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Abstract

Background: The World Health Organization named the phenomenon of misinformation spread through social media as an
“infodemic” and recognized the need to curb it. Misinformation infodemics undermine not only population safety but also
compliance to the suggestions and prophylactic measures recommended during pandemics.

Objective: The aim of this pilot study is to review the impact of social media on general population fear in “infoveillance”
studies during the COVID-19 pandemic.

Methods: The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol was followed, and
6 out of 20 studies were retrieved, meta-analyzed, and had their findings presented in the form of a forest plot.

Results: The summary random and significant event rate was 0.298 (95% CI 0.213-0.400), suggesting that social media–circulated
misinformation related to COVID-19 triggered public fear and other psychological manifestations. These findings merit special
attention by public health authorities.

Conclusions: Infodemiology and infoveillance are valid tools in the hands of epidemiologists to help prevent dissemination of
false information, which has potentially damaging effects.

(JMIR Form Res 2021;5(2):e21156) doi: 10.2196/21156
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Introduction

The COVID-19 pandemic has raised health care, hospitalization,
and research demands in an exponential manner. Apart from
the burden of the confirmed cases and the high mortality rates,
this pandemic has strained the public health systems of several
countries. The World Health Organization (WHO) characterized
this outbreak as a Public Health Emergency of International
Concern [1,2]. In addition, the WHO identified potentially
damaging misinformation spread through social media, or
“infodemics,” and recognized the need to curb it [3]. Indeed,
citizens from all over the world were exposed to a plethora of
information and misinformation, especially through social
media, while public health authorities wrestled to broadcast
evidence-based important information. Infodemics undermine

compliance to health authority suggestions and prophylactic
measures, and hence, compromises population safety. Moreover,
misinformation challenges self-respect, personal rights, and
survival instincts, causing fear, anxiety, panic, depression, and
unpredictable behaviors such as violence and suicidal thoughts
in the general population.

A recent systematic review recognized an increasing trend in
studying social media misinformation during and after epidemics
[4]. Previous reviews have illustrated the psychological and
physical distress in health care professionals due to COVID-19
[5] and previous infectious epidemics [6,7]; however, the general
population’s fear and behavioral expressions are yet to be
established. Massive fear may trigger unpredictable social
processes and may result in posttraumatic stress disorder (PTSD)
[8]. The attempt to collect and interpret data from social media
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may reveal the dominant stressors in the epidemic, as well as
information on personal and business communications.
“Infodemiology” is a rapidly growing research field that collects
internet data for epidemiologic and other public health needs
[9,10]. The aim of this pilot study is to review the impact of
social media on the negative sentiments of the general
population in published “infoveillance” studies.

Methods

Databases such as MEDLINE and PUBMED (The National
Library of Medicine) were searched using the keywords
“infodemics COVID-19” or “fear due to COVID-19 social
media misinformation” or “infodemiology and COVID-19” or
“COVID-19 and social media impact on mental health.” The
literature search was conducted in mid-May 2020. The articles
meeting the eligibility criteria were evaluated by the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines [11] (Multimedia Appendix 1).

The inclusion criteria were English language studies related to
social media, fear, and infoveillance data retrieved from social
media. Reviews, meta-analyses, and opinion articles were
excluded from this analysis. Two of the authors (SG and GC)
searched and screened articles, and agreed on their quality; the
articles were scored using the Newcastle-Ottawa Scale for risk
of bias evaluation (Multimedia Appendix 2). The Cohen kappa
for interrater agreement was 90% (0.66) for the abstract selection
but 96% for the full inclusion of the study. Any disagreement
was addressed by mutual consensus.

The population targeted was social media users expressing fear
(posts; P) because they had been exposed to misinformation
during the first phase of the COVID-19 pandemic (E) in
comparison to the total posts of the specific social media during
the same period (C). The outcome (O; “events” or fear posts)
were presented in effect sizes and calculated as event rates (p
= events / total reference population; the proportion of patients
and events in a group in which the “event” is observed). We
further calculated:

Event Rate p = event / total (1)

logit (LogitEventRate = Log(p / (1 – p)) (2)

where LogitEventSE = Sqr(1 / (p * Total) + 1 / ((1 – p) * Total))
(3)

or EventRate = (e ^ LogitEventRate) / (e ^ LogitEventRate +
1) (4)

The probability of fear (f): f = ExpLogit / (1 + ExpLogit) (5)

In this analysis, we applied and presented the random effects
model, which assumes that the data being analyzed are drawn
from a hierarchy of different populations [12]. We calculated

the heterogeneity with I2 [13,14] and τ2 [15,16]. All calculations
were performed in R software (R Foundation for Statistical
Computing). The results are presented with their 95% CIs, and
in the summary results, 95% prediction intervals were also
estimated with Higgins et al’s [17] formula. Lwin et al [18] did
not report absolute patient numbers but daily proportions. Thus,
we estimated these numbers by calculating the mean from the
first figure of the relevant publication.

