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Abstract

Background: Administrative costs for billing and insurance-related activities in the United States are substantial. One critical
cause of the high overhead of administrative costs is medical billing errors. With advanced deep learning techniques, developing
advanced models to predict hospital and professional billing codes has become feasible. These models can be used for administrative
cost reduction and billing process improvements.

Objective: In this study, we aim to develop an automated anesthesiology current procedural terminology (CPT) prediction
system that translates manually entered surgical procedure text into standard forms using neural machine translation (NMT)
techniques. The standard forms are calculated using similarity scores to predict the most appropriate CPT codes. Although this
system aims to enhance medical billing coding accuracy to reduce administrative costs, we compare its performance with that of
previously developed machine learning algorithms.

Methods: We collected and analyzed all operative procedures performed at Michigan Medicine between January 2017 and June
2019 (2.5 years). The first 2 years of data were used to train and validate the existing models and compare the results from the
NMT-based model. Data from 2019 (6-month follow-up period) were then used to measure the accuracy of the CPT code
prediction. Three experimental settings were designed with different data types to evaluate the models. Experiment 1 used the
surgical procedure text entered manually in the electronic health record. Experiment 2 used preprocessing of the procedure text.
Experiment 3 used preprocessing of the combined procedure text and preoperative diagnoses. The NMT-based model was
compared with the support vector machine (SVM) and long short-term memory (LSTM) models.

Results: The NMT model yielded the highest top-1 accuracy in experiments 1 and 2 at 81.64% and 81.71% compared with the
SVM model (81.19% and 81.27%, respectively) and the LSTM model (80.96% and 81.07%, respectively). The SVM model
yielded the highest top-1 accuracy of 84.30% in experiment 3, followed by the LSTM model (83.70%) and the NMT model
(82.80%). In experiment 3, the addition of preoperative diagnoses showed 3.7%, 3.2%, and 1.3% increases in the SVM, LSTM,
and NMT models in top-1 accuracy over those in experiment 2, respectively. For top-3 accuracy, the SVM, LSTM, and NMT
models achieved 95.64%, 95.72%, and 95.60% for experiment 1, 95.75%, 95.67%, and 95.69% for experiment 2, and 95.88%,
95.93%, and 95.06% for experiment 3, respectively.

Conclusions: This study demonstrates the feasibility of creating an automated anesthesiology CPT classification system based
on NMT techniques using surgical procedure text and preoperative diagnosis. Our results show that the performance of the
NMT-based CPT prediction system is equivalent to that of the SVM and LSTM prediction models. Importantly, we found that
including preoperative diagnoses improved the accuracy of using the procedure text alone.
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Introduction

Background
In 2017, the administrative costs between insurers and providers
in the United States were excessively high, totaling US $812
billion, US $2497 per capita, and representing 34.2% of the
total health expenditures [1]. Billing and insurance-related
expenditures in the United States are twice that of Canada and
the Netherlands and quadruple that of Sweden [2-4]. Studies
by Himmelstein et al [1,2] identify administrative costs as one
of the major drivers of high health care expenditures in the
United States and support the necessity of cost reduction.
Furthermore, billing and insurance-related activities, a subset
of administrative costs, are between 8.4% and 13.9% of the
total revenue [5]. There is an opportunity to reduce these
administrative costs associated with billing assignments using
automation, leveraging machine learning and natural language
processing techniques.

To analyze the administrative costs, Tseng et al [6] and
O’Malley et al [7] illustrated the process of billing activities
(known as the life of a bill) from the initial appointment to the
time when payment was received. In this process, physicians
are first involved in billing activities related to clinical services,
even before the patient visit. Next, professional and hospital
billing activities occur after the patient visit, where professional
coders and billing management teams are involved in coding
and managing claims that involve extensive and laborious
hospital chart reviews. In particular, Tseng et al [6] found that
billing and insurance-related activities carried out by physicians
were between US $6.36 per primary care visit and US $51.20
per inpatient surgical procedure, which is 11%-31% of the total
administrative costs. Similarly, professional and hospital billing
teams’ administrative costs range from US $4.22 to US $45.55
per procedure, accounting for 3%-36% of the total administrative
costs.

Automating the coding process could also improve otherwise
high rates of medical coding errors. According to the
Comprehensive Error Rate Testing report published in the
Centers for Medicare and Medicaid Services, Medicare’s
improper payments were US $36.2 billion in 2017, 9.5% of the
total Medicare payment. The common reasons for improper
payments were insufficient documentation errors (64.1%),
medical necessity errors (17.5%), incorrect coding errors
(13.1%), and no documentation errors (1.7%) [8]. With regard
to the effort of evaluating coding errors, numerous studies have
associated physicians’ limited training and knowledge of billing
and insurance-related activities with high errors [9-12]. King
et al [10] showed that family physicians’ coding accuracy was
52% for established patients and 17% for new patients, as
established patients were undercoded, thus failing to report the
full services provided, whereas new patients were overcoded,
an abuse in reporting medical services not actually performed.

