
Original Paper

A Rest Quality Metric Using a Cluster-Based Analysis of
Accelerometer Data and Correlation With Digital Medicine
Ingestion Data: Algorithm Development

Zahra Heidary, PhD; Jeffrey M Cochran, PhD; Timothy Peters-Strickland, MD; Jonathan Knights, PhD
Otsuka Pharmaceutical Development & Commercialization, Inc, Princeton, NJ, United States

Corresponding Author:
Jeffrey M Cochran, PhD
Otsuka Pharmaceutical Development & Commercialization, Inc
508 Carnegie Center Dr
Princeton, NJ, 08540
United States
Phone: 1 609 524 6788
Email: jeffrey.cochran@otsuka-us.com

Abstract

Background: Adherence to medication regimens and patient rest are two important factors in the well-being of patients with
serious mental illness. Both of these behaviors are traditionally difficult to record objectively in unsupervised populations.

Objective: A digital medicine system that provides objective time-stamped medication ingestion records was used by patients
with serious mental illness. Accelerometer data from the digital medicine system was used to assess rest quality and thus allow
for investigation into correlations between rest and medication ingestion.

Methods: Longest daily rest periods were identified and then evaluated using a k-means clustering algorithm and distance
metric to quantify the relative quality of patient rest during these periods. This accelerometer-derived quality-of-rest metric, along
with other accepted metrics of rest quality, such as duration and start time of the longest rest periods, was compared to the objective
medication ingestion records. Overall medication adherence classification based on rest features was not performed due to a lack
of patients with poor adherence in the sample population.

Results: Explorations of the relationship between these rest metrics and ingestion did seem to indicate that patients with poor
adherence experienced relatively low quality of rest; however, patients with better adherence did not necessarily exhibit consistent
rest quality. This sample did not contain sufficient patients with poor adherence to draw more robust correlations between rest
quality and ingestion behavior. The correlation of temporal outliers in these rest metrics with daily outliers in ingestion time was
also explored.

Conclusions: This result demonstrates the ability of digital medicine systems to quantify patient rest quality, providing a
framework for further work to expand the participant population, compare these rest metrics to gold-standard sleep measurements,
and correlate these digital medicine biomarkers with objective medication ingestion data.

(JMIR Form Res 2021;5(3):e17993) doi: 10.2196/17993
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Introduction

Lack of adherence to medication regimens is a significant public
health issue that contributes to increased health care utilization
[1,2]. Adherence is of particular concern in patients with serious
mental illness (SMI), including schizophrenia, bipolar disorder,
and major depressive disorder, with estimates of nonadherence
as high as 60% [1,3]. Within this population, effective
pharmacotherapy is critical for mitigating the risk of serious

adverse events, such as psychosis, symptom recurrence, poor
social functions, hospitalizations, and suicide attempts [4,5].
Conventional methods of inferring medication adherence to
pharmacotherapy have limited utility, as they are typically either
subjective or acquire only surrogate markers of medication
ingestion [6]. Thus, there is a clear, unmet clinical need for
adherence monitoring that digital medicine is ideally suited to
address. In this context, digital medicine refers to a system that
combines an active pharmaceutical and an ingestible sensor that
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communicates to a mobile app or web-based application to
record that patients have taken their medication at a specific
time [7], providing an objective measure of ingestion.

Another potentially useful biomarker for patients with SMI is
disruption in sleep [8,9] and activity patterns [10,11], both of
which have been significantly linked to mental health. The
digital medicine system (DMS) used here noninvasively records
activity-related parameters such as step count, physical patient
orientation, and heart rate. Due to battery optimization for
ingestion monitoring, the DMS does not record these metrics
at a sufficiently high temporal resolution to perform common
sleep identification techniques, such as heart rate variability
analysis [12,13]. However, accelerometer-based actigraphy has
been extensively validated against gold-standard sleep
measurements like polysomnography [10,14-17]; thus, the
available data from the DMS can noninvasively provide valuable
insight into patterns of rest and activity in patients with SMI at
the currently available temporal resolution and battery
consumption while simultaneously recording previously
unavailable objective medication ingestion data with a single
device in a natural care setting.