Results

Of the 20 studies retrieved originally [1,3,5,18-34], only 6 met
the inclusion criteria [18,20-24].

One referred to the epidemic risks [34], 5 expressed opinions
on infodemics [1,3,27,32,34], 1 counted social media use [25],
1 was a meta-analysis on depression and anxiety [5], and 4
estimated misinformation [19,26,29,31,33], and these were
excluded from this study (Figure 1). As the Zhao et al [24]
publication included three phases, we considered each phase as
a separate study; thus, we summarized the results of 8 studies.
We also included the Ahmad and Murad [20] and Gebbia et al
[23] studies, even though they were actually surveys, because
they were performed with data from Facebook and WhatsApp,
respectively, and reported results on fear.
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Figure 1. Flow chart.

The studies included herein had processed over three million
social media events (Facebook, YouTube, Twitter, WhatsApp,
and similar versions in China) from over 170 countries, with
messages expressed in seven languages (Table 1). In sum, out
of 20,330,510 posts referring to COVID-19, 8,741,601 were
retrieved that expressed fear. These studies were meta-analyzed
using event rates, and their random effect is presented in Figure
2 and Table 2. The calculated LogitEventRate random effect
was 0.746 (95% CI –1.176 to –0.315), while the summary odds
was calculated as 0.475 (95% CI 0.3086 to 0.7295; 95%

prediction intervals 0.1018 to 2.2119; Tables 2 and 3). The
probability was 0.322. When we excluded the Gebbia et al [23]
study, the random effect LogitEventRate was –0.907 (95% CI
–1.387 to –0.428; 95% prediction intervals –2.6052 to 0.7903;
SE 0.245; variance 0.06; probability 0.288; Tables 2 and 3).
The Ahmad and Murad [20] study reported observations on
Facebook (82.6%) and other social media sources; the
observations were reported unstratified, and the results were
presented as Facebook results.

Table 1. Studies characteristics.

Social mediaMessages expressing
fear, n

Total messages
screened, n

Gender (male/fe-
male), n

Age (years)Study

Facebooka330516222/33618-35: 65.1%; >51:
6%

Ahmad and Murad (2020) [20]

Twitter81233——bAhmed et al (2020) [21]

YouTube10113——D’Souza et al (2020) [22]

WhatsApp254446190/252Range 34-90Gebbia et al (2020) [23]

Twitter8,740,15020,325,929——Lwin et al (2020) [18]

Sina microblog1424—Range 18-41Zhao et al (2020) [24], part A

Sina microblog25639—Range 18-41Zhao et al (2020) [24], part B

Sina microblog7372610—Range 18-41Zhao et al (2020) [24], part C

N/A8,741,60120,330,510N/AN/AcTotal

a82.6% of the observed messages came from Facebook.
bData was not available.
cN/A: not applicable.

JMIR Form Res 2021 | vol. 5 | iss. 2 | e21156 | p. 3https://formative.jmir.org/2021/2/e21156
(page number not for citation purposes)

Geronikolou & ChrousosJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Forest plot of fear random event rates 95% CI due to Covid-19 surge retrieved by infodemics.

Sexual dimorphism was reported in 2 studies [20,23] in which
women circulated more fear- inducing misleading posts. The
methodology of the remaining studies did not include any
relevant calculations, so the gender prevalence could not be
taken into account.

The social media type probabilities are listed in Table 4. Of
those, the Twitter-induced fear probability, as well as the overall
probability, might be considered most credible (including many
countries, ethnicities, and languages).

Table 2. Meta-analysis results.

Residual random
(event rate)

Weight ran-
dom

VarianceSELogit (95% CI)Event rate (95% CI)Study

2.3813.530.0080.09170.57 (0.394 to 0.753)0.64 (0.597 to 0.680)Ahmad and Murad (2020) [20]

0.2113.140.0190.1376–0.63 (–0.899 to
–0.36)

0.348 (0.289 to
0.411)

Ahmed et al (2020) [21]

–2.4810.530.1100.3312–2.33 (–2.981 to
–1.683)

0.088 (0.048 to
0.157)

D’Souza et al (2020) [22]

1.8513.50.0090.09560.28 (0.092 to 0.467)0.57 (0.523 to 0.615)Gebbia et al (2020) [23]

