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Abstract

Background: Despite decades of research, sepsis remains a leading cause of mortality and morbidity in intensive care units
worldwide. The key to effective management and patient outcome is early detection, for which no prospectively validated machine
learning prediction algorithm is currently available for clinical use in Europe.

Objective: We aimed to develop a high-performance machine learning sepsis prediction algorithm based on routinely collected
intensive care unit data, designed to be implemented in European intensive care units.

Methods: The machine learning algorithm was developed using convolutional neural networks, based on Massachusetts Institute
of Technology Lab for Computational Physiology MIMIC-III clinical data from intensive care unit patients aged 18 years or
older. The model uses 20 variables to produce hourly predictions of onset of sepsis, defined by international Sepsis-3 criteria.
Predictive performance was externally validated using hold-out test data.

Results: The algorithm—NAVOY Sepsis—uses 4 hours of input and can identify patients with high risk of developing sepsis,
with high performance (area under the receiver operating characteristics curve 0.90; area under the precision-recall curve 0.62)
for predictions up to 3 hours before sepsis onset.

Conclusions: The prediction performance of NAVOY Sepsis was superior to that of existing sepsis early warning scoring
systems and comparable with those of other prediction algorithms designed to predict sepsis onset. The algorithm has excellent
predictive properties and uses variables that are routinely collected in intensive care units.

(JMIR Form Res 2021;5(9):e28000) doi: 10.2196/28000
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Introduction

Sepsis is a life-threatening clinical syndrome caused by
dysregulated host response to infection [1]. Sepsis and the
inflammatory response that ensues can lead to multiple organ
dysfunction syndrome and death. It has been estimated that
sepsis is present in 6% of adult hospital admissions [2] and in
approximately one-third of intensive care unit (ICU) patients

[3]. Globally, it affects approximately 49 million people every
year [4]. During the coronavirus disease 2019 (COVID-19)
pandemic, sepsis was the most frequently observed complication
among adult inpatients at Jinyintan Hospital and Wuhan
Pulmonary Hospital (Wuhan, China) who had been discharged
or had died (as of January 31, 2020) [5].

There is a continuum of severity, ranging from sepsis to septic
shock. Although wide-ranging and dependent upon study
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populations, mortality has been estimated to be at least 10%,
and at least 40% when septic shock is present [1]. Despite
decades of research, sepsis remains a leading cause of mortality
and morbidity in modern ICUs worldwide [3]. The World Health
Assembly and World Health Organization made sepsis a global
health priority in 2017 and adopted a resolution to improve the
prevention, diagnosis, and management of sepsis.

Early detection and effective management of sepsis is crucial,
especially in ICUs—where the most critically ill patients are
treated. Early diagnosis of sepsis has been shown to reduce
delays in treatment, increase appropriate care, and reduce
mortality [6-9]. A retrospective analysis of 17,000 patients has
shown that there is a linear increase in the risk of mortality for
each hour of delay in antibiotic administration [10]. Although
sepsis is a potentially fatal condition, there is general consensus
in guidelines [11] that early and relatively inexpensive
intervention with antibiotics, fluid resuscitation, source control,
and support of vital organ function lead to dramatically
improved patient outcomes.

Early recognition of sepsis can be difficult due to its syndromic
nature and patient heterogeneity. Early recognition is further
complicated by the lack of reliable blood- or plasma-based
biomarkers. Hundreds of biomarkers have been tested as
prognostic markers in sepsis [12-14]; however, none has
demonstrated sufficient specificity or sensitivity to be routinely
used in clinical practice [12]. In this context, there exists a
significant unmet medical need to assist clinicians with
identifying hospitalized patients at risk of developing sepsis.

Today, sepsis diagnosis is made by combining information from
clinical examinations performed by health care professionals
and information provided from monitoring devices and
laboratory data (ie, based on empirical clinical decision rules).
This procedure is both time-consuming and subjective (ie,
heavily dependent upon the skills and experience of the doctor
or nurse). Timely intervention is critical for patients with sepsis,
yet with the manual routines used at present, there is a risk of
delayed diagnosis of sepsis and initiation of treatment.