In our study, we developed a two-step neural machine translation
(NMT) model to automate current procedural terminology (CPT)
coding. This NMT-based model translates manually entered
surgical procedure text by a surgeon into a standard CPT
description in step 1 and then calculates similarity scores to
match the best CPT code in step 2. A single-step automated
billing system estimates the likelihood of multiple classes,
whereas standardized CPT descriptions from step 1 of the
NMT-based model have potential use, in addition to this CPT
prediction task. The standardized text from this NMT-based
model can improve communication efficiency between
physicians and hospital professionals in medical coding
processes and ultimately reduce administrative costs by aiding
in CPT code classification and reducing medical coding errors.
In this study, we demonstrate both the translation performance
and CPT prediction accuracy.

Related Work
Advanced machine learning methods have been developed to
automate the manual classification of medical codes, including
the International Classification of Diseases (ICD) [13-21] and
CPT [22-24] codings. In these previous efforts, researchers used
narrative clinical notes along with structured data elements to
develop machine learning classification algorithms. For
traditional machine learning algorithms, Koopman et al [14]
proposed a binary support vector machine (SVM) classifier for
multiple ICD-10 codes using n-gram features. Perotte et al [13]
developed a hierarchy-based SVM by leveraging the hierarchical
structure of the ICD-9 codes. Denck et al [16] showed an
ensemble of classifier chains to predict billing codes using MRI
log data. Virginio and dos Reis [21] and Wu et al [25] used the
SVM model to discuss imbalanced data in medical billing data.

With advanced deep neural networks and natural language
processing techniques, researchers can apply clinical notes
without extensive preprocessing of raw narrative clinical text
into a recurrent neural network or convolutional neural network.
Xu et al [17] evaluated an ensemble model where unstructured,
semistructured, and structural data were trained on text-based
convolutional neural networks, bidirectional long short-term
memory (LSTM), and decision tree for ICD prediction. Shi et
al [26] developed a hierarchical LSTM model with attention
techniques to classify clinical notes into ICD codes. Wang et
al [27] proposed a label embedding attentive model using
label-attentive text representation to improve text classification
and applied it to predict ICD codes using clinical notes. Rios
and Kavuluru [28] improved the accuracy of ICD prediction by
transferring learning with PubMed biomedical abstracts.

NMT has emerged as a state-of-the-art machine learning method
for translating text between human languages. The
Transformer-based [29] NMT model uses an encoder-decoder
framework with self-attention mechanisms to learn the weights
of a translation model and understand the complex relationships
between the source and target languages [30-32]. Although
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NMT models have been adopted in health care to assist health
communication such as speech translation or text translation
from one language to another [33], these models remain
underutilized.

Methods

NMT Model Architecture
We developed an NMT-based automated CPT coding system
that first translates surgical procedure texts in electronic health
records (EHRs) into preferred terms from the Unified Medical
Language System (UMLS) [34] and then normalizes the
translated preferred term to predict CPT codes. The intuition
of this machine translation approach is from text normalization,

the process of transforming noncanonical text into a standard
form such as medical concept normalization [35-38] where
medical terms are assigned to unique concept codes.

Within medicine, each surgical procedure contains a surgical
procedure text and a preoperative diagnosis entered by a surgeon
or surgical resident. After completion of the procedure, surgical
and anesthesiology CPT codes were assigned by clinical staff
and/or professional medical coders. The manually entered texts
are the input source, and the preferred terms of the assigned
CPT codes are the output target sentences of the NMT model.
In our study, surgical procedure texts and preoperative diagnoses
were the inputs of the model to predict CPT codes. The
architecture of the NMT-based automated CPT prediction
system is shown in Figure 1.

Figure 1. The architecture of an automated current procedural terminology coding system based on the Transformer model. CPT: current procedural
terminology.

The overall architecture of an NMT-based system is composed
of translation and transformation components. The translation
component (step 1 in Figure 1) translates surgical procedure
text into a standard form using the Transformer model [29].
This model uses a set of encoders and decoders using
self-attention mechanisms and feed-forwarding neural networks.
This Transformer model computes representations between a
sequence of source word embeddings, xi, and a sequence of
target word embeddings, yi, trained from the procedure text and
the description of the CPT code.

To train the NMT model, the source and target sentences need
to be paired between the manually entered procedure text
(source) and the preferred terms of the CPT code (target). This
is similar to the development of paired bilingual sentences to
train a language translation model. Once trained, the NMT
model generates multiple candidate translation outputs ranked
by a beam search algorithm. The top three target sentences were
retained and processed through step 2: transformation.

With the three target sentences, the best CPT code was computed
in the transformation step using the Levenshtein and Jaccard
distances. The distance was computed between a target sentence
and the preferred term of all CPT codes in the UMLS. Each

sample was compared with the CPT descriptions, and its value

was stored in a distance matrix, X ∈ M x N, where M is the
number of the sample size and N is the number of CPT labels.
As closer distances signify better matching to the CPT
descriptions, we used an inverse distance matrix, 1/(X + 1), to
maintain similarity scores for the three target sentences. The
final prediction of the CPT code was based on the highest score
in the matrix. X is an M by N matrix, where M is the number
of the sample size and N is the number of the label size.