Thus, the goals of this study were twofold. First, 3-axis
accelerometer data from the DMS and a novel analysis algorithm
were used to identify and analyze patients’ longest period of
rest during each day they were on the system. The relative
quality of these rest periods was quantified using a modified

k-means clustering algorithm of accelerometer-derived features;
previous actimetry research has correlated these types of activity
features with wakefulness in sleep studies [14-17]. These activity
features should thus also be correlated with measurements of
rest quality as defined by the National Sleep Foundation, such
as sleep efficiency and wake after sleep onset [18]. The stability
of the rest period duration and consistency of the rest period
starting time were also assessed across all days for each patient,
as measurements of rest duration [18-20] and starting time
[9,10,18] have also been correlated with quality of rest. Finally,
preliminary correlations between rest and medication ingestion
records were explored.

Methods

DMS
The DMS used here has been described previously [21]. Briefly,
the DMS is a combination of an ingestible sensor embedded in
an active pharmaceutical and a sensor patch that is attached to
the torso, which records ingestion events and measures activity
via a 3-axis accelerometer and an estimated sample heart rate
with a single-lead electrocardiogram (ECG). The patch, which
the patient must apply, also contains a temperature sensor and
an impedance sensor and is designed to be worn for 7 days. The
collected data is uploaded and stored in the cloud via a mobile
phone app that also displays a patient dashboard (see Figure 1).

Figure 1. Schematic of the DMS. The DMS consists of an ingestible sensor embedded within an aripiprazole tablet. Upon ingestion, this sensor
communicates with a patient-worn patch, which records the ingestion event and provides measures of activity and heart rate using an accelerometer
and ECG, respectively, as well as temperature and impedance across the patch. The patch then communicates all data to a smartphone app, which stores
the data on a secure cloud server that can be accessed by patients or designated caregivers via a mobile or web-based dashboard. DM: digital medicine;
DMS: digital medicine system; ECG: electrocardiogram; HCP: health care provider; IEM: ingestible event marker.

This system is designed for monitoring medication ingestion in
patients with SMI. Each measured ingestion event is recorded
with a timestamp. The accelerometer data are measured across
a 14-second sample every minute, and a built-in algorithm
converts the raw data to a step count, mean acceleration along
all 3 axes (ax, ay, az), and mean body orientation angle (θ), which
are read out at 1-minute intervals. When the patch initially
observes activity, the accelerometer is calibrated such that the
x-axis is approximately oriented along the longitudinal axis of

the body regardless of the orientation of the patch. The ECG
provides the mean heart rate every 5 minutes.

Study Population
The population used in this analysis comprised 102 participants
enrolled across 2 clinical studies (NCT02219009,
NCT02722967) [22,23]. Table 1 contains the demographic and
clinical characteristics for these patients. All participants were
previously diagnosed with schizophrenia, bipolar disorder, or
major depressive disorder and were regularly receiving
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once-daily doses of the atypical antipsychotic aripiprazole. For
the duration of the study, patients received the digital version
of aripiprazole. Both studies were reviewed and approved by
the appropriate institutional review boards, and patients were
all deemed capable of using the DMS and provided signed

informed consent. To ensure the reliability of individual rest
metrics, the data set presented here excludes 14 additional
patients enrolled in the studies that did not have at least 7 days
of recorded data from the DMS patch.

Table 1. Demographic and clinical characteristics of the sample population.