Given that ICU clinicians are inundated with ever-increasing
amounts of data collected at higher and higher resolution,
machine learning prediction algorithms have gained increased
interest in research and clinical practice because of their
potential to improve early detection and adherence to treatment
protocols and decrease time to antibiotic administration, which
have been proved to improve clinical outcomes [6-9].

Fleuren et al [15] and Moor et al [16] reviewed previously
developed sepsis prediction algorithms; however, they found
that very few had been prospectively evaluated in clinical
practice, and those that had been, were evaluated in the United
States to date. To date, and to the best of our knowledge, only
1 ICU algorithm is available for clinical use [17,18], and another
is planned to be prospectively validated [19].

The purpose of this proof-of-concept study was to develop a
machine learning algorithm for early prediction of which
patients in ICUs will develop sepsis within coming hours, using
clinical data routinely collected in electronic health records.

Methods

Data Set and Study Population
The algorithm for prediction of sepsis was developed based on
Massachusetts Institute of Technology Lab for Computational
Physiology MIMIC-III Clinical Database [20]. This database
contains demographic, vital sign, laboratory test, medication,
and other data for 38,597 adult ICU patients (61,532 ICU stays),
for whom data were collected between 2001 and 2012. At the
time of algorithm development, the newer MIMIC-IV data were
not available.

Sepsis was defined by Sepsis-3 criteria [1], which require a
suspected infection and an increase in Sequential Organ Failure
Assessment score of at least 2 points. Suspected infection [21]
was defined as instances when antibiotics had been prescribed
and when body fluid cultures were present in the electronic
health record within a specific time window; if a culture is
ordered within 24 hours after antibiotics, or antibiotics had been
prescribed less than 72 hours after a culture order, the time of
suspected infection was determined to be the earlier of these
two. Sepsis-relevant antibiotics and body fluids were chosen as
the indicators based on methods used by Liu et al [22]—they
used blood cultures and a defined list of antibiotics (presented
in the code repository referred to in their paper). A patient was
considered septic if their Sequential Organ Failure Assessment
score had increased by at least 2 points within the time window
from 48 hours before to 24 hours after the time of suspected
infection, and the time of sepsis onset was defined as the time
of the 2-point increase. All patients not fulfilling Sepsis-3
criteria were defined as the nonsepsis cohort. The code used for
assigning sepsis labels is available upon request.

Patients included (Figure 1; Table 1) in the analysis had at least
1 measurement of each of the variables included in the algorithm
and were at least 18 years of age at the time of admission.
Patients receiving antibiotics before ICU admission and patients
with an International Statistical Classification of Diseases,
ninth revision, (ICD-9) code that matched a sepsis diagnosis
but for whom Sepsis-3 criteria were not met at any time during
the ICU stay were not included. The latter can occur, for
example, when the patient already had received a sepsis
diagnosis at admission. No time stamps are available; therefore,
diagnosis cannot be confirmed retrospectively. Differences
between sepsis and nonsepsis cohorts were assessed using an
appropriate test of statistical significance (Welch t test for
numerical variables; the Fisher exact test or chi-square test for
categorical variables). ICU stays logged using the CareVue
(Philips) electronic health record system were excluded, that
is, only ICU stays logged using the Metavision (iMDSoft)
electronic health record system were included, since negative
blood cultures are underreported with CareVue, which means
that suspicion of infection is underrepresented in these patients
[17].

The algorithm used the following 20 variables: age, gender,
heart rate, respiratory rate, temperature, systolic blood pressure,
diastolic blood pressure, vasopressor use, serum creatinine,
glucose, lactate, platelets, white blood cell count, blood urea
nitrogen, bilirubin, pH, oxygen saturation pulse oximetry,
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fraction of inspired oxygen, International Normalized Ratio,
and Glasgow Coma Scale. Hourly values were used, and a last
observation carried forward approach was used for single
missing data points. For any hours with more than 1
measurement, hourly averages were used. Variable selection

for the algorithm was conducted in cooperation with medical
professionals to ensure that spurious variables were excluded
and the most important variables were included. Any additional
feature engineering was deemed unnecessary and was left for
the network to discover.

Figure 1. Intensive care unit (ICU) stays included in the analyses. EHR: electronic health record; ICD-9: International Statistical Classification of
Disease, ninth revision.
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Table 1. Characteristics of the patient population used for algorithm development and validation.

