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Abstract

Background: Machine learning applications in the health care domain can have a great impact on people’s lives. At the same
time, medical data is usually big, requiring a significant number of computational resources. Although this might not be a problem
for the wide adoption of machine learning tools in high-income countries, the availability of computational resources can be
limited in low-income countries and on mobile devices. This can limit many people from benefiting from the advancement in
machine learning applications in the field of health care.

Objective: In this study, we explore three methods to increase the computational efficiency and reduce model sizes of either
recurrent neural networks (RNNs) or feedforward deep neural networks (DNNs) without compromising their accuracy.

Methods: We used inpatient mortality prediction as our case analysis upon review of an intensive care unit dataset. We reduced
the size of RNN and DNN by applying pruning of “unused” neurons. Additionally, we modified the RNN structure by adding a
hidden layer to the RNN cell but reducing the total number of recurrent layers to accomplish a reduction of the total parameters
used in the network. Finally, we implemented quantization on DNN by forcing the weights to be 8 bits instead of 32 bits.

Results: We found that all methods increased implementation efficiency, including training speed, memory size, and inference
speed, without reducing the accuracy of mortality prediction.

Conclusions: Our findings suggest that neural network condensation allows for the implementation of sophisticated neural
network algorithms on devices with lower computational resources.

(JMIR Form Res 2021;5(12):e20767) doi: 10.2196/20767
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Introduction

Machine learning applications for health care can have a great
impact on people’s lives. Currently, the possibilities for machine
learning in health care include diagnostic systems, biochemical
analysis, image analysis, and drug development. One of the
most significant challenges in using machine learning for health
care applications is that data is usually huge and sparse,
requiring important computational resources, especially for

overparameterized deep neural networks (DNNs). Consequently,
the availability of computational resources to use such tools can
limit their widespread use, such as for people who live in
low-income countries and for those who want to run diagnostic
apps on their own mobile devices.

In this study, we set in-hospital mortality prediction as a case
study to explore the various ways of improving efficiency (ie,
training speed, memory size, and inference speed) of neural
network–based algorithms. Mortality prediction is a well-tried
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medical machine learning application wherein the mortality of
a patient after being transferred to the intensive care unit (ICU)
can be predicted based on their vital signs, laboratory tests,
demographics, and other factors. Mortality prediction is
important in clinical settings because such a prediction can help
determine the declining state and need for intervention. We
built baseline models with either recurrent neural network
(RNN) or dense neural network architectures, based on which
we explored efficiency improvements via neural network
condensation without sacrificing the prediction accuracy. An
RNN is a class of artificial neural networks wherein connections
between nodes form a directed graph along a temporal sequence
that consider a sequence of input in a recurrent manner. RNNs
are widely used in clinical informatics in tasks such as temporal
data analysis and clinical natural language processing.

Reduction of complexity and improvement of efficiency of
artificial neural networks is an active field of research, wherein
a wide range of methods have been explored. One representative
example is neural network pruning, wherein a fraction of
weights is removed from the trained model and the “lottery
ticket” is found when the remaining weight can still be quickly
trained with competitive loss and accuracy [1-3]. There are more
fancy pruning approaches where the authors use another neural
network to learn and conduct the best pruning decisions
considering the network to be pruned (ie, the backbone neural
network). For example, Lin et al [4] developed a method called
runtime neural pruning to model their pruning process as a
Markov decision process and use reinforcement learning for
training via an additional RNN. Zhong et al [5], on the other
hand, used long short-term memory (LSTM) to guide an
end-to-end pruning of the backbone neural network. Some other
previous works have converted the neural network condensation
into an optimization problem where parameters are penalized
under some norm [6-9].One RNN-specific condensation method
is that instead of embedding information into multiple recurrent
layers, we only use one recurrent layer but extend the capacity
of the RNN unit (cell) by incorporating more hidden layers
within the cell. Dai et al [10] showed that DNNs were inserted

between the recurrent layer and the input (masking) layer for
each gate in the LSTM to form an LSTM embedded with hidden
layers (ie, hLSTM). Such an architecture can, in principle, be
more efficient (ie, fewer number of parameters and higher
training speed). There is another posttraining condensation
method called quantization, wherein parameters originally stored
in a 32-bit floating point format are forcibly converted to 8 fixed
bits [11]. Other methods used for neural network condensation
include, but are not limited to, binarization of neural networks
[12], knowledge distillation [13], and Huffman coding [14]. In
this paper, we describe the use of hLSTM, neural network
pruning, and quantization to condense the size of neural
networks and increase speed while maintaining their prediction
accuracy.

