOG-Q: P=.14; MOCA: P=.28; EHEALS:
P=.07), the wearable sensors (age: P=.78; sex: P=.15; Hoehn
and Yahr stage: P=.52; UPDRS III: P=.99; FOG-Q: P=.12;
MOCA: P=.96; EHEALS: P=.19), or the camera system (age:
P=.45; sex: P=.70; Hoehn and Yahr stage: P=.62; UPDRS III:
P=.16; FOG-Q: P=.49; MOCA: P=.99; EHEALS: P=.26).
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Figure 3. Network graph of correlations (Spearman ρ) between baseline variables, SUS scores, and independence scores from the second usability
battery. Only significant correlations (P<.05, uncorrected values) are included the network. The relative size of the variables indicates the absolute
number of connections. The thickness of the connections indicates the magnitude of the correlation (thicker lines indicate stronger correlations). BDI-II:
Beck Depression Inventory; EHEALS: eHealth Literacy Scale; FOG-Q: Freezing of Gait Questionnaire; MOCA: Montreal Cognitive Assessment;
UPDRS III: Unified Parkinson's Disease Rating Scale III; SUS: System Usability Scale.

Table 2. Correlations of clinical characteristics with independent use. The 3 strongest correlations (Spearman ρ) with P values between clinical
characteristics and independence scores for the 3 systems are shown.

P valueSpearman ρDevice, clinical characteristic

Tablet app

<.0010.90EHEALSa

<.0010.89MOCAb

.03–0.63Age

Camera system

.002–0.80FOG-Qc

.009–0.72Hoehn and Yahr

.009–0.71Age

Wearable sensors

———d

aEHEALS: eHealth Literacy Scale.
bMOCA: Montreal Cognitive Assessment.
cFOG-Q: Freezing of Gait Questionnaire.
dFor the wearable sensors, no significant correlations were found.
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Temporal Change in Usability Outcomes
To assess the system-specific learnability and stability of the
usability outcomes, we compared usability outcomes between
the first and second round of the usability battery on days 1 and
4, respectively. For the tablet app, independence and confidence
scores did not differ significantly between the 2 time points
(independence: mean 79.5%, SD 25.6% vs 75.5%, SD 25.8;
P=.34; confidence: mean 75.4%, SD 24.3% vs 69.6%, SD
38.8%; P=.29). The camera system, in contrast, had a
significantly higher confidence score in the second usability
battery (mean 63.3%, SD 32.5% vs 84.7%, SD 19.8 %; P=.008);
independence scores were high at both time points (mean 89.3%,
SD 14.8 % vs 93.8%, SD 7.9%; P=.12). The wearable sensors
showed a significantly higher independence score in the second
usability battery (mean 91.4%, SD 9.2% vs 97.9%, SD 4.1%;
P=.03); confidence ratings did not change (mean 79.5%, SD
25.6% vs 75.5%, SD 25.8%; P=.67). SUS scores did not change
significantly between the 2 time points for any of the tested
systems (tablet app: P=.18; camera system: P=.20; wearable
sensors: P=.88). The system-specific changes in usability
outcomes indicate a different learnability for each individual
system and underscore the importance of longitudinal usability

assessments. Furthermore, they suggest that performance and
confidence may differ. The lack of difference in the SUS scores
between the 2 time points is consistent with the lack of
difference in the SUS scores between the 3 systems (Figure 2),
suggesting that the SUS can miss important aspects of usability.

Influences on Qualitative Interviews
In the qualitative section of the first and second usability
batteries, patients were asked about improvement suggestions
for the eHealth solutions. To determine predictors of qualitative
feedback, we counted the total number of unique improvement
suggestions per patient and correlated them with usability
outcomes and clinical characteristics. We found
moderate-to-strong and highly significant correlations with
independence scores, confidence scores, eHealth literacy, motor
phenotype, and age (Figure 4). These correlations suggest that
patients who were able to use the devices well gave more valid
improvement suggestions than patients who did not. Patients
giving more feedback were also younger, had lower motor
disability, and higher eHealth literacy. SUS scores did not
correlate with the number of improvement suggestions,
suggesting that the subjective rating of an eHealth solution does
not affect the number of improvement suggestions.