P valueNonsepsisSepsisPatient characteristic

Age (years)

<.00164.7 (15.7)60.9 (16.3)Mean (SD)

66.2 (54.6-76.8)61.6 (49.7-73.7)Median (IQR)

.002Age groups (years), n (%)

78.0 (3.1)18.0 (4.4)18-29

84.0 (3.4)20.0 (4.9)30-39

228.0 (9.2)57.0 (14.1)40-49

441.0 (17.7)79.0 (19.5)50-59

49.0 (2.0)9.0 (2.2)60-69

1608.0 (64.6)222.0 (54.8)≥70

.08Gender, n (%)

1055.0 (42.4)153.0 (37.8)Female

1433.0 (57.6)252.0 (62.2)Male

Length of ICUa stay (days)

<.0016.1 (5.9)12.2 (9.4)Mean (SD)

4.1 (2.3-7.7)10.9 (5.0-16.6)Median (IQR)

<.001Length of ICU stay (days), n (%)

1344.0 (54.0)89.0 (22.0)0-4

692.0 (27.8)96.0 (23.7)5-9

260.0 (10.5)78.0 (19.3)10-14

93.0 (3.7)70.0 (17.3)15-19

50.0 (2.0)30.0 (7.4)20-24

49.0 (2.0)42.0 (10.4)25+

N/AbTime from ICU admission to sepsis onset (hours)

N/A32.0 (57.9)Mean (SD)

N/A4.3 (0.9-36.6)Median (IQR)

N/AAntibiotics administered before or at time of sepsis onset, n (%)

N/A4.0 (1.0)Yes

N/A401.0 (99.0)No

Comorbiditiesc, n (%)

<.0011070.0 (43.0)235.0 (58.0)Renal disease

.64750.0 (30.1)117.0 (28.9)Diabetes

<.0011709.0 (68.7)370.0 (91.4)Respiratory disease

.722252.0 (90.5)364.0 (89.9)Cardiovascular disease

<.001468.0 (18.8)110.0 (27.2)Liver disease

.68462.0 (18.6)71.0 (17.5)Cancer

<.001Admission to type of intensive care unit, n (%)

771.0 (31.0)191.0 (47.2)Medical intensive care unit

619.0 (24.9)43.0 (10.6)Cardiac surgery recovery unit

493.0 (19.8)70.0 (17.3)Surgical intensive care unit

303.0 (12.2)58.0 (14.3)Trauma Surgical intensive care unit
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P valueNonsepsisSepsisPatient characteristic

302.0 (12.1)43.0 (10.6)Coronary care unit

<.001Death during hospital stay, n (%)

328.0 (13.2)118.0 (29.1)Yes

2160.0 (86.8)287.0 (70.9)No

aICU: intensive care unit.
bN/A: not applicable.
cComorbidities are defined by International Statistical Classification of Diseases, ninth revision, codes recorded during the intensive care unit stay.

Machine Learning Algorithm Development
The algorithm was developed using convolutional neural
networks [23]. This method was chosen based on its ability to
handle time series data. Data were preprocessed using R (The
R Project), and the models were executed using TensorFlow
[24,25] backend in Python (version 3.7.6) via Jupyter Notebooks
(version 6.0.3).

The model has 2 convolutional layers, the first with 10 filters,
the second with 5 filters, each of size (1,2) where 1 is the
variable domain and 2 is the time domain. The filter walks
across the variables one by one, looking at each pair of time
points for that variable. The convolutional layers are followed
by 4 fully connected layers of size 50, 25, 15, 10, respectively,
before feeding into the final output layer. Dropout with
parameter 0.5 is performed between each layer, both
convolutional and fully connected.

The batch size for training was 512. Training continued until
the training loss had not improved in the last 1000 epochs (early
stopping), after which the weights with the lowest training loss
were saved. A cyclical learning rate was used [26] (with initial
learning rate: 1e–4, maximal learning rate: 1e–3, step size: 16
* number of training examples).