0.8513.860.0000.0004–0.28 (–0.283 to
–0.28)

0.43 (0.43 to 0.43)Lwin et al (2020) [18]

1.589.280.1710.41400.34 (–0.475 to 1.15)0.583 (0.383 to
0.759)

Zhao et al (2020) [24], part A

–4.212.370.0420.2040–3.20 (–3.6 to –2.8)0.039 (0.027 to
0.057)

Zhao et al (2020) [24], part B

0.3413.780.0020.0435–0.93 (–1.018 to
–0.85)

0.282 (0.265 to
0.300)

Zhao et al (2020) [24], et al

N/AN/Aa0.0480.219–0.75 (–1.176 to
–0.315)

0.322 (0.236 to
0.422)

Random effect

N/AN/A0.060.245–0.907 (–1.39 to
–0.428)

0.288 (0.200 to
0.395)

Random effect without Gebbia et al
[23] study

aN/A: not applicable.

Table 3. Prediction intervals and probability of fear random effect in all studies and when Gebbia study is not considered.

ProbabilityRandom effect logit (95% prediction intervals)Studies

0.322–0.7455 (–2.2849 to 0.7939)All studies

0.2880.9075 (–2.6052 to 0.7903)Gebbia et al [23] study excluded
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Table 4. Probability of fear effect for each social media.

ProbabilityExpLogit event
rate

CountryTotal reference pop-
ulation, n

Studies, nSocial media type

0.2880.6518110.428>170 countries20,326,1622Twitter

0.571.323130.28Italy4461WhatsApp

0.641.7741940.573346Iraqi Kurdistan5161Facebook

0.0880.097087–2.33214US1131YouTube

0.2170.277204–1.283China32733Sina microblog

Discussion

Epidemics have caused burden on humankind since antiquity;
past communities experienced shock that has been reflected in
art, literature, massive population transitions, political turmoil,
and changes in governance. Myths and legends evolved while
people tried to deal with the unknown, the unpredictable, and
the unexpected. Interpretations included, among others, divine
interventions or punishment, conspiracy theories, religious
fanaticism, racism, and scapegoating. Sparsity of data, especially
in the beginning of an epidemic, facilitates misinformation
spreading, and once this is initiated, “it is difficult to argue with
reason” [35]. Interestingly, a recent psychology study established
that “illusory pattern perceptions is a central cognitive function
accounting for conspiracy theories and irrational beliefs” [36].

At the start of the current pandemic, the new coronavirus
produced a broad clinical entity with an unpredictable natural
history and uncertain treatment. The uncertainty caused feelings
of fear, anxiety, and even depression, developing under an
unexpected surge of serious morbidity and mortality
[5,25,37,38].

These days, social media are a sine qua non for personal
communications, business advertising, and updates [39]. During
the pandemic, social media were used to empower the
population and support public health measures. Yet, public
health officials and academic researchers were alarmed by the
size and spread of community confusion, frequently in response
to “fake news” [21,25,27,40-42]. Thus, many nations were
exposed to numerous misinformative communications regarding
the origin of the epidemic (conspiracy theories, 5G antennas,
etc), its transmission route (Asian neighbors, zoonotic or
airborne transmission), the appropriate prophylactic measures
(the herd immunity or isolation dilemma, vitamin and
supplement effectiveness, etc), the treatment effectiveness
(ibuprofen, hydroxychloroquine, etc), drug synergy (use of
angiotensin-converting enzyme inhibitors, sartans), the vaccines
expected (ineffective or even lethal), and the socioeconomic
consequences (famine, unemployment). The scale of
misinformation varied depending on the various political,
religious, and cultural particularities of nations; however, the
aforementioned issues were predominant in most countries.
These characteristics influenced the between all and within
Twitter studies’ variance in our study.

Fear is an emotion that is caused by personal and societal threats
and uncertainty (like the COVID-19 surge), while anger may
originate from uncertainties caused by other persons [43]. Other
negative emotions such as anxiety and depression are

intertwined, individuality dependent, and have been evaluated
in a previous meta-analysis [5]. Fear motivates unpredicted
behaviors and merits attention in public health planning.
Moreover, it was previously shown that indirect exposure to
mass trauma through the media can accelerate the clinical
manifestations of PTSD [8]. For all the previously mentioned
reasons, we concentrated on fear in this meta-analysis.