Figure 4. Linear regression plots of valid improvement suggestions with (A) independence scores, (B) confidence scores, (C) SUS scores, and (D-F)
clinical characteristics. The strength of the correlation (Spearman ρ) is indicated in the plot. All P values for the Spearman correlations were <.001
except for the SUS score (P=.11). Individual values for each system are plotted. Improvement suggestions are aggregated from both usability measurements
for each system. EHEALS: eHealth Literacy Scale; UPDRS III: Unified Parkinson's Disease Rating Scale III; SUS: System Usability Scale.

Discussion

Principal Findings
In this study, we performed a comprehensive usability battery
on 3 eHealth solutions, using subjective and objective
assessments. The objective rater-based evaluation of tasks
(independence score) discriminated better between the different

eHealth solutions than the subjective quantitative usability scale
(SUS). Moreover, the successful use of each eHealth solution
was associated with specific clinical characteristics—notably,
cognitive ability and eHealth literacy for the tablet app or motor
ability and age for the camera system. Finally, most
improvement suggestions were provided by patients who were
able to use the eHealth solutions well.
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Comparison Between Usability Measures
There is a paucity of data on the sensitivity of usability testing
methods [16], and optimal methods for specific eHealth
solutions or cohorts have not been identified [11]. We therefore
compared usability as reported by the quantitative and
easy-to-use SUS with patient-rated confidence and
investigator-rated independence in prespecified settings. Given
that the 3 eHealth solutions investigated here (tablet app, camera
system, and wearable sensors) differed strongly in complexity
and development stage, we expected to find differences in all
methods. However, only the rater-based independence scores
showed a significant difference between the 3 technologies. The
ceiling effect of the independence scores could indicate that the
systems were indeed easy to use for many patients.
Alternatively, the prespecified tasks were not hard enough. As
the tasks were developed to cover all relevant functions of each
system, we interpreted this ceiling effect as successful use. The
SUS score did not show a ceiling effect, but it did not
differentiate between the fully developed systems and the less
developed system in our study. Furthermore, the SUS did not
reflect the increased confidence and independence between the
first and second time point of testing. Collectively, these findings
are in line with similar studies, where successful use was not
associated with higher SUS scores [36,37]. These findings
suggest that this well-established scale could potentially miss
important information in the population of patients with PD,
and in other populations of older and cognitively impaired
people. The recent development of a simplified SUS score for
older adults is in line with this interpretation [38].

The improvements in confidence or independence scores for
the camera system and the wearable sensors indicate that even
in a short period of 4 days, older adults (1) are able to change
their perspective toward eHealth solutions and (2) can learn to
handle such systems. The lack of improvement for the tablet
app shows that learnability is dependent on the eHealth solution,
which is in line with previous results from other studies [39].
These results should caution researchers to not rely on a single
test to predict successful use. Based on our results, we
recommend a short rater-based test, a subjective patient-rating
validated in older adults (eg, a questionnaire), and a trial period
for each patient and device before applying eHealth solutions
in trials or clinical practice.

Predictors of Successful Use
Predictors of successful use differ strongly between individual
eHealth solutions (Figure 3). For the app, the strong associations
with cognitive function and eHealth literacy indicate that both
constructs need to be considered in the design of such mobile
health systems with a largely software-based interface [40,41].
Hence, eHealth solutions should be developed with a specific
range of cognitive function and eHealth literacy in mind and
then should be tested and marketed for this group of patients.
For the camera system, older patients with more severe motor
symptoms had more problems, whereas the wearable sensors
were usable for most patients independent of clinical
characteristics. This finding is not surprising given the mainly
physical nature of interacting with the wearable sensors or
performing guided tasks in front of the camera. In contrast,

sensors were usable by most patients regardless of their clinical
characteristics. Collectively, our findings align well with the
MOLD-US framework, where usability prerequisites for the
app system fall into the domains of cognition and motivation
and prerequisites for the camera system are associated with the
physical ability [42].