Different parts of the training data were used for development
and internal validation of the algorithm in order to avoid
overfitting. Random onset matching [16]—randomly chosen
4-hour sequences, with the last time point up to 3 hours before
onset, for patients with sepsis, or at any point during the whole
ICU stay, for patients without sepsis—was used. The time points
were sampled from a β(10,1) distribution, with ranges for
patients without sepsis scaled to match those of their entire stay.
The β parameters were chosen to place higher weights early in
their stay. Data were sampled to maintain a prevalence of sepsis
of 20% in both training and test data, to resemble the prevalence
of sepsis in ICU patients in North America and Western Europe
[3]. This also facilitated comparisons between training and test
data, since area under the receiver operating characteristic curve
(AUROC), area under the precision-recall curve (AUPRC), and
accuracy are affected by prevalence. A prediction horizon of 3
hours was chosen based on the availability of data at different
time points; at earlier time points, there were considerably fewer
ICU stays with data for all variables of interest. In a similar
study, data imputation was performed for early time points with
missing data, for example, by copying the first available data
to earlier time points [17]; however, this technique would be
impossible to use in a live setting; thus, it was not used in our
study. The training data consisted of 7681 sequences (n=2593

ICU stays) of 4-hour data (sepsis: n=1385 sequences, nonsepsis:
n=6296 sequences), and internal validation during training was
performed on 633 sequences of 4-hour data (n=200 ICU stays).
The final algorithm was externally validated using the second
part of the data (hold-out test data, ie, data that were not used
in development of the algorithm; n=95 ICU stays, n=152
sequences of 4-hour data).

Comparison With the Predictive Abilities of Related
Scores
Performance of the algorithm was compared with a number of
illness severity risk scores currently used in clinical practice to
predict sepsis in the same time frame (for a summary of sepsis
early warning scoring systems, see Postelnicu et al [27] and
Rosenqvist [28]). The following scores were included in this
study: Systemic Inflammatory Response Syndrome criteria, at
least 2 of 4 criteria present [29]; Quick Sepsis-Related Organ
Failure Assessment score, at least 2 of 3 criteria present [1];
Sepsis-Related Organ Failure Assessment score, total score ≥2
[1]; Modified Early Warning Score, score ≥5 [30]; National
Early Warning Score 2, score ≥ 5 [31]; Rapid Emergency Triage
and Treatment System, highest priority level [32];Sepsis Alert
[28]; and Prehospital Early Sepsis Detection score, score ≥4
[33]. Predictions were computed at the same time points as
those of the algorithm.

Performance
Receiver operating characteristics, that is, the proportions of
true positives (sensitivity) relative to the proportions of false
positives (1 – specificity), were calculated to assess
performance. Based on the receiver operating characteristics
curve, an operating point (threshold) was chosen for
classification of patients with high risk of developing sepsis.
True positives were patients with sepsis that were accurately
identified by the algorithm up to 3 hours before the onset of
sepsis, and false positives were patients without sepsis that were
incorrectly identified by the algorithm to be at risk of developing
sepsis. The operating point for the algorithm was chosen to keep
a sensitivity (proportion of true positives) of approximately 0.80
and a higher specificity (proportion of true negatives), in order
to minimize the false alert rate while still keeping a high
sensitivity. Ideally, an algorithm should yield a high proportion
of true positives and a low proportion of false positives, which
corresponds to a large AUROC. The AUPRC is also of
importance—a large area represents both high recall (low false
negative rate) and high precision (low false positive rate). High
scores for both recall and precision demonstrate accurate results
(high precision) and mostly positive results (high recall).
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Accuracy is the proportion of correct predictions. Positive
predictive value is the proportion of predicted sepsis cases that
are true sepsis cases). Further information about accuracy,
sensitivity, and specificity can be found in Multimedia Appendix
1.

Results

The AUROC for the algorithm was as high as 0.90 on internally
validated training data (Table 2) and 0.84 on hold-out test data,
for predictions 3 hours before onset (Table 3). The AUPRC was
0.62 on training data (Table 2) and as high as 0.68 on test data,
for predictions 3 hours before onset (Table 3).