Distance Matrix = X ∈ M x N(1)

Inverse Distance Matrixi,j = 1/(xi,j + 1), i = 1,..., m; j
= 1,..., n (2)

Predictioni = argmaxj∈J (1/(xi,j + 1)), i = 1,..., m; J =
{1,..., n} (3)

The key implication of this two-step NMT-based system is to
reframe the translation task to a multiclass classification task
using translation and transformation steps. Unlike a single
classifier used in other automated coding algorithms
[15-17,26,27,39-42], the two-step NMT model translates
noncanonical text of human natural language into a normalized
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form and then transforms the normalized translation into an
appropriate CPT code.

Data
The Multicenter Perioperative Outcomes Group (MPOG) is a
nonprofit academic consortium of more than 50 academic and
community hospitals across 19 states in the United States and
the Netherlands [43,44]. The extent of data in the MPOG is
relevant to the field of anesthesiology encompassing
perioperative patient care, covering preoperative, intraoperative,
and postoperative clinical practice. Through the MPOG
infrastructure, a large volume of perioperative data such as
patient vital signs, ventilation, medications, laboratory values,
and administrative billing data from EHRs at different centers
have been systematically aggregated via automated extraction
and validated by clinical experts.

We collected all operative procedures performed at Michigan
Medicine from January 2017 to June 2019 (2.5 years), resulting
in 196,786 operative cases. In these data, we found that 10
unique CPT codes were invalid due to typographic errors and
two unique CPT codes (00740: anesthesia for upper
gastrointestinal procedures; 00810: anesthesia for lower
gastrointestinal procedures) were deprecated in 2018 and
replaced with newer CPT codes (00731 and 00732 and 00811,
00812, and 00813, respectively). These invalid and deprecated
CPT codes (8859 of operative cases), were excluded from the
analysis (Multimedia Appendix 1). The total number of
operative procedures used to develop and evaluate the machine
learning models used in this study was 187,927. Of the 272
anesthesiology CPT codes in the UMLS, we found 269 unique
anesthesiology CPT codes in the final data set. A detailed
flowchart of the inclusion and exclusion of the data is shown
in Figure 2.

Figure 2. The flowchart of data selection and rules to split the training, validation, and holdout sets. CPT: current procedural terminology.

Training, Validation, and Holdout Data Splits
The final number of operative cases used in this study was
187,927. Procedures performed between January 2019 and June
2019 (6 months) were set aside as the holdout set, and
procedures performed in 2017 and 2018 (2 years) were used to
train and validate the machine learning models.

The implication of splitting the holdout set based on an explicit
date before and after 2019 from the training and validation sets
is to measure the behavior of predictive models on unseen future
data. The uncertainty of the distribution of surgical procedures
should remain separate from training to real predictions. This
date-based split technique minimizes data leakage and

information accidentally shared between the training and holdout
sets.

The data used for training and validation were stratified based
on CPT codes (labels) and randomly split into 80/20 training
and validation sets for model development and hyperparameter
tuning. The stratified split between the training and validation
sets enables maintenance of the same rate of CPT codes in both
data sets, allowing an even split of rare surgical procedures.

The prevalence of the surgical procedures per CPT category in
the training, validation, and holdout sets is shown in Table 1.
The notable difference between the training and the holdout set
is that the percentage of upper and lower abdomen procedures
was higher in 2019 (holdout set) than in 2017 and 2018 (training
set).
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Table 1. The prevalence of anesthesiology procedures and services categorized by area of the body in the training, validation, and holdout data sets
(N=187,927).

Data setc, n (%)CPTb codesBody parta

Holdout sete (n=41,214)Validation setd (n=29,340)Training setd (n=117,373)

9110 (22.10)6964 (23.73)27,863 (23.74)00100-00222Head

2822 (6.84)2352 (8.01)9403 (8.01)00300-00352Neck

1710 (4.14)1388 (4.73)5554 (4.73)00400-00474Thorax (chest and shoulder)

2903 (7.04)2194 (7.47)8781 (7.48)00500-00580Intrathoracic

883 (2.14)651 (2.21)2606 (2.22)00600-00670Spine and spinal cord

5518 (13.38)3022 (10.29)12,083 (10.29)00700-00797Upper abdomen

6547 (15.88)3334 (11.36)13,338 (11.36)00800-00882Lower abdomen

3001 (7.28)2464 (8.39)9853 (8.39)00902-00952Perineum

194 (0.47)137 (0.46)551 (0.46)01112-01173Pelvis (except hip)

674 (1.63)595 (2.02)2390 (2.03)01200-01274Upper leg (except knee)

792 (1.92)658 (2.24)2629 (2.24)01320-01444Knee and popliteal area

606 (1.47)530 (1.80)2117 (1.80)01462-01522Lower leg (below knee)

668 (1.62)520 (1.77)2084 (1.77)01610-01680Shoulder and axilla

192 (0.46)196 (0.66)785 (0.66)01710-01782Upper arm and elbow

870 (2.11)757 (2.58)3035 (2.58)01810-01860Forearm, wrist, and hand

2829 (6.86)2179 (7.42)8709 (7.42)01916-01936Radiological procedure

105 (0.25)126 (0.42)505 (0.43)01951-01953Burn excisions or debridement

1722 (4.17)1243 (4.23)4969 (4.23)01958-01969Obstetric

68 (0.16)30 (0.10)118 (0.10)01990-01999Other procedure

aAnesthesiology current procedural terminology codes are categorized based on the area of the body part.
bCPT: current procedural terminology.
cThe percentage may not sum up to 100 because of rounding.
dThe training and validation sets were stratified and split to maintain the same prevalence of procedures.
eThe holdout set is new data collected for 6 months to prevent data leakage.

