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Abstract

Background: A smartphone image recognition app is expected to be a novel tool for measuring nutrients and food intake, but
its performance has not been well evaluated.

Objective: We assessed the accuracy of the performance of an image recognition app called CALO mama in terms of the nutrient
and food group contents automatically estimated by the app.

Methods: We prepared 120 meal samples for which the nutrients and food groups were calculated. Next, we predicted the
nutrients and food groups included in the meals from their photographs by using (1) automated image recognition only and (2)
manual modification after automatic identification.

Results: Predictions generated using only image recognition were similar to the actual data on the weight of meals and were
accurate for 11 out of 30 nutrients and 4 out of 15 food groups. The app underestimated energy, 19 nutrients, and 9 food groups,
while it overestimated dairy products and confectioneries. After manual modification, the predictions were similar for energy,
accurately capturing the nutrients for 29 out of 30 of meals and the food groups for 10 out of 15 meals. The app underestimated
pulses, fruits, and meats, while it overestimated weight, vitamin C, vegetables, and confectioneries.

Conclusions: The results of this study suggest that manual modification after prediction using image recognition improves the
performance of the app in assessing the nutrients and food groups of meals. Our findings suggest that image recognition has the
potential to achieve a description of the dietary intakes of populations by using “precision nutrition” (a comprehensive and
dynamic approach to developing tailored nutritional recommendations) for individuals.

(JMIR Form Res 2022;6(1):e31875) doi: 10.2196/31875
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Introduction

Noncommunicable diseases such as cardiovascular disease,
diabetes, and some forms of cancer pose severe public health
problems and constitute serious global social welfare issues [1].
Diet is a key modifiable factor related to health [1,2]. National
strategies to improve diet and physical activity patterns at the

population level have been implemented worldwide [1], and
Japan has a national healthy diet goal for improving public
health [3]. To plan and evaluate the achievement of these goals,
the development of effective and adequate dietary assessment
tools at the population level has long been a focus in the public
health field.
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In the research field, dietary recalls, dietary records, and food
frequency questionnaires have been widely used as general
dietary assessment tools [4]. Each of these methods has its
strengths and limitations such as placing a burden on participants
and researchers or limited accuracy. These tools are strongly
dependent on researcher training and competency for dietary
recalls, participant literacy, high motivation to maintain dietary
records, and participant literacy and memory for questionnaires.
New dietary assessment tools that utilize computers, internet,
telecommunications, and imaging analysis technology have
been developed and advanced [5]. Some of these new tools do
not involve self-reporting or a dietitian’s entry of data, but
instead employ automated image recognition for food
photographs taken by a smartphone and an automated
calculation system of nutrient intake [6-11]. Some of these tools
provide automatic feedback on the nutrient intake of individuals,
which may improve dietary outcomes and promote behavioral
changes among users [6,12]. Advancements in these new
technological tools will allow users to monitor their daily dietary
habits and enable researchers to assess dietary intake at the
population level more easily than ever before.

These comprehensive dietary assessment tools, which use image
recognition systems to evaluate nutrient and food contents, have
not yet had their validity experimentally evaluated. Previous
experimental studies have examined the validity of the estimated
quantities of energy and protein [11] or carbohydrates [13] in
samples assessed using new dietary assessment tools, and other
studies have examined the validity of food portion sizes [14,15].
In the epidemiological field, some validation studies have
examined the validity of these apps but only for energy intake
[16,17]. Two studies have evaluated the validity of these apps
in assessing selected nutrient intakes [18,19], and 1 validation
study has examined efficacy at monitoring the intake of the 4
food groups [20]. These new dietary assessment tools have
already been used in many weight-loss intervention studies [21],
and yet, their validity regarding comprehensive nutrients and
food groups has not yet been assessed.

In this study, we examined the validity of nutrient and food
group content assessed using an image recognition app called
CALO mama. This study explored the potential of a smartphone
app to estimate dietary intake at the population level in daily
life.