Values (N=102)Characteristic

Gender, n (%)

40 (39)Female

62 (61)Male

45.9 (11.3)Age (years), mean (SD)

Race, n (%)

56 (55)Black or African American

39 (38)White

5 (5)Asian

2 (2)Other

Ethnicity, n (%)

5 (5)Hispanic or Latino

97 (95)Not Hispanic or Latino

Diagnosis, n (%)

71 (70)Schizophrenia

21 (21)Bipolar 1 disorder

10 (10)Major depressive disorder

Observed ingestion (%)

71.3 (28.9)Median (IQR)

14.8-96.6Range

Observed ingestion duration (days)

54 (14)Median (IQR)

7-64Range

Definition of Longest Rest Periods
The DMS patch provides step count and posture angle
measurements from the accelerometer every minute and the
mean heart rate from the ECG every 5 minutes. These
measurements were partitioned into 15-minute nonoverlapping
time intervals, which were assessed for data quality. A
15-minute interval was considered analyzable if all 3 of the
following conditions were met: (1) there was no point in the
interval at which the patch was pairing with the mobile app, (2)
there were at least 10 collected accelerometer measurements
within the interval, (3) there were at least 2 ECG records within
the window.

Any intervals that failed 1 or more of these criteria were labelled
as missing, ensuring that intervals were only used if they
contained sufficient reliable patch data.

For analyzable intervals, each 1-minute accelerometer record
was then examined, and if the posture angle of that record was
less than 30° away from horizontal, it was classified as rest.

Based on these accelerometer measurement labels, the
analyzable 15-minute intervals were then classified as either
rest (if greater than 70% of the records in that interval were
classified as rest) or active (if the rest criterion was not met).

These 15-minute windows were then used to define each
patient’s longest period of rest for a given day. The first step
was to identify the longest period of consecutive rest intervals
that did not contain any active or missing intervals; however,
this simple longest continuous rest period (LCRP) was likely
an insufficient representation of the patient’s true longest rest
period (LRP). For one, intervals labeled as missing could
artificially shorten these periods. Additionally, a single active
interval is not necessarily indicative of the end of that rest
period; for example, sleep is often interrupted by a short period
of activity. Thus, an algorithm was used, as illustrated in Figure
2, to extend these longest periods of rest to more accurately
capture the duration of each rest period.
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Figure 2. Flowchart for finding the longest rest period. The first step in defining the longest rest period for a given day is to locate the LCRP (ie, the
longest duration of consecutive 15-minute rest windows without any active or missing windows). The algorithm described in the flowchart is then used
to determine if nearby windows are added to the LCRP.

Briefly, sequences of continuous rest windows that were within
5 intervals of either the beginning or end of the initial longest
LCRP were added to the LRP if the intervening intervals were
all missing (ie, none of them were labeled as active). If exactly
1 active interval was present between the longest interval and
another rest interval in any of the 5-interval windows, only

sequences that contained 4 or more consecutive rest intervals
were added to the LRP. If more than 2 intervals between the
original period and the additional rest period were labeled as
active, the new rest period was not added to the LRP. Figure 3
provides the 15-minute interval rest designations and identified
LRPs for a single patient across all days.

Figure 3. Rest state interval designations and longest rest periods for a single subject. (A) All 15-minute windows were classified as either rest, active,
or missing, according to the procedure discussed in the Methods section. (B) The longest rest period for each day was identified using the procedure
shown in Figure 2.
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Rest Features and Metrics
With the LRP identified for each patient on each day, features
were then developed to quantify the relative quality of rest
within these intervals. For this purpose, 3-minute rolling
windows of the accelerometer data, consisting of 3D acceleration
(ax, ay, az), posture angle (θ), and step count, were used, resulting
in 13 individual data points for each 15-minute window. In all,
35 features (see Multimedia Appendix 1 Table S1) were tested,
and 4 features were chosen via a feature agglomeration
technique which is similar to agglomeration clustering but uses
recursive merging of features instead of samples [24]. The
feature agglomeration clustering algorithm was run
independently for each patient in the data set, and 4 features
that were consistently grouped into separate clusters across all
patients were chosen.