Two types of data, the operative procedure text and preoperative
diagnosis, were extracted from the MPOG. The operative
procedure text is a short description of the surgical operation,
and the preoperative diagnosis is a disease diagnosis specific
to the patient and correlates with the planned surgical procedure.
Both text fields are typically entered manually into an EHR
system by a surgeon or surgical resident before the surgery. In
our training data set, the average length of the procedure text
was 5.12 (SD 3.57) words, and the average length of the
preoperative diagnosis was 4.12 (SD 2.5) words.

In addition to free-text narratives in EHRs, standard forms of
CPT descriptions were extracted from the preferred terms in
the UMLS. As the UMLS preserves canonical presentations of

medical concepts, CPT codes and preferred terms maintain a
one-to-one association. The average length of the preferred
terms in the UMLS was 13.23 (SD 6.44) words.

The basic descriptive statistics of the data sets in Table 2 show
the number of tokens (words) recorded in the procedure text,
preoperative diagnosis, and preferred terms of CPT from the
UMLS in each training, validation, and holdout sets. Table 2
also shows the large variation of the manually entered procedure
text with 13,847 unique procedure texts in the training set for
the 252 unique CPT codes. This indicates the challenge of CPT
coding, even with a single data field, to find the most appropriate
CPT code.
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Table 2. Descriptive statistics of operative procedure text, preoperative diagnosis, and preferred terms.

Number of tokens in preferred

termsb
Number of tokens in preoperative

diagnosisb
Number of tokens in procedure

textb
Number of
unique proce-
dure texts

Number of

unique CPTa

codes

Data set

RangeMean (SD)RangeMean (SD)RangeMean (SD)

3-4613.23 (6.44)0-154.12 (2.5)1-605.12 (3.57)13,847252Training

3-4113.23 (4.45)0-134.11 (2.5)1-515.15 (3.64)6012231Validation

3-4113.24 (6.18)0-134.01 (2.52)1-604.98 (3.52)6731224Holdout

aCPT: current procedural terminology.
bThe unit of descriptive statistics is token (word).

Models: SVM, LSTM, and NMT
The NMT-based automated CPT prediction system is supported
by the encoder-decoder methods proposed in the text
normalization study by Lusetti et al [45] and the self-attention
encoder and decoder in OpenNMT [46], which uses Google’s
base Transformer model and hyperparameters as shown in
Multimedia Appendix 2. This NMT-based system generates
three translated descriptions of CPT codes and transforms this
translation into CPT prediction using similarity algorithms.
Although the system contains translation and transformation
components that can be evaluated separately, the primary focus
of the systems is to measure the performance of predicting CPT
codes based on the NMT model to assist physicians and
professional coders. Thus, the outcome measurement is based
on the accuracy of the CPT prediction and is compared with
other classifiers that were conducted in other studies.

We selected the SVM and LSTM models as the baseline models
often adopted in medical billing prediction and as developed in
our previous study [24]. For SVM model development, we used
the standard Scikit-learn packages in Python (Python Software
Foundation) and applied grid search cross-validation for training
and tuning hyperparameters. The input features of the SVM
model were bigrams extracted from the training data and
weighted using the term frequency-inverse document frequency.
Owing to the large size of features, we limited the inputs to
terms that appeared at least four times in the procedure text and
at least 15 times in the combined text of procedure and
preoperative diagnosis text.

For the LSTM model development, a sequence of words from
the procedure text and preoperative diagnosis text in the training
data was fed into the embedding layer. The embedding layer
then converted each word in the sequence to a vector
representation using a Word2Vec model pretrained on PubMed,
PubMed Central, and Wikipedia [47]. The LSTM model was
trained on this sequence of vector representations and returned
a hidden vector from each state that was passed through a fully
connected layer. A final softmax layer was then used to predict
the final label. The configurations and hyperparameters of the
models are shown in Multimedia Appendix 2.

Experimental Settings
We designed three experimental settings for CPT code
prediction with different types of data to evaluate the

performance of NMT, SVM, and LSTM machine learning
models.

Experiments 1 and 2 used surgical procedure texts as an input
to machine learning models with no demographics or clinical
information. As misspellings and use of acronyms in manual
data entry are common, raw surgical procedure texts without
preprocessing were used for experiment 1 and with
preprocessing for experiment 2. The purpose of this experiment
was to evaluate the process of text normalization from
noncanonical procedure text into a single standard description
using a translational model. As a CPT code is primarily
determined on surgical procedure text, we focused on the
association between procedure texts and standard target
sentences in the UMLS by restricting the input of the models.
The average length of words of the CPT description in the
UMLS is 2.6 times longer than the average length of the
procedure text, as shown in Table 2. The performance of top-1
(the best prediction) and top-3 (within the top 3) accuracy will
be compared between machine learning models.