Methods

A Smartphone App With an Image Recognition System
Link & Communication Inc (Tokyo, Japan) recently developed
a health app for smartphones called CALO mama. Users of
CALO mama can register their diet, exercise, mood, and quality
of sleep on a daily basis. CALO mama offers the automated
image recognition of meals and can automatically calculate
nutrient and food content based on photographs taken by users.
Additionally, artificial intelligence creates specific dietary
recommendations for users based on their registered meals. For
example, it warns users with nutrient deficiencies or an excess
intake of fat, sugar, and salt, and indicates what they ought to
watch out for in their next meal.

Figure 1 shows screenshots of this app illustrating how to
identify and record meals. This app has a built-in list of
approximately 150,000 food items, including fresh food,
self-made meals, ready meals, and commercial products.
Nationally registered dietitians developed a list of food items
by referring to several recipe books and their standard energy
and nutrient contents based on the Standard Tables of Food
Composition in Japan [22]. Ready meals and commercial
products were also registered from approximately 450
manufacturers and restaurants by dietitians. First, photographs
of the meals taken by users are sent to a cloud server. An
automated image recognition system involving deep learning
predicts food items from a list of the standard 215 items and
identifies ingredients in each item and portion size. Next, another
system calculates the nutritional values of the items based on
the predictions made by the image recognition system. Finally,
the predicted names of the items, their portion sizes, and
corresponding nutrition values are displayed on users’
smartphones. If the outputs appear imprecise, users can manually
search for appropriate food items from the full list of
approximately 150,000 items, modify the name and portion size
of each item, and record them. For example, automated image
recognition can distinguish coffee with milk and without milk
based on the color of the liquid. In contrast, it is difficult to
detect the difference between foods that cannot be determined
from their external shape or color. If, for example, the app
imprecisely recognizes diet coke and low-fat yogurt as a
sugar-sweetened beverage and full-fat yogurt, respectively,
based on the list of the standard 215 items, users can select the
correct items from the full list and modify their records.
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Figure 1. Screenshots of meal recording using the CALO mama app.

Study Protocol
Figure 2 shows how the results of our study data were obtained.
A total of 120 sample meals, including 3-9 food dishes, were
prepared by cooking staff (Table 1); 97 out of 120 (80.8%)
sample meals had 4-6 dishes. Basically, the sample meals were

cooked following standard recipes, but the cooking staff were
allowed to remove or add ingredients while cooking. Dietitians
observed the cooking process and recorded the nutrient and
food group contents of the 120 sample meals as the gold
standard (data G).

Figure 2. The study protocol using the CALO mama app.

Table 1. The number of dishes included in a sample meal (N=120 sample meals).a

Sample meals, n (%)Dishes (n)

12 (10)3

35 (29.2)4

44 (36.7)5

18 (15)6

9 (7.5)7

1 (0.8)8

1 (0.8)9

a“Dishes” means dishes including multiple ingredients and foods such as a glass of milk or an apple, which can be regarded as 1 item in a meal.

The data of the 120 sample meals were registered in the app by
20 research staff who were recruited by Link & Communication

Inc and blinded to the cooking process. First, the research staff
took photographs of the sample meals and uploaded them to
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the app. Subsequently, we obtained the data regarding the
nutrition and food content of the meals automatically predicted
by the app (data X). In the next step, the staff were allowed to
manually modify the name and portion size of each item based
on their visual inspection. If the staff found that some ingredients
needed to be added or removed, they modified the outputs from
the app and recorded them (data Y). For every sample meal, 4
research staff registered data X and Y. We calculated the means
of the 4 entries of data X and Y and compared them with data
G as the gold standard.

Statistical Analysis
Weight, energy, nutrient, and food group contents derived from
data G, X, and Y are presented as means and standard
deviations. The food groups used in this study are shown in
Table 2. The means of the difference between data X or Y and
data G were also calculated. Statistically significant differences
between data X or Y and data G in each of the dietary variables
were determined with the paired t test using 2-sided values.
Statistical significance was set at P<.05. Further, we evaluated
the agreement for the energy and macronutrients of data X and
Y compared with data G by using Bland-Altman plots [23]. All
statistical analyses were conducted using the SPSS statistical
software package version 36 (IBM Corp).