These 4 features were then normalized to their respective ranges
and used in a k-means clustering algorithm with 2 groups (k=2);
2 groups were purposely chosen to identify both a rest-reference
(RR) cluster, in which the mean posture angle was closer to a
horizontal position, and a deviation-from-rest (DFR) cluster. A
Euclidean distance across the 4D feature space quantified the
deviation from the rest cluster for each data point; because the
4 individual features used in this model are associated with rest
quality, this distance can be interpreted as a metric for the
quality of rest. For all points in the DFR cluster, the distance
was calculated from that point to the center of the RR cluster
in the 4D feature space. All points that were designated as part
of the RR cluster were given a distance measure of 0; thus, low
values indicated higher rest quality, while higher values
indicated poorer rest quality. Figure 4 shows a sample patient
cluster diagram with the Euclidean distance calculation.

Figure 4. K-means clustering and relative rest quality in a single patient for 2 of the 4 features. (A) K-means clustering diagram plotted across 2
dimensions representing 2 of the 4 features in the clustering algorithm. All data points for each patient were classified using 2 clusters defined as the
rest reference cluster (in blue) and the deviation from rest cluster (in orange). (B) Relative rest quality distance metric calculation. A quality of rest
metric, represented here by variations in color, was also determined for each data point by calculating the Euclidean distance of the point from the center
of the rest reference cluster. All points within the rest reference cluster were assigned a distance of 0. Note that the rest quality color does not have a
perfect correlation with apparent distance on this 2D graph because the Euclidean distance is calculated across all 4 feature dimensions.

Within each 15-minute window, the distance measurements of
all points were then summed to create a single rest quality
metric. Figure 5A displays these LRPs and the calculated rest
quality in each window for a single patient. The relative rest
quality for each LRP was defined as the mean of the relative

rest quality in all 15-minute windows within that LRP. Finally,
for a given patient, the mean and SD of the relative rest quality
of the LRP across all days were used to transform the rest quality
metric for each LRP into a z score.
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Figure 5. Daily relative rest quality and ingestion for a single patient. (A) The longest rest period for each day. Each bar represents the time windows
that constitute the longest rest period for a given day. The color of each 15-minute interval within each bar represents the rest quality metric for that
window. (B) Ingestion times for each day. Recorded ingestion events are marked with a red circle, missed ingestions are marked with an empty black
circle, and the mean ingestion time across all days is represented by the horizontal line. (C) Ingestion and composite rest z scores. The composite rest
z score (in orange), which is the sum of the rest quality, starting time, and duration z score, and the ingestion time z score (in blue) are plotted across
all days for the same patient. We searched for data points where outliers in the composite rest z score occurred near the same day as a corresponding
outlier in the ingestion time z score (eg, on day 15). Note that days without recorded patch data were excluded from the analysis.

The z score metrics of the stability of the LRP duration and of
the consistency of the LRP starting time were similarly
calculated across all days for each participant. A composite rest
z score for each LRP could then be calculated by summing the
absolute values of the quality, stability, and consistency z score
measurements.

Ingestion Metrics
Patient medication ingestion was quantified with 2 metrics. The
first was the patient’s overall observed ingestion rate, calculated
as the number of days during which an ingested dose was

recorded divided by the expected number of ingested doses
across the entire regimen, which was defined as the time from
the first day with recorded patch data to the last day with an
ingestion record (see Table 1 and Figure 6A). The second metric
was a z score of daily ingestion time using the mean and SD of
ingestion time across all days for a given patient. These ingestion
time markers were compared to the previously described rest
metrics by searching for single-day outliers in the rest z score
within 1 day of similar outliers in the ingestion time z score (see
Figure 5B).

Figure 6. Ingestion rate and composite rest score. (A) Distribution of ingestion rate by patient. Ingestion rate was defined as the fraction of days that
contained an ingestion event. Notice that there are relatively few patients with a poor ingestion rate, which made developing robust classification
algorithms difficult. (B) Distribution of mean composite rest score across all days for each patient. (C) Ingestion rate versus mean composite rest score.
There is no clear correlation between the ingestion rate and the composite rest score. Note, however, that there are no patients with very poor adherence
(ie, an ingestion rate less than 0.5) that have a low composite rest score, which would be indicative of better rest.
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Results