Methods

Intensive Care Unit Data
We used the Medical Information Mart for Intensive Care-III
(MIMIC-III) critical care database for the implementation of
our models [15]. In all, 53,423 distinct hospital adult patients
admitted to critical care units between 2001 and 2012 are
included in this database. We excluded all neonatal and pediatric
patients (aged 18 years or younger at the time of ICU stay)
because the physiology of pediatric critical care patients differs
significantly from that of adults [16]. We also excluded any
hospital admissions with multiple ICU stays or transfers between
different ICU units. The final cohort comprised 33,798 unique
patients, with a total of 42,276 hospital admissions and ICU
stays. Of these 33,798 patients, we defined a test set of 5070
(15%) patient stays. In-hospital mortality was determined by
comparing patient date of death with hospital admission and
discharge times. The mortality rate within the cohort was 10.9%.
The median age of adult patients was 65.8 (SD 11.3) years, and
55.9% (18,893/33,798) patients were male. A mean of 4579
(SD 721.7) charted observations and 380 (SD 215.8) laboratory
measurements, as well as other static information, are available
for each hospital admission.

Table 1. Summary of patient data (N=33,798).

ValueVariable

3717 (10.9)Mortality during ICUa stay, n (%)

65.8 (11.3)Age in years, median (SD)

18,893 (55.9)Male participants

aICU: intensive care unit.

Data Prepossessing
Data were collected from the MIMIC-III database. Only data
from the first 48 hours were used as inputs in our analysis. For
the purpose of this study, 76 features were selected for analysis
(see examples listed in Textbox 1). Some features may appear
multiple times (in different means or conditions) and are thus
regarded as independent features. We resampled the time series
into regularly spaced intervals. If there were multiple
measurements of the same variable in the same interval, we

used the value of the last measurement. We imputed the missing
values using the previous value, if it exists, or a prespecified
“normal” [16] value, otherwise. In addition, we added a binary
mask input for each variable, indicating the time steps that
contain a true (vs imputed) measurement [17]. Categorical
variables were encoded using a one-hot vector at each time step.
Then, the inputs were normalized by subtracting the mean and
dividing it by the SD value. Statistics were calculated per
variable after imputation of missing values.
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Textbox 1. Examples of the 76 features selected for the analysis.

• pH

• Fraction-inspired oxygen

• Systolic blood pressure

• Height

• Weight

• Oxygen saturation

• Diastolic blood pressure

• Glucose

• Temperature

• Mean blood pressure

• Capillary refill rate

• Respiratory rate

• Heart rate

• Fraction inspired oxygen

• Glasgow Coma Scale–50

Performance Metrics
Classification accuracy of all models were measured using area
under the receiver operating curve AUROC (also called
AUCROC) on the test set. Sizes of model were measured by
the number of parameters and sizes of the saved model file.
Inference speed was calculated based on time taken to make
predictions on test data and was normalized per patient. We
used Python 3.6, Keras 2.2.4 with TensorFlow 1.1.2, as the
backend for the analysis.

RNN Model
Our RNN baseline model is designed as an RNN consisting of
a masking layer, two LSTM layers, a dropout layer, and a dense
output layer, as shown in Figure 1. We chose two layers of
LSTM because, based on a literature review, we identified this
structure to be the one with the best performance in the

MIMIC-III mortality prediction work [16]. The masking layer
masks (skips) the time step for all downstream layers if the
values of input tensor at the time step are all equal to zero, which
represents missing data for that time step. The first layer of
LSTM takes in the original 76 features and generates a
16-feature hidden state based on the hidden state of the previous
step and the new incoming observation. Then, such a hidden
state is forward to the entrance of the second LSTM layer, which
produces another 16-feature hidden state at each step. A dropout
layer is followed by the last-step hidden state of the second
LSTM layer to prevent complex coadaptations of the neurons.
Finally, a dense layer is used to generate a soft 0/1 mortality
prediction. The training was conducted using Adam algorithm
with a dropout rate of 0.3 between layers and a learn rate of
0.001. In this study, hyperparameters were chosen by grid
searching based on performance on the validation set.
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Figure 1. Architecture of recurrent neural network baseline model. DNN: deep neural network; LSTM: long short-term memory; ReLU: rectified linear
unit.