The algorithm’s sensitivity, specificity, and accuracy were
higher than those for any of the comparison risk scores (Table
2, Table 3, Figure 2, and Figure 3). In external validation (Table

3), sensitivity values for predictions 3 hours before onset were
higher than those at any of the time points closer to onset. This
was expected, since NAVOY Sepsis was optimized to make
predictions as early as possible. The operating point produced
a positive predictive value of 0.57 on training data (Table 2),
and 0.50 on test data, for predictions 3 hours before onset (Table
3). This metric was expected to be lower than sensitivity,
specificity, and accuracy, due to the severe class imbalance. A
sensitivity of 85% produces 15% false positives; since the
majority of patients did not have sepsis, sepsis will be
overpredicted. When comparing the distribution of sepsis
predictions made by the algorithm with the actual distribution
of sepsis (prevalence), the algorithm predicted that 28% of
patients had sepsis in training data (Table 2) and 27% to 29%
of patients had sepsis in test data (Table 3), which is somewhat
larger than the prevalence of 20%.

Table 2. Internal validation performance (using training data) for algorithm predictions up to 3 hours in advance.

ValuePerformance metric

0.90AUROCa

0.62AUPRCb

0.86 (0.80, 0.91)Accuracy (95% CI)c

0.80Sensitivity

0.85Specificity

0.57Positive predictive value

0.28Proportion of predicted sepsis

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cOperating points for the algorithm were chosen to keep sensitivity at approximately 0.80.

Table 3. Performance on hold-out test data for algorithm predictions up to 3 hours in advance.

0 hours before onset1 hour before onset2 hours before onset3 hours before onsetPerformance metric

0.850.820.820.84AUROCa

0.670.650.670.68AUPRCb

0.79 (0.71, 0.87)0.79 (0.71, 0.87)0.79 (0.71, 0.87)0.81 (0.73, 0.89)Accuracy (95% CI)c

0.630.630.630.74Sensitivity

0.830.830.830.83Specificity

0.460.460.460.50Positive predictive value

0.270.270.270.29Proportion of predicted sepsis

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cOperating points for the algorithm were chosen during training and internal validation to keep sensitivity at approximately 0.80.
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Figure 2. Receiver operating characteristics curve of the algorithm for (A) training data and (B) hold-out test data predictions 3 hours before sepsis
onset. AUROC: area under the receiver operating characteristics curve; FPR: false positive rate; TPR: true positive rate.

Figure 3. (A) AUROC and (B) AUPRC for comparison risk scores for sepsis predictions up to 3 hours in advance. AUPRC: area under the precision-recall
curve; AUROC: area under the receiver operating characteristics curve; MEWS: Modified Early Warning Score; NEWS2: National Early Warning
Score 2; PRESEP: Prehospital Early Sepsis Detection; qSOFA: Quick Sepsis-Related Organ Failure Assessment; RETTS: Rapid Emergency Triage
and Treatment System; SIRS: Systemic Inflammatory Response Syndrome; SOFA: Sepsis-Related Organ Failure Assessment.

Discussion

Principal Results
Only 1% (4/405) of the patients with sepsis included in the data
set had antibiotics administered before or at the time of sepsis
onset, which confirms that there is a need for NAVOY Sepsis
as an early detection system. Almost no patients had complete
data, which is similar to clinical use situations. The algorithm
was designed to be integrated with electronic health record
systems primarily in Europe (CE marked as Software as a
Medical Device) and is currently being evaluated in what is
expected to be the largest prospective randomized clinical trial
of a machine learning sepsis prediction algorithm to date
(ClinicalTrials.gov; NCT04570618). The algorithm has excellent

predictive properties, outperforms existing early warning scoring
systems, and is comparable to previously published algorithms
[17,34-36] designed to predict sepsis onset for ICU patients in
accordance with the Sepsis-3 criteria. The algorithm uses 4
hours of input from routinely collected variables to make sepsis
predictions. This means that only a few hours after ICU
admission, the clinical staff can receive high-performance risk
assessment for sepsis in adult patients.

Comparison With Prior Work
Moor et al [16] point out that it can be difficult to compare
studies due to measures such as AUROC or accuracy as they
are directly affected by sepsis prevalence. In unbalanced
situations, such as in the case of sepsis prediction, where the
proportion of patients without sepsis is substantially larger than
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the proportion of patients with sepsis, the AUPRC should be
reported. The AUPRC of NAVOY Sepsis is, to the best of our
knowledge, substantially higher than that shown by any
comparable sepsis prediction algorithm to date (ranging between
0.04 and 0.60) [17,34-36]. The algorithm provides accurate
results (high precision) and returns a majority of all positive
results (high recall).