The subjective aspect reported by the SUS is necessary for a
patient to start the use of eHealth solutions to avoid attrition
with continual use [10], and indeed, SUS scores varied
considerably between participants (Figure 2). We sought to
determine predictors of SUS scores. However, we were not able
to determine predictors for subjective usability scores as reported
by SUS, likely due to the small sample size (n=12 per system)
in our study. We only observed for the app an association
between the SUS and independence scores in the graph analysis
(Figure 3). This analysis, therefore, needs to be addressed in
subsequent studies with more participants. Moreover, attrition
could not be assessed in this short and highly standardized
paradigm.

Improvement Suggestions
We found a strong positive correlation between successful use
and a patient’s ability to advise on possible improvements of
the tested systems during the qualitative interview (Figure 4A).
In other words, suggestions came mainly from individuals that
did not have problems using the system. Therefore, established
methods such as “think-alouds” or “focus groups” could suffer
from an overrepresentation of opinions voiced by
well-performing, mildly affected patients. It is not clear whether
following these suggestions will improve or worsen usability
for those who have trouble using the system successfully. The
method of counting the total number of improvement
suggestions does not take into account the quality of the
suggestions; thus, the presented results should be reinvestigated
more thoroughly in future studies. Furthermore, the reported
correlation could also be mediated or moderated by the factors
age, disease severity, cognitive status, or eHealth literacy (Figure
4D to F). However, inferring causal connections between highly
interconnected variables was beyond the scope of this study,
and to our knowledge, there are currently no articles that have
comprehensively assessed the effects of these variables in the
context of qualitative usability research. With an aging
population in Western countries and a predicted rise in patients
living with neurodegenerative diseases [43,44], a critical
assessment of qualitative usability methods in the context of
the target group is warranted.

Limitations
Limitations of our study include the small sample size, only a
single recruitment site, and the controlled inpatient setting.
Furthermore, the comparison of different methods is based on
a subset of the existing tools that does not include techniques
such as think-alouds, focus groups, or alternative measures of
efficiency (eg, time to complete a task). This limitation reduces
the generalizability of our findings and warrants further
investigation with different systems, settings, and patient
cohorts. Moreover, the high correlations between eHealth
literacy, motor symptoms, cognitive impairment, and age limit
the causal interpretability of the obtained results.
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Conclusions
The successful use of eHealth solutions in patients with PD is
highly dependent on system-specific and patient-specific
characteristics. Considering the growing field of digital health
and the already existing abundance of different solutions for

patients with PD [4,45,46], researchers and industrial partners
need to consider the heterogeneity of patients and design eHealth
solution for a specific constellation of age, cognitive and motor
function, as well as eHealth literacy, and these criteria can be
helpful for physicians in selecting the best solution for each
individual patient.

Acknowledgments
This research was funded by the European regional development fund. Medical devices from the companies PD Neurotechnology
Ltd (wearable sensors) and Motognosis GmbH (camera system) were provided free of charge. Motognosis GmbH and PD
Neurotechnology Ltd agreed upon cooperation with the Technical University of Dresden for the TelePark study. These agreements
include the mutual use of pseudonymized clinical data and the data from each respective system for the development and
improvement of algorithms. The funders had no role in the design of the study; in the collection, analyses, or interpretation of
data; in the writing of the manuscript; or in the decision to publish the results.

Authors' Contributions
For the research project, JB, KFL, MS, and BHF contributed to conceptualization; AS, JL, JB, and AF contributed to project
administration; and AS, JL, and JB contributed to the investigation. For statistical analysis, JB, AF, KFL, and BHF contributed
to the methodology; AS and JB conducted the formal analysis; and BHF and HR contributed to supervision. For manuscript
preparation, JB, AF, BHF wrote the original draft and all authors contributed to writing—review and editing. JB and BHF take
responsibility for the integrity of the data and the accuracy of the data analysis.