Experiment 3 was designed to introduce a preoperative diagnosis
in the prediction model. Instead of just the preoperative text,
the preoperative diagnosis is also appended to the input of the
models. The rationale of this experiment is to evaluate the
impact of indirect information on CPT code prediction over that
in experiment 2. This incorporation is logical, as surgical
procedures can be listed with the same procedure text but coded
differently because of the diversity in patient diagnosis.
Experiment 3 aimed to determine if this multicoded issue could
be mitigated by including the preoperative diagnosis in the
models. Especially for the NMT model, where the source and
target sentences are paired with the same information, the
preoperative diagnosis included in the source would be
extraneous. The average length of the combination used in the
models was 9.1 (SD 4.55) words.

Preprocessing
Before training the models, the operative procedure and the
preoperative diagnosis text were subjected to a series of
preprocessing steps, including removing stop words, trimming
white spaces, lowering cases, lemmatizing, correcting misspelled
medical words, and expanding acronyms (Multimedia Appendix
3). The spelling correction and acronym expansion were
manually reviewed, maintained, and applied to curated
preoperative texts and the preoperative diagnosis. The curated
version of the procedure text in combination with the
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preoperative diagnosis was used as input for model development
for experiments 2 and 3.

Evaluation and Performance Metrics
The primary performance metric used to evaluate our system
is the accuracy of the documented CPT codes within the MPOG
database. We defined two accuracies: top-1 is the accuracy
where the true CPT code matches with the first top (most
probable) model predicted CPT code, whereas top-3 is the
accuracy where the true CPT code matches with any one of the
top three most probable CPT codes predicted by the models.
The top-1 and top-3 accuracies have different implications. The
top-1 accuracy presents the single best-predicted CPT code to
measure how models would accurately perform on the medical
billing code assignment without additional human effort. In
contrast, the top-3 accuracy provides the top three most probable
CPT codes, reducing selection by the administrative staff to
three probable choices. With this rationale, both top-1 and top-3
translated standard forms can be used to assist and audit billing
codes by suggesting appropriate options in real time and
improving the efficiency of communication between health care
professionals.

The top-1 and top-3 accuracies were evaluated for both
validation and holdout sets for the three machine learning
models. During evaluation, we repeated the experiment 500
times, bootstrapping 20,000 samples with replacements and
selecting the best model after tuning the hyperparameters on
the validation set. The SVM and LSTM models returned the
final output with the predicted probabilities of the 272 CPT
labels. The three highest probabilities were selected for top-3

accuracy. As the output of the NMT model is translation
sentences, the top three translations were used for the top-3
accuracy evaluation.

Evaluation of Imbalanced Labels
Class imbalance in medical coding is inevitable because of the
nature of hospital services [21,25]. Regular hospital services
will show more often in EHRs than in rare cases. For algorithm
development, the lack of data in minority classes often creates
potential issues and limitations. For example, minority classes
that are often underevaluated are critical for patient care. A
general approach is to exclude the minority from the data set
[17,26,27] and analyze the results on majority classes. It may
be valid for evaluating algorithm performance but may raise
concerns about implementing the algorithm in clinical settings.

Figure 3 shows the CPT label distribution in our data set
between the training, validation, and holdout sets. The top 52
CPT codes accounted for 80.2% (94,216/117,373) of surgical
procedures at the University of Michigan, and 220 CPT codes
shared the remaining 19.7% (23,157/117,373) of cases. Of these
220 CPT codes, 132 CPT codes, that is, 48.5% (132/272) of the
total anesthesiology CPT codes, had less than 100 training
samples for 2 years of hospital services.

For the sensitivity analysis of imbalanced data, the
anesthesiology CPT codes were split into 10 groups with a mean
of 25 (SD 1.3) codes per group to represent the different sizes
of samples in the training set (Multimedia Appendix 4). We
evaluated and compared the performance of each group between
the NMT, SVM, and LSTM models.

Figure 3. The distribution of current procedural terminology codes in the training, testing, and holdout sets, sorted by most to least frequent codes.
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Results

Top-1 and Top-3 Accuracy
The top-1 and top-3 accuracies of the NMT, SVM, and LSTM
models over three experiments are summarized in Table 3. For
top-1 accuracy, the NMT model yielded the highest top-1

accuracy for both experiments 1 and 2 at 81.64% and 81.71%
when compared with the SVM model (81.19% and 81.27%)
and the LSTM model (80.96% and 81.07%), respectively. The
SVM model yielded the highest top-1 accuracy of 84.30% in
experiment 3, followed by the LSTM (83.70%) and NMT
(82.80%) models.

Table 3. Performance comparison of support vector machine, long short-term memory, and neural machine translation models with raw, curated
procedure text and combined, curated procedure text and preoperative diagnosis.