hLSTM Model
Besides pruning upon RNN, we also tried another way by
inserting an additional hidden dense layer into the inner gates
of LSTM, which we called hLSTM, to improve the “power” of
the LSTM. For a traditional LSTM, the inner structure is as
follows:

where * is the matrix product; ⊗ is the element-wise product;
W represents recurrent kernel matrices of the gates; and b
represents corresponding bias terms. Moreover, f, i, o, c, x, h
and c represent the forget gate, input gate, output gate, vector
for cell updates, input, hidden state, and cell state, respectively.
Subscript t indicates the time step. For hLSTM, the recurrent
layer in equation 1 is modified as follows:

Feedforward DNN Model
Our baseline feed forward artificial neural network—commonly
called DNN—used in this project consists of three fully
connected layers, a dropout layer, and an output layer. The fully
connected layers have 256, 128, and 64 neurons, respectively,
and they use rectified linear unit (ReLU) as the activation
function. The dropout layer has a probabilistic dropout rate of
0.5. Sigmoid function was used as activation at the output layer.
The loss function used was binary cross-entropy, and the
optimization algorithm used was Adam. The baseline DNN
model and the pruned DNN model (pDNN) were all trained for

20 epochs, using a batch size of 8. The input into the DNN
model has the same feature set as LSTM model but does not
consider time series information. The values were calculated
by averaging nonmissing values across time steps.

Neural Network Pruning
All neural network prunings were conducted at the channel
level, which means a neuron and all its inputs and outputs were
removed from the model if the neuron is pruned. Keras surgeon
library in python was used for pruning. In each layer, neurons
were pruned if their mean weight across all inputs from the
previous layer were below the set quantiles (ie, 25% and 50%
in this study). The original model was trained for 1 epoch before
pruning and was trained for another 19 epochs after pruning.

Neural Network Quantization
Quantization was applied on the DNN model post training.
Parameters, including weights and activation, originally stored
in a 32-bit floating point format were converted to 8 bits using
TensorFlow Lite. A uniform quantization strategy was used, as
previously described [11]. Considering the range of float point
values in the model to be (Fmin; Fmax), all the floating-point
values were quantized into the range (0; 255) as 8 bits in a
uniform manner, where Fmin corresponds to 0 and Fmax

corresponds to 255.

The quantization process is

where x is the floating-point variable, xq is the quantized
variable, and
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Results

Recurrent Artificial Neural Network Condensation:
hLSTM and Pruned LSTM
Recurrent artificial neural networks (or simply, RNNs) are a
group of machine learning models widely used in clinical
settings that take sequential or time series information as the
input. However, training of RNNs and running inference from
RNNs are relatively computationally intensive. In order to

enable the machine learning algorithms to be used on devices
with limited computational power, such as those in high-income
countries and on mobile devices, we used three strategies to
reduce the storage size of the model and to increase the speed
of training and inference (Figure 2).

We built a baseline RNN using two layers of LSTM neurons
to predict ICU mortality rates using MIMIC-III dataset [15].
After training, the baseline RNN model achieved a decent
performance of AUROC of 0.85 (Table 2).

Figure 2. Neural network condensation methods. (A) Hidden-layer long short-term memory (LSTM). Instead of single fix layer nonlinearity for gate
control of LSTM, multiple layer neural network with ReLu as activation were used to enhance the gate controls. In this way, fewer layers of LSTMs
were needed to build a model with similar performance. (B) A large portion of parameters in artificial neural networks are redundant. We pruned 50%
of the channels (neurons) with the lowest weights in each layer to reduce size and complexity of the neural network. (C) Most artificial neuron network
implementation in research settings uses 32- or 64-bit floating points for model parameters. We quantized the parameters to 8 bits after training to reduce
sizes of the models. DNN: dense neural network.

Table 2. Recurrent neural network condensation.

Test AUROCa

(last epoch)

Training time (seconds;
20 epochs)

Inference (seconds per
sample)

File size (kb)Parameters, nModel

0.83648905231298081Baseline LSTMb

0.8534990318733273Pruned LSTM

0.86030002541116993Hidden-layer LSTM

aAUROC: area under the receiver operating curve.
bLSTM: long short-term memory.

The first strategy was to modify the LSTM cell to increase the
representation power of each layer. We modified the original

neural network structure and added an additional hidden layer
into the original LSTM class, wherein one additional layer called
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“hidden kernel” was inserted between the input kernel and the
recurrent kernel (see equation 4). By using this strategy, we
replaced the old 2-layer LSTM with only one layer of hLSTM,
such that we simplified the overall structure by trying to embed
the same quantity of information in this single “condensate”
layer.