Conflicts of Interest
None declared.

References

1. Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D, et al. Past, present, and future of Parkinson's disease:
a special essay on the 200th anniversary of the shaking palsy. Mov Disord 2017 Sep;32(9):1264-1310 [FREE Full text]
[doi: 10.1002/mds.27115] [Medline: 28887905]

2. Fox SH, Katzenschlager R, Lim S, Barton B, de Bie RMA, Seppi K, Movement Disorder Society Evidence-Based Medicine
Committee. International Parkinson and movement disorder society evidence-based medicine review: update on treatments
for the motor symptoms of Parkinson's disease. Mov Disord 2018 Aug;33(8):1248-1266. [doi: 10.1002/mds.27372] [Medline:
29570866]

3. Sica M, Tedesco S, Crowe C, Kenny L, Moore K, Timmons S, et al. Continuous home monitoring of Parkinson's disease
using inertial sensors: a systematic review. PLoS One 2021 Apr 04;16(2):e0246528 [FREE Full text] [doi:
10.1371/journal.pone.0246528] [Medline: 33539481]

4. Sibley KG, Girges C, Hoque E, Foltynie T. Video-based analyses of Parkinson's disease severity: a brief review. J Parkinsons
Dis 2021 Jul 16;11(s1):S83-S93 [FREE Full text] [doi: 10.3233/JPD-202402] [Medline: 33682727]

5. Little MA. Smartphones for remote symptom monitoring of Parkinson's disease. J Parkinsons Dis 2021 Jul 16;11(s1):S49-S53
[FREE Full text] [doi: 10.3233/JPD-202453] [Medline: 33814462]

6. Espay AJ, Bonato P, Nahab FB, Maetzler W, Dean JM, Klucken J, Movement Disorders Society Task Force on Technology.
Technology in Parkinson's disease: challenges and opportunities. Mov Disord 2016 Sep;31(9):1272-1282 [FREE Full text]
[doi: 10.1002/mds.26642] [Medline: 27125836]

7. Morgan C, Rolinski M, McNaney R, Jones B, Rochester L, Maetzler W, et al. Systematic review looking at the use of
technology to measure free-living symptom and activity outcomes in Parkinson's disease in the home or a home-like
environment. J Parkinsons Dis 2020 Apr 03;10(2):429-454 [FREE Full text] [doi: 10.3233/JPD-191781] [Medline: 32250314]

8. Greenland JC, Williams-Gray CH, Barker RA. The clinical heterogeneity of Parkinson's disease and its therapeutic
implications. Eur J Neurosci 2019 Feb;49(3):328-338. [doi: 10.1111/ejn.14094] [Medline: 30059179]

9. Cancela J, Pastorino M, Tzallas AT, Tsipouras MG, Rigas G, Arredondo MT, et al. Wearability assessment of a wearable
system for Parkinson's disease remote monitoring based on a body area network of sensors. Sensors (Basel) 2014 Sep
16;14(9):17235-17255 [FREE Full text] [doi: 10.3390/s140917235] [Medline: 25230307]

10. Hornbæk K. Current practice in measuring usability: challenges to usability studies and research. Int J Hum Comput Stud
2006 Feb;64(2):79-102. [doi: 10.1016/j.ijhcs.2005.06.002]

11. Maramba I, Chatterjee A, Newman C. Methods of usability testing in the development of eHealth applications: a scoping
review. Int J Med Inform 2019 Jun;126:95-104. [doi: 10.1016/j.ijmedinf.2019.03.018] [Medline: 31029270]

12. Bouça-Machado R, Pona-Ferreira F, Leitão M, Clemente A, Vila-Viçosa D, Kauppila LA, et al. Feasibility of a mobile-based
system for unsupervised monitoring in Parkinson's disease. Sensors (Basel) 2021 Jul 21;21(15):4972 [FREE Full text] [doi:
10.3390/s21154972] [Medline: 34372208]