Top-3 accuracyb (95% CI)Top-1 accuracya (95% CI)Model

Holdout setValidation setHoldout setValidation set

Experiment 1: raw procedure textc

95.64 (95.35-95.93)97.56 (97.36-97.76)81.19 (80.63-81.75)83.61 (83.07-84.16)SVMd

95.72 (95.44-95.99)95.38 (95.06-95.71)80.94 (80.42-81.46)81.86 (81.33-82.40)LSTMe

95.60 (95.30-95.89)95.27 (94.96-95.58)81.64 (81.11-82.18)81.68 (81.14-82.21)NMTf

Experiment 2: curated procedure textg

95.75 (95.47-96.04)97.45 (97.23-97.67)81.27 (80.72-81.82)83.38 (82.85-83.90)SVM

95.67 (95.40-95.95)95.32 (95.00-95.64)81.07 (80.54-81.59)81.81 (81.28-82.34)LSTM

95.69 (95.40-95.98)95.41 (95.11-95.71)81.71 (81.18-82.24)81.72 (81.18-82.26)NMT

Experiment 3: curated procedure text and preoperative diagnosish

95.88 (95.60-96.15)99.16 (99.03-99.29)84.30 (83.81-84.79)87.62 (87.15-88.09)SVM

95.93 (95.65-96.20)95.82 (95.53-96.12)83.70 (83.20-84.20)83.52 (83.00-84.04)LSTM

95.06 (94.77-95.35)94.75 (94.44-95.06)82.80 (82.31-83.29)82.43 (81.90-82.96)NMT

aTop-1 accuracy is the accuracy of models on the best current procedural terminology code predicted, equivalent to the F1-score micro.
bTop-3 accuracy is the accuracy of models if the true current procedural terminology is within the top three best codes predicted.
cRaw procedure text is manually entered by physicians without text preprocessing.
dSVM: support vector machine.
eLSTM: long short-term memory.
fNMT: neural machine translation.
gCurated procedure text is cleaned text with preprocessing techniques.
hThe curated procedure text is concatenated with preoperative diagnosis to training models for current procedural terminology prediction.

For top-3 accuracy, the SVM, LSTM, and NMT models
achieved 95.64%, 95.72%, and 95.60% accuracy for experiment
1 and 95.75%, 95.67%, and 95.69% accuracy for experiment
2, respectively. As expected, all three models performed
significantly higher when comparing top-3 accuracy with top-1
accuracy. The improvement rate of top-3 accuracy over top-1
accuracy in experiment 2 was 17.8%, 18.23%, and 17.1% for
the SVM, LSTM, and NMT models, respectively.

By combining the preoperative diagnosis data in experiment 3,
the three models improved top-1 accuracy when compared with
experiments 1 and 2. The SVM model obtained the most
significant enhancement by achieving 84.30% top-1 accuracy,
a 3.7% increase from experience 2. The top-1 accuracy of the
LSTM and NMT model was 83.70% and 82.80%, which
increased by 3.4% and 1.3%, respectively. For top-3 accuracy,
the SVM and LSTM model achieved 95.88% and 95.93%, which
is 0.1% and 0.3% enhancement from experiment 2, respectively.
The top-3 accuracy of the NMT model was 95.06%, which was
reduced by 0.6%.

Accuracy by Training Sample Size
We further examined the results in Table 3 based on the training
sample size to understand the effect of imbalanced labels. A
total of 272 CPT codes were split into 10 groups, and each group
contained approximately 27 CPT codes based on the training
sample size. For example, group 1 contained CPT codes ≤2
samples in the training set, and group 2 included CPT codes
that have ≥2 samples and ≤6 samples. As the group number
increased, the size of the samples increased.

The effect of imbalanced labels on performance is illustrated
in Figure 4. The top two-line charts show the top-1 accuracy
on curated procedure text (top-left) and combined, curated
procedure text with a preoperative diagnosis (top-right). The
bottom two-line charts show the top-3 accuracy on curated
procedure text (bottom-left) and combined text (bottom-right).
The top-1 and top-3 accuracies of the NMT model using
procedure text were better in group 10 (training sample size
>1283) than in other models, but the performance slowly
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decreased as the sample size decreased. Details on the
performance of each imbalanced label are provided in

Multimedia Appendix 4.

Figure 4. The top-1 and top-3 accuracy comparison based on the training sample size. LSTM: long short-term memory; NMT: neural machine translation;
SVM: support vector machine.

NMT Result
In addition to the CPT prediction accuracy, the translation
performance of imbalanced labels from groups 1 to 10 is
summarized in Figure 5. As the sample size increased, the
Bilingual Evaluation Understudy (BLEU) scores from all three
experiments were significantly improved, and group 10 was
close to 0.9. This means that the translation of manually entered
procedure texts was close to the preferred terms in the UMLS.
The overall BLEU scores of experiments 1, 2, and 3 on the
holdout set were 0.872, 0.895, and 0.904, respectively. The
detailed BLEU scores are provided in Multimedia Appendix 5.

Examples of translated sentences from our NMT model are
presented in Table 4. This table includes the input source text,
the output target text, and the gold standard translation used for
the NMT model to translate manually entered procedure texts
and preoperative diagnoses into standard CPT descriptions. We
distinguished the preoperative diagnosis from the procedure
text by underlining the source text. The example of 01220 (group
5) demonstrates how additional preoperative diagnosis
information ratified the machine translation from manually
entered procedure text.
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Figure 5. Bilingual Evaluation Understudy scores of imbalanced labels for translating manually entered procedure text into preferred terms in step 1
of the neural machine translation–based model. BLEU: Bilingual Evaluation Understudy.