Table 2. Definition of the food groups.

Item number in the Standard Tables of Food Composition in Japan [22] and definitionaFood group

1001-1166Cereals

2001, 2006-2027, 2041, 2045-2055Potatoes

4001-4094 and % energy of carbohydrate <51%Pulses

5001-5037 and dietary fiber >6.1 g/100 g and polyunsaturated fat >12 g/100 gNuts

6001-6362Vegetables

6001-6362 and β-carotene ≥600 μg/100 g,

or 6182, 6007-6011, 6020, 6021, 6093, 6094, 6157, 6158, 6245, 6246, 6237

Green and yellow vegetables

7001-7176 and carbohydrate <39 g, salt=0 g, and not included beverages, canned, or preserved in syrupFruits

8001-8052Mushrooms

9001-9055, Korean-style laver (ie, dried, edible seaweed)Seaweed

10001-10362, 10389-10423Fish and shellfish

11001-11197, 11199-11293Meats

12020-12016, 12020Eggs

13001-13041, 13048-13058 and calcium ≥100 mg/100 gDairy products

15001-15141Confectioneries

16001-16024, 16027-16032, tequila, liqueur, shochu mixed with carbonated beverage, makgeolliAlcoholic beverages

aFood items not given an item number in the Standard Tables of Food Composition in Japan are described with food names.

Results

The means and standard deviations of meal weight and energy,
nutrients, and food group contents derived from data G, X, and
Y are shown in Table 3. Data X were similar to data G in weight,
accurately capturing 11 out of 30 nutrients and 4 out of 15 food
groups; it underestimated energy, capturing only 19 nutrients
and 9 food groups, while it overestimated dairy products and
confectioneries. After manual modification, data Y were similar
to data G in energy, accurately capturing 29 out of 30 nutrients
and 10 out of 15 food groups; it underestimated pulses, fruits,

and meats, while it overestimated weight, vitamin C, vegetables,
and confectioneries.

Figure 3 also depicts the proportions of the mean contents of
data X or Y to that of data G for selected nutrient and food
groups that are often employed in dietary counseling. The
contents of data Y were relatively well estimated for sample
meals compared to those of data X. We depicted the
Bland-Altman plots for energy (Figure 4) and macronutrients
(Multimedia Appendix 1) to evaluate the agreement of the values
estimated by the app and the gold standards. Both data X and
Y showed acceptable agreement with data G.
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Table 3. Nutrient and food group contents in sample meals (G), automatically estimated meals (X), and manually adjusted meals (Y) from the CALO
mama app.

Manually adjusted meals (N=120)Automatically estimated meals (N=120)Sample meals
(N=120)

UnitDietary variables

Pb valueDifferenceaMean (SD)Pb valueDifferenceaMean (SD)Mean (SD)