JMIR Form Res 2022 | vol. 6 | iss. 10 | e39954 | p. 9https://formative.jmir.org/2022/10/e39954
(page number not for citation purposes)

Bendig et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://europepmc.org/abstract/MED/28887905
http://dx.doi.org/10.1002/mds.27115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28887905&dopt=Abstract
http://dx.doi.org/10.1002/mds.27372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29570866&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0246528
http://dx.doi.org/10.1371/journal.pone.0246528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33539481&dopt=Abstract
https://europepmc.org/abstract/MED/33682727
http://dx.doi.org/10.3233/JPD-202402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33682727&dopt=Abstract
https://europepmc.org/abstract/MED/33814462
http://dx.doi.org/10.3233/JPD-202453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33814462&dopt=Abstract
https://europepmc.org/abstract/MED/27125836
http://dx.doi.org/10.1002/mds.26642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27125836&dopt=Abstract
https://europepmc.org/abstract/MED/32250314
http://dx.doi.org/10.3233/JPD-191781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32250314&dopt=Abstract
http://dx.doi.org/10.1111/ejn.14094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30059179&dopt=Abstract
https://www.mdpi.com/resolver?pii=s140917235
http://dx.doi.org/10.3390/s140917235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25230307&dopt=Abstract
http://dx.doi.org/10.1016/j.ijhcs.2005.06.002
http://dx.doi.org/10.1016/j.ijmedinf.2019.03.018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31029270&dopt=Abstract
https://www.mdpi.com/resolver?pii=s21154972
http://dx.doi.org/10.3390/s21154972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34372208&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


13. Gatsios D, Antonini A, Gentile G, Marcante A, Pellicano C, Macchiusi L, et al. Feasibility and utility of mHealth for the
remote monitoring of Parkinson disease: ancillary study of the PD_manager randomized controlled trial. JMIR mHealth
uHealth 2020 Jun 29;8(6):e16414 [FREE Full text] [doi: 10.2196/16414] [Medline: 32442154]

14. Mascheroni A, Choe EK, Luo Y, Marazza M, Ferlito C, Caverzasio S, et al. The SleepFit tablet application for home-based
clinical data collection in Parkinson disease: user-centric development and usability study. JMIR mHealth uHealth 2021
Jun 08;9(6):e16304 [FREE Full text] [doi: 10.2196/16304] [Medline: 34100767]

15. Keogh A, Argent R, Anderson A, Caulfield B, Johnston W. Assessing the usability of wearable devices to measure gait
and physical activity in chronic conditions: a systematic review. J Neuroeng Rehabil 2021 Sep 15;18(1):138 [FREE Full
text] [doi: 10.1186/s12984-021-00931-2] [Medline: 34526053]

16. Silva AG, Caravau H, Martins A, Almeida AMP, Silva T, Ribeiro ?, et al. Procedures of user-centered usability assessment
for digital solutions: scoping review of reviews reporting on digital solutions relevant for older adults. JMIR Hum Factors
2021 Jan 13;8(1):e22774 [FREE Full text] [doi: 10.2196/22774] [Medline: 33439128]

17. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson's
disease. Mov Disord 2015 Oct;30(12):1591-1601. [doi: 10.1002/mds.26424] [Medline: 26474316]

18. Bendig J, Wolf A, Mark T, Frank A, Mathiebe J, Scheibe M, et al. Feasibility of a multimodal telemedical intervention for
patients with Parkinson's disease-a pilot study. J Clin Med 2022 Feb 18;11(4):1074 [FREE Full text] [doi:
10.3390/jcm11041074] [Medline: 35207351]

19. Kostikis N, Rigas G, Konitsiotis S, Fotiadis D. Motor fluctuations and dyskinesia. Mov Disord Clin Pract 2020 Mar
17;7(S2):S6-S44. [doi: 10.1002/mdc3.12923]

20. Hauser RA, Deckers F, Lehert P. Parkinson's disease home diary: further validation and implications for clinical trials.
Mov Disord 2004 Dec;19(12):1409-1413. [doi: 10.1002/mds.20248] [Medline: 15390057]