JMIR Form Res 2021 | vol. 5 | iss. 5 | e22461 | p. 10https://formative.jmir.org/2021/5/e22461
(page number not for citation purposes)

Joo et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. The neural machine translation–based model’s source (input) and target (output) translation examples from the holdout data set. The translation
task is to convert manually entered procedure text in electronic health records to preferred terms in the Unified Medical Language System.

Target textcExample source textbCurrent procedural terminology descriptionaCurrent procedural
terminology code

Experiment 1 and 2 with procedure text

Anesthesia for extraperitoneal procedures
in lower abdomen including urinary tract
renal transplant recipient

Right kidney transplant cadaveric
donor

Anesthesia for extraperitoneal procedures in
lower abdomen, including urinary tract; renal
transplant (recipient)

00868 (group 7)

Anesthesia for all procedures on nerves
muscles tendons fascia and bursae of
shoulder and axilla

Midline wide local excision
melanoma iolm sln axillary in-
guinal

Anesthesia for all procedures on nerves,
muscles, tendons, fascia, and bursae of
shoulder and axilla

01610 (group 9)

Anesthesia for procedures on eye lens
surgery

Left phacoemulsification intraoc-
ular lens

Anesthesia for procedures on eye; lens
surgery

00142 (group 10)

Anesthesia for electroconvulsive therapyElectroconvulsive therapyAnesthesia for electroconvulsive therapy00104 (group 10)

Anesthesia for all closed procedures involv-
ing hip joint

Left closed reduction cast appli-
cation

Anesthesia for all closed procedures involv-
ing upper two thirds of femur

01220 (group 5)

Experiment 3 with a combined procedure text and preoperative diagnosis (underlined)d

Anesthesia for open or surgical arthroscopic
procedures on knee joint total knee arthro-
plasty

Right total knee arthroplasty
knee arthritis

Anesthesia for open or surgical arthroscopic
procedures on knee joint; total knee arthro-
plasty

01402 (group 8)

Anesthesia for noninvasive imaging or radi-
ation therapy

Magnetic resonance imaging
cardiac anesthesia hypoplastic
left heart syndrome

Anesthesia for noninvasive imaging or radia-
tion therapy

01922 (group 10)

Anesthesia for procedures on the integumen-
tary system on the extremities anterior trunk
and perineum reconstructive procedures on
breast eg reduction or augmentation mam-
moplasty muscle flaps

Left breast tissue expander
placement unilateral tissue ex-
pander infection

Anesthesia for procedures on the integumen-
tary system on the extremities, anterior trunk,
and perineum; reconstructive procedures on
breast (eg, reduction or augmentation mam-
moplasty, muscle flaps)

00402 (group 9)

Anesthesia for lower intestinal endoscopic
procedures endoscope introduced distal to
duodenum screening colonoscopy

Colonoscopy anesthesia en-
counter screening malignant
neoplasm colon

Anesthesia for lower intestinal endoscopic
procedures, endoscope introduced distal to
duodenum; screening colonoscopy

00812 (group 10)

Anesthesia for all closed procedures involv-
ing hip joint

Left closed reduction cast appli-
cation left prosthetic hip disloca-
tion

Anesthesia for all closed procedures involv-
ing hip joint

01200 (group 5)

aThe current procedural terminology description is the gold standard translation.
bSource text is an example of the preprocessed input of the neural machine translation model.
cThe target text is the translated sentence from the neural machine translation model.
dThe preoperative diagnosis in the combined text is underlined to distinguish it from the procedure text.

Discussion

Principal Findings
In this study, we demonstrated the feasibility of predicting
anesthesiology CPT codes using a two-step machine translation
approach. Our results indicate that the top-1 and top-3 accuracies
of the NMT-based model were equivalent to those of the SVM
and LSTM models using procedure texts. We also demonstrated
that the use of additional information, such as preoperative
diagnosis, improves SVM, LSTM, and NMT model
performance. Finally, we illustrated that imbalanced labels
caused by low relative sample sizes negatively affected model
accuracy.

We demonstrated the utility of machine learning models for use
in medical billing applications. The automated CPT prediction
systems developed in this study can improve the accuracy of
medical billing coding by decreasing manual data reviews and

coding errors. Although 81% accuracy for the top-1 assignment
remains low, the top-3 accuracies are above 95%. Therefore,
recommendations from top-3 accuracy could be used by
physicians and professional billing teams to improve coder
accuracy and potentially reduce medical coding assignment and
processing times. Translational models have the ability to
increase communication efficiency between physicians and
billing teams by normalizing the inputs used for assignments.
Creating CPT prediction systems can also allow increased
auditing efforts to find simple errors in cases that were initially
undercoded or overcoded.