<.00148572 (169).72–4521 (156)524 (129)gWeight

.409571 (185)<.001–57505 (189)562 (191)kcalEnergy

Nutrient

.40–0.422.6 (9.0)<.001–3.519.5 (8.9)23.1 (8.9)gProtein

.430.519.1 (10.9).02–1.916.7 (10.9)18.6 (11.3)gFat

.500.165.56 (4.03).10–0.504.91 (3.84)5.41 (3.93)gSaturated fat

.55–0.073.15 (1.88)<.001–0.732.49 (1.66)3.22 (1.84)gn-6 polyunsaturated fat

.680.010.62 (0.50).01–0.130.48 (0.43)0.60 (0.56)gn-3 polyunsaturated fat

.742128 (107).001–20106 (91)126 (97)mgCholesterol

.271.570.4 (23.2).02–4.364.6 (24.5)68.9 (23.4)gCarbohydrate

.070.24.7 (1.9).600.14.5 (1.8)4.5 (1.9)gDietary fiber

.654173 (228).12–29140 (142)169 (235)µg RAEVitamin A

.47–0.32.1 (5.7).19–0.61.8 (5.5)2.4 (5.5)µgVitamin D

.240.12.4 (1.3).001–0.32.0 (1.2)2.3 (1.3)mgα-tocopherol

.29480 (56).65–275 (55)76 (62)µgVitamin K

>.990.000040.35 (0.22)<.001–0.060.29 (0.17)0.35 (0.23)mgVitamin B1

.520.010.4 (0.17).08–0.030.3 (0.16)0.4 (0.21)mgVitamin B2

.440.15.0 (3.1).007–0.64.2 (2.9)4.8 (3.2)mg NENiacin

.180.020.42 (0.21)<.001–0.050.35 (0.21)0.40 (0.20)mgVitamin B6

.86–0.031.8 (2.5).12–0.41.4 (2.4)1.8 (3.3)µgVitamin B12

.295118 (65).09–8105 (64)113 (79)µgFolate

.660.021.89 (0.63)<.001–0.241.63 (0.64)1.87 (0.68)mgPantothenic acid

<.001539 (29).37136 (29)34 (26)mgVitamin C

.06761241 (707).003–1571008 (582)1166 (629)mgSodium

.0830764 (266)<.001–60674 (253)734 (258)mgPotassium

.246149 (92).38–6136 (95)143 (94)mgCalcium

.32–279 (34)<.001–1170 (29)81 (42)mgMagnesium

.387329 (123)<.001–35288 (128)323 (114)mgPhosphorus

.420.042.4 (0.9)<.001–0.22.1 (0.8)2.3 (1.0)mgIron

.85–0.012.6 (0.9)<.001–0.32.3 (1.0)2.6 (1.0)mgZinc

.23–0.020.35 (0.16).001–0.060.30 (0.13)0.37 (0.28)mgCopper

.080.040.83 (0.35).14–0.040.75 (0.34)0.79 (0.38)mgManganese

.140.23.1 (1.8)<.001–0.52.5 (1.5)3.0 (1.6)gSalt

Food group

.12–6.8125.2 (81.0)<.001–21.8110.2 (80.6)132.0 (79.5)gCereals

.95–0.19.1 (23.2).02–3.16.1 (19.9)9.2 (25.9)gPotatoes

.009–3.711.1 (28.6).01–5.19.7 (24.6)14.8 (37.9gPulses

.180.020.1 (0.5).32–0.0080.04 (0.5)0.1 (0.5)gNuts

.0211.3100.1 (68.6).29–4.884.0 (59.9)88.8 (57.8)gVegetables
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Manually adjusted meals (N=120)Automatically estimated meals (N=120)Sample meals
(N=120)

UnitDietary variables

Pb valueDifferenceaMean (SD)Pb valueDifferenceaMean (SD)Mean (SD)

.082.633.5 (39.5).640.731.6 (41.1)30.9 (35.5)gGreen and yellow

vegetables

<.001–6.515.3 (27.0).003–6.515.3 (26.6)21.8 (41.1)gFruits

.23–0.62.5 (9.8).03–1.12.0 (9.6)3.1 (10.1)gMushrooms

.13–0.64.3 (10.5).02–1.43.5 (9.5)4.9 (11.6)gSeaweeds

.18–2.015.9 (34.0).005–7.910.1 (26.1)17.9 (38.5)gFish and shellfish

.001–6.124.8 (31.3)<.001–11.918.9 (29.9)30.8 (39.5)gMeats

.41–0.915.6 (23.3).007–3.512.9 (18.9)16.4 (22.8)gEggs

.241.928.4 (59.5.035.431.9 (62.4)26.5 (54.0)gDairy products

.0311.219.0 (66.2).0216.624.3 (83.3)7.8 (23.8)gConfectioneries

.950.02.5 (5.9).08–0.91.6 (4.5)2.5 (5.8)gAlcoholic

beverages

aMean values of X–G or Y–G.
bPaired 2-sided t test.

Figure 3. Proportions of the selected nutrient and food group contents of automatically recognized meals (data X) and manually adjusted meals (data
Y) from CALO mama to the gold standard of sample meals (data G).
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Figure 4. The Bland-Altman plots for energy. Data X are automatically recognized, data Y are manually adjusted, and data G are the gold standard.