21. Nilsson MH, Hariz G, Wictorin K, Miller M, Forsgren L, Hagell P. Development and testing of a self administered version
of the Freezing of Gait Questionnaire. BMC Neurol 2010 Sep 23;10:85 [FREE Full text] [doi: 10.1186/1471-2377-10-85]
[Medline: 20863392]

22. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967 May;17(5):427-442. [doi:
10.1212/wnl.17.5.427] [Medline: 6067254]

23. Movement Disorder Society Task Force on Rating Scales for Parkinson's Disease. The Unified Parkinson's Disease Rating
Scale (UPDRS): status and recommendations. Mov Disord 2003 Jul;18(7):738-750. [doi: 10.1002/mds.10473] [Medline:
12815652]

24. Beck AT, Steer RA, Ball R, Ranieri W. Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients.
J Pers Assess 1996 Dec;67(3):588-597. [doi: 10.1207/s15327752jpa6703_13] [Medline: 8991972]

25. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment,
MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005 Apr;53(4):695-699. [doi:
10.1111/j.1532-5415.2005.53221.x] [Medline: 15817019]

26. Norman CD, Skinner HA. eHEALS: the eHealth Literacy Scale. J Med Internet Res 2006 Nov 14;8(4):e27 [FREE Full
text] [doi: 10.2196/jmir.8.4.e27] [Medline: 17213046]

27. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr
Soc 1991 Feb;39(2):142-148. [doi: 10.1111/j.1532-5415.1991.tb01616.x] [Medline: 1991946]

28. Ziegler K, Schroeteler F, Ceballos-Baumann AO, Fietzek UM. A new rating instrument to assess festination and freezing
gait in Parkinsonian patients. Mov Disord 2010 Jun 15;25(8):1012-1018. [doi: 10.1002/mds.22993] [Medline: 20310009]

29. Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to improve the Balance
Evaluation Systems Test: the mini-BESTest. J Rehabil Med 2010 Apr;42(4):323-331 [FREE Full text] [doi:
10.2340/16501977-0537] [Medline: 20461334]

30. Brooke J. SUS: a 'quick and dirty' usability scale. In: Jordan PW, Thomas B, McClelland IL, Weerdmeester B, editors.
Usability Evaluation In Industry. London, UK: Taylor Francis, CRC Press; 1996:6.

31. Lewis JR. The System Usability Scale: past, present, and future. Int J Hum Comput Interact 2018 Mar 30;34(7):577-590.
[doi: 10.1080/10447318.2018.1455307]

32. Tullis TS, Stetson JN. A comparison of questionnaires for assessing website usability. 2004 Presented at: UPA 2004: 13th
Annual Usability Professionals' Association Conference; June 7-11, 2004; Minneapolis, MN p. 1-12 URL: https://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.396.3677&rep=rep1&type=pdf

33. Laugwitz B, Held T, Schrepp M. Construction and evaluation of a user experience questionnaire. 2008 Presented at: USAB
2008: HCI and Usability for Education and Work; November 20-21, 2008; Graz, Austria p. 63-76. [doi:
10.1007/978-3-540-89350-9_6]

34. Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a continuous graph layout algorithm for handy network
visualization designed for the Gephi software. PLoS One 2014 Jun 10;9(6):e98679 [FREE Full text] [doi:
10.1371/journal.pone.0098679] [Medline: 24914678]

35. Guest G, Bunce A, Johnson L. How many interviews are enough? Field Methods 2016 Jul 21;18(1):59-82. [doi:
10.1177/1525822X05279903]

JMIR Form Res 2022 | vol. 6 | iss. 10 | e39954 | p. 10https://formative.jmir.org/2022/10/e39954
(page number not for citation purposes)