The AUROC curve is high, which means that NAVOY Sepsis
yields a high proportion of true positives and a low proportion
of false positives. The AUROC of NAVOY Sepsis is higher
than those of many sepsis early warning scoring systems,
evaluated using the same data. The AUROC of NAVOY Sepsis
is also higher than those of all previously published algorithms
(ranging between and 0.74 and 0.85) [17,19,36-38] but one [39],
noting, however, the abovementioned comparability issues.
Only Futoma et al [35] used a comparable sepsis prevalence
(21%), with other prevalences ranging between 6% and 9% (or
not specified) [17,19,36-38]. Only 1 sepsis prediction model
[39] had a higher AUROC (as high as 0.97; AUPRC not
presented) than that of NAVOY Sepsis. Wickramaratne and
Mahmud [39] state that their model “has an advantage over the
traditional methods in terms of using new data to improve
performance. Further, the model can include new features when
they become available.” In other words, their model [39] seems
to be a self-learning model, which would be the first of its kind
if used in practice. The paper describes the technical aspects of
their proposed model well but does not discuss how to
implement the model into clinical practice [39]. Obtaining
regulatory clearance in Europe, in the form of a CE mark, for
self-learning software for use in health care is not an easy task.
However, Wickramaratne and Mahmud’s algorithm [39], as
many of the other previous attempts described in the literature
[36-38], is based on a number of laboratory tests not routinely
performed in European ICUs and would thus not be relevant
for the European Union market. NAVOY Sepsis is based only
on variables that are routinely measured in European ICUs and
was developed in collaboration with medical professionals to
ensure that it will be applicable to clinical practice.

Limitations
This study has some limitations. First, the algorithm was
developed using retrospective data and has not yet been
evaluated prospectively. As Moor et al [16] wisely point out,
“only the demonstration of favorable outcomes in large
prospective randomized controlled trials will pave the way for
machine learning models entering the clinical routine.” Second,
even though matching of sepsis onset time for patients without
sepsis was used in order to prevent bias caused by differences
in the length of stay distribution, other types of bias might be
present. For example, performance metrics were affected by

the prevalence of sepsis, and even though the prevalence was
set at 20% to enable direct comparisons with early warning
scores, it is difficult to compare our findings with those in
previously published research. Third, it would have been
valuable to test the performance of the algorithm with an
additional external validation cohort, for example, data from
the PhysioNet Challenge [38] or the eICU Collaborative
Research Database [40]. However, the PhysioNet Challenge
data do not contain all the variables of interest, and the eICU
data only contain a few patients with information on all of the
variables and thus could not be used for this purpose. It should,
however, be noted that external validation was performed in
this study (on hold-out test data). Fourth, this study does not
provide information on the clinical or economic impact of the
integration of the developed algorithm in clinical practice.

Future Work
The accuracy, sensitivity, and specificity of the algorithm
developed in this proof-of-concept study are to potentially be
validated in a prospective randomized clinical trial
(ClinicalTrials.gov; NCT04570618). That study also intends to
further explore the developed algorithm’s integration into
clinical workflow and effect on relevant clinical outcomes. In
addition, a health economic study is currently being undertaken
where the cost-effectiveness of implementation of the developed
algorithm in European ICUs is being explored. Finally, when
deploying the algorithm at different institutions, it will be
important to evaluate its performance by, for example, using
an initial period without presenting the predictions, to allow for
a comparison of the predictions and sepsis onset and thereby
enable adjustment of the threshold to ensure that the algorithm
will work as expected at each institution. Also, with access to
data from different institutions, the algorithm can be retrained
and continuously improved or adjusted to work well in different
settings (regions, hospitals, populations).

Conclusions
Sepsis remains a leading cause of mortality and morbidity in
ICUs worldwide. Early detection is key to effective management
and patient outcome, as there is no specific sepsis treatment
available. We have developed a high-performance machine
learning sepsis prediction algorithm that outperforms existing
early warning scoring systems. The algorithm is based on
variables routinely collected and readily available in electronic
health records in ICUs of all categories and may provide an
opportunity for enhanced patient monitoring, earlier detection
of sepsis, and improved patient outcomes. If the findings in this
study are validated in the upcoming prospective randomized
clinical trial, this algorithm has the potential to be the first
CE-marked sepsis prediction algorithm for commercial use in
European ICUs.
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