Both the baseline model and the hLSTM model with only one
layer of hLSTM are trained under the same settings. The
comparison of AUROC and accuracy is shown in Figure 3. The
number of parameters for these two models are listed in Table
2. This simplified model with a single layer of hLSTM beats
the baseline model 2-fold in training speed, achieving a 32%
reduction in parameter numbers while simultaneously
maintaining a higher AUROC at the same time.

Figure 3. Accuracy, model size, and inference speed of feedforward recurrent and neural networks (RNNs) after different types of condensation. (A)
Area under the receiver operating characteristic curve (AUROC) of various models. (B) Various model sizes in memory. (C) Inference speed of various
models. Models included the RNN baseline model with two layers of long-term short memory (LSTM), pruned LSTM (pLSTM) model, and one hidden
layer inserted in LSTM (hLSTM); deep neural network (DNN) baseline model; pruned DNN (pDNN) model; quantized DNN (qDNN) model.

Another method to condense RNN models is pruning, in which
some unessential neurons of the RNN model are removed to
minimize model size and increase speed. About 50% of LSTM
neurons with lowest weights in each hidden layer were pruned
after the first epoch of training. The pruned LSTM only has half

of the number parameters of the original LSTM, but it achieves
a similar level of accuracy, yielding an AUROC of 0.85 (Figure
4). The inference speed of pruned LSTM also doubled compared
with the original LSTM (Table 2).
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Figure 4. Test area under the receiver operating curve (AUROC) by training epoch for recurrent neural network (RNN) models. Evolution of different
RNN models over training epochs on test data. The percentage next to the pruned long short-term memory (pLSTM) model indicates the pruned
percentile. hLSTM: hidden-layer long short-term memory; LSTM: long short-term memory.

Feedforward Neural Network Condensation: Pruning
and Quantization
Feedforward neural network, or commonly called DNN if it has
multiple hidden layers, is another widely used form of machine
learning in clinical settings. We trained DNN with 3 hidden
layers, consisting of 256, 128, and 64 neurons in each layer, to
enable ICU mortality prediction. The baseline DNN achieved
an AUROC of 0.82, using patient data collected within the first
48 hours after admission. We explored two methods to condense
the size of the DNN. The first method, called pruning, used the
pruning strategy as in RNN; for this purpose, 50% of the
channels were pruned after the first epoch of training, the

prediction accuracy of the pDNN maintained at the same level
as the original DNN, and the inference speed doubled (Table
3). The second strategy involved quantization, which refers to
the process of reducing the number of bits that represent a
number. In the context of this project, the predominant numerical
format used was a 32-bit floating point. We used an
after-training-quantization strategy to represent the parameters
of the DNN model using 8-bit integers (ie, quantized DNN or
qDNN). This method reduced storage size of the DNN model
by 5 times without incurring significant loss in accuracy (Table
3). We also compared the overall performances of DNN
condensation with those of RNN, as shown in Figure 3.

Table 3. Feedforward neural network condensation.

Test AUROCa (last epoch)Training time (sec-
onds;20 epochs)

Inference (seconds
per sample)

File size (kb)Parameters, nModel

0.8233002076760,929Baseline DNNb

0.8133101031527,312Pruned DNN

0.82N/Ac156460,929Quantized DNN

aAUROC: area under the receiver operating curve.
bDNN:
cN/A: not applicable.

Discussion

In this study, we were able to use data from the MIMIC-III
database [15] to train in-hospital mortality neural network
models with high accuracy and conduct model condensation
with different methods to gain efficiency (eg, memory size
reduction and increased speed) without compromising accuracy.

We implemented different neural network architectures for both
RNNs and dense neural networks; thus, our methods can add
value in both settings. We pioneered RNN pruning with clinical
implementation and our condensation treatments aiming at
higher efficiency can be extended to other medical applications
using similar data, and probably to nonmedical applications as
well. In addition, in medical settings, model calibration is
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conducted after initial model training. Calibration can be
conducted using various training schemes and early stopping
strategies. The model condensation method proposed in this
study significantly reduces the number of parameters and will
help make model calibration easier. The major limitation of the
neural network condensation method is that although our

proposed method significantly reduces the sizes of different
models and their computational costs in training, the final model
sizes after condensation are still proportional to the original
model sizes. Therefore, if further model size reduction is
warranted, a combination of better model design and neural
network condensation will be required.
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AUROC: area under the receiver operating curve
DNN: deep neural network
hLSTM: hidden-layer long short-term memory
ICU: intensive care unit
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pDNN: pruned deep neural network
qDNN: quantized deep neural network
ReLU: rectified linear unit
RNN: recurrent neural network
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