Discussion

This study examined the validity of weight, energy, 30 nutrients,
and 15 food group contents estimated by the CALO mama app
by comparing sample meals as a reference. The mean nutrient
and food group contents estimated by CALO mama using
manually adjusted data were close to those of sample meals.
Most of the mean nutrient and food group contents that CALO
mama automatically estimated were significantly lower than
those of the sample meals. Nevertheless, the automatically
estimated data hit the reference data in 11 out of 30 cases for
nutrients and in 4 out of 15 cases for food groups without
manual adjustment. These results may indicate that CALO mama
has the potential to estimate representative intakes among
populations by using an automated picture recognition system.
Further, the manually adjusted data matched the reference data
in 29 out of 30 cases for nutrients and 10 out of 15 cases for
food groups. The estimation was even more accurate when the
automatically calculated data were manually adjusted.

Many new dietary assessment tools using new technology, such
as smartphones and image analysis systems, have recently been
developed [6,24,25]. Although these new tools offer a wide
range of feasible options to enable dietary assessment to be
incorporated into daily routines [24], adequate validation studies
have not yet been conducted with regard to the estimation of
comprehensive nutrient and food intake. Furthermore, a study
design for examining the validity of these new tools has not yet
been established. Some experimental studies have evaluated
the validity of predictions by using image recognition
technologies embedded in mobile devices and examined whether
they precisely estimate energy or a single nutrient content for
sample meals. Six et al [11] examined the accuracy of the energy
and protein content of prepared meals and snacks estimated by
a mobile phone food recording system in 1 day among 15
adolescents by comparing duplicated meals and snacks. For
many of the full-meal items, the energy and protein values
estimated by the tool were accurate within ±10% of the gold
standard. In terms of the intake of each participant on a single
research day, many of the participants had energy values within
±10% errors and values for protein within ±20% errors. Rhyner

et al [13] examined the difference between the carbohydrate
content of prepared meals in a hospital and the values estimated
by the mobile phone–based system over 10 days in the cases of
19 adult volunteers with type 1 diabetes. The mean error was
26.2%. Other studies have examined the accuracy of the portion
size of dish items [14,15]. Although all of these experimental
validation studies concluded that these new dietary assessment
tools are useful and can assist in dietary assessments, the validity
of nutrient or food content estimations as concluded by
automated image recognition systems has not yet been
examined.

Some epidemiological studies have examined the validity of
dietary intakes estimated by the new tools by using a traditional
study design, in which dietary intakes estimated from the new
assessment tools were compared with those from a doubly
labeled water method or 24-hour recall. Some studies have
examined the validity of energy intake alone [16,17,19], and 1
study examined the validity of energy intake and 4 types of food
[20]. Other studies have examined the validity of the intake of
energy and some selected nutrients [18,19]. Many of these
epidemiological validation studies showed that the dietary values
from the new tools in 3- to 7-day assessments were acceptable
[17-19] for assessing dietary habits among individual
participants, although 1 study concluded that a 1-day assessment
was inadequate [20]. The validity of these tools for estimating
nutrient and food intake at the population level has not yet been
adequately examined.

To the best of our knowledge, this study is the first validation
study to evaluate the ability of a smartphone app with an image
recognition system to estimate comprehensive nutrient and food
group contents in terms of the ability to estimate mean dietary
contents in over 100 meals. Five commercial diet-tracking
mobile apps were recently evaluated in Japan with regard to
their ability to estimate energy and nutrient intake. Only the
nutrition calculation software aspect was evaluated; however,
the validity, including the discrimination between dishes and
the estimation of portion size by automatic image recognition,
was not evaluated [26]. Our research is novel in this respect.
Although the validity of nutrient and food group contents at the
individual level was not adequately explored, as this study is
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experimental, the mean dietary values of 120 meals estimated
from the CALO mama app were close to those included in the
sample meals for many nutrients and foods.