Bendig et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://mhealth.jmir.org/2020/6/e16414/
http://dx.doi.org/10.2196/16414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32442154&dopt=Abstract
https://mhealth.jmir.org/2021/6/e16304/
http://dx.doi.org/10.2196/16304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34100767&dopt=Abstract
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-021-00931-2
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-021-00931-2
http://dx.doi.org/10.1186/s12984-021-00931-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34526053&dopt=Abstract
https://humanfactors.jmir.org/2021/1/e22774/
http://dx.doi.org/10.2196/22774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33439128&dopt=Abstract
http://dx.doi.org/10.1002/mds.26424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26474316&dopt=Abstract
https://www.mdpi.com/resolver?pii=jcm11041074
http://dx.doi.org/10.3390/jcm11041074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35207351&dopt=Abstract
http://dx.doi.org/10.1002/mdc3.12923
http://dx.doi.org/10.1002/mds.20248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15390057&dopt=Abstract
https://bmcneurol.biomedcentral.com/articles/10.1186/1471-2377-10-85
http://dx.doi.org/10.1186/1471-2377-10-85
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20863392&dopt=Abstract
http://dx.doi.org/10.1212/wnl.17.5.427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6067254&dopt=Abstract
http://dx.doi.org/10.1002/mds.10473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12815652&dopt=Abstract
http://dx.doi.org/10.1207/s15327752jpa6703_13
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8991972&dopt=Abstract
http://dx.doi.org/10.1111/j.1532-5415.2005.53221.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15817019&dopt=Abstract
https://www.jmir.org/2006/4/e27/
https://www.jmir.org/2006/4/e27/
http://dx.doi.org/10.2196/jmir.8.4.e27
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17213046&dopt=Abstract
http://dx.doi.org/10.1111/j.1532-5415.1991.tb01616.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1991946&dopt=Abstract
http://dx.doi.org/10.1002/mds.22993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20310009&dopt=Abstract
https://www.medicaljournals.se/jrm/content/abstract/10.2340/16501977-0537
http://dx.doi.org/10.2340/16501977-0537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20461334&dopt=Abstract
http://dx.doi.org/10.1080/10447318.2018.1455307
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.396.3677&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.396.3677&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-540-89350-9_6
https://dx.plos.org/10.1371/journal.pone.0098679
http://dx.doi.org/10.1371/journal.pone.0098679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24914678&dopt=Abstract
http://dx.doi.org/10.1177/1525822X05279903
http://www.w3.org/Style/XSL
http://www.renderx.com/


36. Broekhuis M, van Velsen L, Hermens H. Assessing usability of eHealth technology: a comparison of usability benchmarking
instruments. Int J Med Inform 2019 Aug;128:24-31. [doi: 10.1016/j.ijmedinf.2019.05.001] [Medline: 31160008]

37. Gibson A, Ryan A, Bunting B, McCauley C, Laird L, Ferry F, et al. Assessing usability testing for people living with
dementia. 2016 Oct 13 Presented at: REHAB '16: 4th Workshop on ICTs for improving Patients Rehabilitation Research
Techniques; October 13-14, 2016; Lisbon, Portugal p. 25-31. [doi: 10.1145/3051488.3051492]

38. Holden RJ. A Simplified System Usability Scale (SUS) for cognitively impaired and older adults. Proc Int Symp Hum
Factors Ergon Heal Care 2020 Sep 16;9(1):180-182. [doi: 10.1177/2327857920091021]

39. Barnard Y, Bradley MD, Hodgson F, Lloyd AD. Learning to use new technologies by older adults: perceived difficulties,
experimentation behaviour and usability. Comput Human Behav 2013 Jul;29(4):1715-1724. [doi: 10.1016/j.chb.2013.02.006]

40. Kreps GL. The relevance of health literacy to mHealth. Stud Health Technol Inform 2017;240:347-355. [Medline: 28972527]
41. El Benny M, Kabakian-Khasholian T, El-Jardali F, Bardus M. Application of the eHealth literacy model in digital health

interventions: scoping review. J Med Internet Res 2021 Jun 03;23(6):e23473 [FREE Full text] [doi: 10.2196/23473]
[Medline: 34081023]