A total of 35 features, calculated across 3-minute rolling
windows, were explored to characterize rest in this population
of 102 patients with SMI. There were no significant observed
differences across the 3 indications in this population (ie,
schizophrenia, bipolar disorder, or major depressive disorder)
for any of the forthcoming metrics. The 4 features chosen by
the aforementioned agglomeration technique were the mean of

the circular deviation in the y–z acceleration plane, the mean
of the posture angle, the mean of the 3D acceleration norm, and
the SD of the x acceleration (see Table 2), which were all
calculated across 3-minute rolling windows. The circular
deviation in the y–z acceleration, which represents the degree
to which the combination of the y and z components of the
acceleration differ from the full 1-g resting acceleration, was
particularly successful at differentiating rest windows from
those designated as active (see Figure 7).

Table 2. Rest features.

DefinitionName

y–z acceleration circular deviation (mean)

Posture angle (mean)

Acceleration norm (mean)

σ(αχ)x acceleration (SD)

Figure 7. The y–z acceleration circular deviation. (A) Mean z-axis acceleration versus mean y-axis acceleration for all data points in units of g. (B)
Mean z-axis acceleration versus mean y-axis acceleration for all rest data points in units of g. Note that, for the remaining data points, the y-axis and
z-axis accelerations tend to cluster around a circle with radius 1. Thus, the circular deviation in the y–z plane is an effective feature for differentiating
rest from nonrest.

These 4 features were used in the k-means clustering algorithm
to create the RR and DFR groups as well as the relative rest
quality distance metric (see Figure 4). The distance metrics for
each 3-minute window were summed over each 15-minute
interval, and the mean across the LRP was calculated for each
patient on each day, providing a metric of rest quality throughout
each LRP (see Figure 5A). Note that the value of this metric is
inversely related to the quality of rest. The start time and
duration of each LRP was also calculated. The z scores for this
rest quality, along with the start time stability and duration of
the LRPs, were calculated with respect to the mean and SD of
all LRPs within a given patient’s data set. A composite rest
score was then defined by summing the absolute value of the 3
z score metrics for each LRP. This composite score was thus a

measure of the combined magnitude of deviation from a
patient’s typical pattern for these 3 rest metrics. The distribution
of the mean value of this composite rest score for all patients
can be seen in Figure 6B.

These rest metrics were then compared to the overall ingestion
rate for each patient, which was defined as the fraction of days
a patient was using the DMS that contained an ingestion event.
This study population had a notable lack of patients with poor
adherence; for example, only 15% of patients had an observed
ingestion percentage of 50% or less (see Figure 6A). Patients
with lower adherence did appear to have a relatively low quality
of rest as quantified by the composite rest metric; there were
no patients with an ingestion rate equal to or less than 50% that
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had a low composite rest z score (see Figure 6C), which signifies
better rest. However, the asymmetry in high versus low
adherence and the small sample size precluded statistically
significant conclusions about the overall correlation between
low adherence and rest quality.

We were, however, able to explore correlations between daily
outliers in the composite rest score with outliers in ingestion
time that occurred within 1 day of the rest outlier. One such
example can be seen in Figure 5C. Although this sample does
not contain sufficient events of this type to develop quantitative
conclusions, this could be a potentially useful marker for
identifying rest-related adherence risk factors in the time
domain.

Discussion

Principal Results
This DMS combines objective, time-stamped records of
medication ingestion with noninvasive physiological markers
of activity and heart rate in patients with SMI. It thus provides
a unique opportunity to measure the quality of rest and explore
correlations between rest and objective medication ingestion
data. Here, algorithms were developed to both identify rest
periods and quantify the relative quality of the rest within these
periods using only the data available from the DMS without
increasing battery consumption.