Misreporting is inevitable in traditional self-reporting dietary
assessment methods, such as dietary records, 24-hour recalls,
and food frequency questionnaires. Many studies have shown
that the energy intake of populations assessed by self-reporting
dietary assessment methods was misreported in the range of
approximately –40% to 20% compared to the doubly labeled
water method [2]. Other nutrients are also assumed to be
underreported or overreported to a similar extent in self-reported
dietary assessments. This study showed that the proportion of
the difference in nutrient contents from data X to the sample
meals was –25% to 4% and that from data Y was –11% to 13%.
Although we could not compare our results to those of previous
traditional validation studies because of the differing study
designs, our results indicate that the image recognition system
may have the potential to estimate nutrient intakes among
populations to the same extent as traditional dietary assessment
tools. In addition, CALO mama immediately provides
individuals with data on their dietary intake, which can be used
as is or easily adjusted if needed. Compared to traditional
self-reporting methods, registration, and assessments for dietary
intake, the app is much lower in cost and reduces the burden
on both those who make assessments and those who need to be
assessed. These findings support the idea that, for many nutrients
and food groups, apps with an image recognition system have
great potential to estimate dietary intake. Further validation
studies at both the individual and population levels are needed
to confirm the accuracy of the estimations as a dietary
assessment tool in large-scale epidemiological studies.

The major strength of this study is that this validity assessment
examined comprehensive nutrient and food group contents, and
the estimation of nutrients and food groups was made by a health
app that employed an image recognition system that enables
the automatic calculation of the nutrient and food content in a
meal.

Several limitations of this study require mentioning. First, the
generalizability of our findings is lacking because we examined
the performance of a specific app, CALO mama. The
performance of image recognition could be better or worse than
our findings, depending on the app. Nevertheless, we found that
manual modification can improve the accuracy of predictions
carried out using image recognition. Second, not all research
staff were familiar with the CALO mama app. Furthermore, in
the protocol of this study, the research staff could modify the
outputs from the app only once without eating or tasting the

sample meals. However, the app has a function allowing users
to modify meals after the initial registry, and they can thus
correct and register their meals more precisely after eating. In
this study, meal registration correction may have been
inadequate. However, the results showed that most of the mean
nutrient and food group contents estimated by the image
recognition system were similar to the reference, especially
when manually adjusted. This result may indicate that even
users who are unfamiliar with the app with image recognition
can have their diets assessed correctly. If users are familiar with
the app and register their meals after eating, the estimation may
be more precise. Third, the image recognition system has
difficulty distinguishing foods with similar shapes and colors.
However, it was improved by updating its prediction model and
expanding the training data. There is also a plan for
implementing collaborative filtering into the system;
collaborative filtering will help the system to provide more
precise predictions based on the combination of food items (for
instance, brown liquid that comes with a Japanese meal is more
likely to be miso soup rather than coffee with milk). Finally,
this study examined the ability to estimate the mean values of
the nutrient and food group contents of 120 meals by using the
CALO mama app. Although the estimated values were
acceptable, it cannot be concluded from the results that CALO
mama can estimate dietary intake at the population level in daily
life. Further validation studies at both the population and
individual levels are needed in the epidemiological field that
uses CALO mama as a health administration app for individuals
or as a dietary assessment tool.

In conclusion, this study showed that the mean values of the
nutrient and food group contents of 120 meals derived from the
image recognition system in the CALO mama app were well
estimated compared to those of the sample meals. Automatically
estimated data have a certain amount of accuracy with regard
to estimating nutrient and food group contents, but this accuracy
is enhanced when these data are manually adjusted. Health apps
embedding image recognition have the potential to contribute
to “precision nutrition,” a comprehensive and dynamic approach
to developing tailored nutritional recommendations in
consideration of genetics, dietary habits, eating patterns, and
physical activity [27,28]. They can overcome the limitations of
conventional measurements, and real-time data from them will
enable researchers to study how diet affects health and diseases
more accurately and provide helpful dietary recommendations.
Further validation studies at both the population and individual
levels are essential if we are to utilize image recognition as a
health administration app for individuals or as a dietary
assessment tool in research.
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