42. Wildenbos GA, Peute L, Jaspers M. Aging barriers influencing mobile health usability for older adults: a literature based
framework (MOLD-US). Int J Med Inform 2018 Jun;114:66-75. [doi: 10.1016/j.ijmedinf.2018.03.012] [Medline: 29673606]

43. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted
prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022 Feb
01;7(2):e105-e125 [FREE Full text] [doi: 10.1016/S2468-2667(21)00249-8] [Medline: 34998485]

44. Bach J, Ziegler U, Deuschl G, Dodel R, Doblhammer-Reiter G. Projected numbers of people with movement disorders in
the years 2030 and 2050. Mov Disord 2011 Oct;26(12):2286-2290. [doi: 10.1002/mds.23878] [Medline: 22021158]

45. Del Din S, Kirk C, Yarnall AJ, Rochester L, Hausdorff JM. Body-worn sensors for remote monitoring of Parkinson's disease
motor symptoms: vision, state of the art, and challenges ahead. J Parkinsons Dis 2021 Jul 16;11(s1):S35-S47 [FREE Full
text] [doi: 10.3233/JPD-202471] [Medline: 33523020]

46. Linares-del Rey M, Vela-Desojo L, Cano-de la Cuerda R. Mobile phone applications in Parkinson's disease: a systematic
review. Neurologia (Engl Ed) 2019 Jan;34(1):38-54 [FREE Full text] [doi: 10.1016/j.nrl.2017.03.006] [Medline: 28549757]

Abbreviations
EHEALS: eHealth Literacy Scale
FOG-Q: Freezing of Gait Questionnaire
MOCA: Montreal Cognitive Assessment
PD: Parkinson Disease
UPDRS III: Unified Parkinson’s Disease Rating Scale III
SUS: System Usability Scale

Edited by M Focsa; submitted 29.05.22; peer-reviewed by W Maetzler, J Brooke; comments to author 03.07.22; revised version
received 28.08.22; accepted 03.09.22; published 25.10.22

Please cite as:
Bendig J, Spanz A, Leidig J, Frank A, Stahr M, Reichmann H, Loewenbrück KF, Falkenburger BH
Measuring the Usability of eHealth Solutions for Patients With Parkinson Disease: Observational Study
JMIR Form Res 2022;6(10):e39954
URL: https://formative.jmir.org/2022/10/e39954
doi: 10.2196/39954
PMID:

©Jonas Bendig, Anja Spanz, Jana Leidig, Anika Frank, Marcus Stahr, Heinz Reichmann, Kai F Loewenbrück, Björn H Falkenburger.
Originally published in JMIR Formative Research (https://formative.jmir.org), 25.10.2022. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative
Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org,
as well as this copyright and license information must be included.

JMIR Form Res 2022 | vol. 6 | iss. 10 | e39954 | p. 11https://formative.jmir.org/2022/10/e39954
(page number not for citation purposes)

Bendig et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.ijmedinf.2019.05.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31160008&dopt=Abstract
http://dx.doi.org/10.1145/3051488.3051492
http://dx.doi.org/10.1177/2327857920091021
http://dx.doi.org/10.1016/j.chb.2013.02.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28972527&dopt=Abstract
https://www.jmir.org/2021/6/e23473/
http://dx.doi.org/10.2196/23473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34081023&dopt=Abstract
http://dx.doi.org/10.1016/j.ijmedinf.2018.03.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29673606&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2468-2667(21)00249-8
http://dx.doi.org/10.1016/S2468-2667(21)00249-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34998485&dopt=Abstract
http://dx.doi.org/10.1002/mds.23878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22021158&dopt=Abstract
https://europepmc.org/abstract/MED/33523020
https://europepmc.org/abstract/MED/33523020
http://dx.doi.org/10.3233/JPD-202471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33523020&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0213-4853(17)30163-9
http://dx.doi.org/10.1016/j.nrl.2017.03.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28549757&dopt=Abstract
https://formative.jmir.org/2022/10/e39954
http://dx.doi.org/10.2196/39954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