The addition of preoperative diagnoses to procedure texts in
experiment 3 increased the top-1 accuracy of the SVM, LSTM,
and NMT models by 3.7%, 3.2%, and 1.3%, respectively, when
compared with experiment 2. The increased accuracy across all
three models illustrates the importance of including preoperative
diagnoses. For example, several cases may contain similar

JMIR Form Res 2021 | vol. 5 | iss. 5 | e22461 | p. 11https://formative.jmir.org/2021/5/e22461
(page number not for citation purposes)

Joo et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


generic procedure text, such as “exploratory laparotomy,” but
entail different operative characteristics requiring differences
in billing assignment. By including diagnoses, the models could
identify subtle differences beyond the procedure text alone. In
addition, there may be significance in the higher improved
accuracies for the SVM and LSTM models when compared
with the NMT model. The SVM and LSTM models use
concatenated procedure text and preoperative diagnosis to
predict a CPT code, whereas the NMT-based model uses a
paired source and target sentence where the source is
concatenated with procedure text and preoperative diagnosis
and translated into the target, the preferred term of the CPT
code.

This study showed a strong association between the performance
of the models and the size of the training samples (Figure 4).
When the sample size is above 81 (group 6 or above), all three
models’performance is above 60% for top-1 accuracy and above
75% for top-3 accuracy, which is a significant increase
compared with smaller sample sizes. Although all three models
performed similarly, the NMT model was more sensitive to the
sample size. Comparatively, the NMT model showed a strong
performance in the larger sample size (groups 9 and 10) but
lower performance when the sample size was smaller than 81
(group 5 or below). This may be due to the complex NMT
methods based on the Transformer model compared with the
SVM and LSTM models.

The NMT model can be applied in medicine beyond billing.
Any free-text entries that often include human or systematic
errors can be translated into a standard description as a
normalization task, mapping clinical terms in medical notes to
a standardized vocabulary. Under the recent effort of clinical
entity normalization [36,37], our approach using NMT can be
utilized for normalization tasks. This approach offers many
advantages: (1) the translated sentence is transparent for
clinicians and researchers to identify whether NMT works,
allowing the model to be adjusted based on their feedback. (2)
Human feature engineering effort is minimal as long as the
source and target sentences are paired in model training.

This study has demonstrated the use of creating an NMT-based
automatic anesthesiology CPT classification system. Its
performance is equivalent to that of the SVM and LSTM models
and presents itself as another method for machine learning
applications in medicine.

Study Limitations
This study has several important limitations that must be
considered:

1. The models in this study were developed and evaluated
using anesthesiology CPT codes from data collected for
about 2.5 years. The holdout data comprised only 6 months,
from January to June 2019. Although the proportion of CPT
codes in the holdout set is similar to the training data, there
is still a risk of hidden seasonal effects or trends in rare
cases that may not stand out on initial interpretation.

2. Although limiting to two features (operative procedure text
and preoperative diagnosis), it allows us to evaluate the

translation performance from manually entered text to
standard form. This may not achieve the best CPT
prediction performance. Some complex examples, such as
multiple CPT codes assigned to the same procedure text,
may not convey enough information with two features. In
addition, lower-frequency codes, as shown in Figure 4, may
require careful assessment for CPT prediction.

3. The Centers for Medicare and Medicaid Services reported
about Medicare’s improper payments in the Comprehensive
Error Rate Testing report. This implies that our data set
may contain inherent medical coding errors [10,48]. To
reduce these coding errors, a manual review of CPT codes
by coding experts is required to enhance data quality before
training models.

4. There are residual CPT codes for procedures when no
equivalent or limited documentation is available. The
description of the residual codes contains “...not otherwise
specified.” These residual codes often lead to undercoding,
which fails to capture all clinical procedures and reinforce
models to learn undercoding behaviors and negatively
affects prediction performance.

5. Anesthesiology CPT codes were chosen for classification
because of the limited complexity in assignment. There is
one anesthesiology code assigned per operative case,
allowing for a multiclass single classification, whereas
multiple surgical CPTs are often assigned per operative
case. In addition to classification complexity, there is a
limited number of CPT codes used for anesthesiology
classification compared with surgical CPT codes (<300 vs
>5000). The extension of the scope beyond anesthesiology
CPT codes requires further evaluation to reconfigure the
NMT-based model and to adjust better similarity algorithms.

6. The NMT-based model performed on par with one-step
models in terms of accuracy, demonstrating the use of
translation models to perform CPT classification. However,
without a significant increase in accuracy, the additional
processing time may prove significant when applied to
larger, more complicated billing classifications, such as
ICD and surgical CPT predictions. This may limit the
real-world application of translation models for these tasks.

7. The performance of complex models, such as NMT, is more
subjective to the small sample size than traditional machine
learning models. In Figure 4 and Multimedia Appendix 4,
the NMT-based model’s performance is lower with fewer
training samples and better when more training samples
are available.

Conclusions
In this study, we demonstrated an automated anesthesiology
CPT classification system based on machine translation
techniques using surgical procedure text and preoperative
diagnosis. The overall results show that the NMT-based CPT
prediction model is equivalent to the SVM and LSTM models.
Although the NMT-based model was not significantly
outperformed, this new approach enables researchers to
normalize manually entered clinical text into a standard form
for use in classification tasks.
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