Our study shows that the general population’s fear was
significantly dominant for one-third of the population due to
COVID-19–related misinformation (Tables 2 and 3, and Figure
2). The effect was random (considering heterogeneity between
and within studies) and of robust magnitude. Even when we
excluded one study, the magnitude of the effect persisted,
revealing that a considerable part of the population was
negatively influenced by misinformation. More importantly, it
was established recently that “tweet quality (misinformation
vs. correct information) did not differ based on the number of
likes or retweets, indicating that misinformation is as likely to
spread and engage users as is the truth” [28]. Thus, the 5G
conspiracy was spread through Twitter [21]. Zhao et al [24]
reported that negative emotions decreased over time not only
by habituation but also by the progress of scientific research,
physical distancing, and the effectiveness of health care. The
same was implied by Li et al [26], who studied 115,299 posts
in 39 days but did not give numbers and was, thus, excluded
from our analysis [26].

The importance and risk of communicating emotions through
social media have been verified experimentally [44,45] and
based on real data [27] and the history of other recent epidemics
[2,46-48]. Comparing the summarized random size effect of
fear pf with pi (insomnia relevant), pa (anxiety relevant), and pd

(depression relevant) as reported by Pappa et al [5], we see that
(pf=pi>pd=pa). The dominant effect of fear was similar to that
causing insomnia but greater than that related to anxiety or
depression. This is underlined by fear’s nature; it is a primal
emotion linked to survival, which may lead to complex feelings
and moods such as anxiety and depressive manifestations or
even clinical anxiety and depression.

The sexual dimorphism reported in two studies is indicative but
cannot be assumed representative, as these specific studies were
specific to ethnicity and had a small sample size. This
observation may be explained from the fact that women tend
to worry and distress by potential threats [49-51] and misleading
information on potential risks in social media.

Our pilot study shows that the probability of social media users
to develop fear due to misinformation is 32.2% (Table 3). The
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probability of fear varies upon the media used and the ethnicity
and culture. Not including the WhatsApp cohort (Gebbia et al
[23] study) that was targeted to a COVID-19 high risk group
(patients with cancer), the fear effect probability decreased to
28.8% (Table 3). This phenomenon is reasonable considering
that patient groups are physically more vulnerable to the virus
and, perhaps, mentally more sensitive to any information,
particularly misinformation. The observed decrease, however,
is quite small at 3.4%.

The prediction intervals calculated indicated that effects of
future studies might fall on the same side of the null and perhaps
on both sides if the Gebbia et al [23] study is excluded. The
prediction intervals “naturally account for heterogeneity”
according to Higgins et al [17]; however, these intervals were
criticized for their validity in small meta-analyses (including
those with <20 studies) [52,53]. The heterogeneity in this
meta-analysis was vast and persisted even when we excluded
confounding studies, extreme-sized studies, or groups of studies
(Table 5). It may be attributed to the small size of the
summarized studies or to multicultural profiling. Yet, this
meta-analysis is of value because its preliminary results and
“difficulties” may guide future analyses on more studies to

investigate group differences in social media type or culture
homogeneous populations.

This study has to be viewed under its limitations: its pilot
character; the time and period of conductance; the prematurity
of the findings; the diversity of social media type surveyed; the
multiethnicity, multicultural, and multi-language extracted data;
and the unavailability of culture, age, gender, and education
data in the retrieved studies.

Future cohort studies should better include more details on
demographic, culture, and language data for more precise
epidemiologic analyses, extracting targeted public health
directions.

In conclusion, fear probability due to circulating misleading
information was 32.2% for the general population, while when
patient groups were excluded, fear probability diminished by
3.4%. Ethnicity and the social media type seem to be the main
moderators of fear. Infodemiology and infoveillance may
provide insight in epidemiologic research and contribute to the
efficacy of public health measures. More importantly, our study
suggests that public health officials must meet the challenge of
curbing misinformation on the disease and its effects so as to
protect their own credibility and effectiveness.

Table 5. Intrinsic heterogeneity in each included study or social media type population.

τ2I2Social media typeStudy

0.000.00FacebookAhmad and Murad (2020) [20]

0.000.00TwitterAhmed et al (2020) [21]

0.000.00TwitterLwin et al (2020) [18]

0.05184.35TwitterAhmed et al [21] and Lwin et al [18]

0.000.00YouTubeD’Souza et al (2020) [22]

0.000.00WhatsAppGebbia et al (2020) [23]

0.000.00Sina microblogZhao et al (2020) [24], part A

0.000.00Sina microblogZhao et al (2020) [24], Part B

0.000.00Sina microblogZhao et al (2020) [24], Part C

2.22898.45Sina microblogZhao et al [24], parts A, B, and C

0.34898.828Combined social mediaAll studies

0.37698.934WhatsApp excludedGebbia et al [23] study excluded
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