The LRP identification algorithm used accelerometer data, as
provided by the DMS, to first find 15-minute windows that
could be classified as rest and then to combine these windows
to find a daily period of longest rest. Thirty-five potential
accelerometer-measured features were explored, and the four
best were selected via a feature agglomeration methodology
(see Table 2). These features included the acceleration norm
and SD of the x-axis acceleration, with larger values associated
with greater activity. Another feature was the posture angle,
with 0 corresponding to a patient lying down and deviations
representing a greater degree of uprightness. The most novel
feature was the circular deviation of the y–z acceleration, which
is also correlated with rest. If a patient were lying still and
perfectly horizontally, the x-axis (ie, head-to-toe) acceleration
would be small, and thus the total y–z magnitude of acceleration
would be near 1. This would be an example of high-quality rest
and result in a y–z circular deviation near 0 (see Figure 4).
Larger y–z circular deviations can thus be interpreted as an
indicator of decreased rest quality.

These 4 features served as the input for an unsupervised k-means
clustering algorithm (k=2) that included a 4D Euclidean distance
metric for each data point to the center of the RR cluster, which
was then applied to all windows in each LRP. This distance
metric thus could quantify the degree to which a patient deviates
from the RR cluster. Because each of the 4 features that
constitute this distance can individually be correlated with rest
quality, this distance metric can thus be interpreted as a deviation
from quality rest. All patients used in this clustering algorithm
were examined to ensure that their data points were not well
represented by a single rest cluster. It should be noted that other
populations could contain such a patient, which could minimize

the contrast between the RR and DFR clusters. This algorithm
demonstrates the ability of the DMS to quantify patient-specific
rest quality despite the relatively low temporal resolution of the
available accelerometer data due to the need to prioritize power
consumption of the ingestion detection module. Thus, rest
quality can be quantified for patients already engaged with the
DMS without the use of an additional activity tracker that would
require further patient engagement.

Exploratory correlations between the calculated rest metrics
and ingestion data were hindered by the sample’s asymmetry
in medication adherence, in which few patients exhibited poor
ingestion rates. Thus, no statistically significant conclusions
about rest and overall adherence were drawn. Patients with poor
adherence did tend to have larger composite rest z scores, which
is indicative of inconsistent rest quality; however, patients that
were largely adherent to the regimen did not necessarily have
more consistent rest as measured by the composite rest z score.
A z score–based comparison of daily outliers in rest and
ingestion outliers within 1 day could also serve as a useful metric
for exploring the time-domain prediction of variability in
medication ingestion time in a study with a larger sample.

Limitations
Thus, this analysis is an important first step in leveraging the
available data from this DMS system to quantify personalized
rest metrics for eventual correlation with objective ingestion
data, providing insight into the behavioral context of medication
adherence for patients with SMI. However, the study does have
several limitations that can be addressed with future research.
The most notable is the lack of patients with very poor
adherence, which prevented the use of rest data to truly classify
patients by their adherence. This shortcoming can be easily
addressed by accruing more participants in future studies. It
would also be interesting to apply these rest metrics to patients
in a controlled sleep study, which would enable an assessment
of the degree to which these markers for rest are an accurate
surrogate of sleep. Finally, an inherent limitation of the DMS
is that it provides accelerometer data at only 1-minute intervals.
This study nonetheless demonstrates that this relatively sparse
data can still be used to effectively monitor patient rest.

There are many other future analysis directions that could be
pursued with this data. Two of the most direct extensions of
this study would be to more fully incorporate the system’s
measurement of heart rate and to begin exploring markers that
quantify a patient’s activity level throughout the day.

Conclusions
Data from the accelerometer in a DMS that provides objective
time-stamped medication ingestion records were collected and
used to develop novel algorithms for identifying and assessing
the quality of daily rest periods for individual patients. A lack
of patients with poor adherence in the sample population
prevented the use of a quantitative classifier; however, pilot
explorations of the relationship between these rest metrics and
ingestion provided several insights. Patients with poor adherence
experienced lower quality of rest, while patients with high
adherence did not exhibit a consistent rest pattern. Additionally,
the correlation of outliers in composite rest score with outliers
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in ingestion time is an interesting potential application of this
algorithm. This study is an important first demonstration of the
ability of the DMS to track patient rest, which provides a

framework for future correlation of DMS-based biomarkers
with medication adherence in patients with SMI.
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