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Abstract

Background: Systematic reviews depend on time-consuming extraction of data from the PDFs of underlying studies. To date,
automation efforts have focused on extracting data from the text, and no approach has yet succeeded in fully automating ingestion
of quantitative evidence. However, the majority of relevant data is generally presented in tables, and the tabular structure is more
amenable to automated extraction than free text.

Objective: The purpose of this study was to classify the structure and format of descriptive statistics reported in tables in the
comparative medical literature.

Methods: We sampled 100 published randomized controlled trials from 2019 based on a search in PubMed; these results were
imported to the AutoLit platform. Studies were excluded if they were nonclinical, noncomparative, not in English, protocols, or
not available in full text. In AutoLit, tables reporting baseline or outcome data in all studies were characterized based on reporting
practices. Measurement context, meaning the structure in which the interventions of interest, patient arm breakdown, measurement
time points, and data element descriptions were presented, was classified based on the number of contextual pieces and metadata
reported. The statistic formats for reported metrics (specific instances of reporting of data elements) were then classified by
location and broken down into reporting strategies for continuous, dichotomous, and categorical metrics.

Results: We included 78 of 100 sampled studies, one of which (1.3%) did not report data elements in tables. The remaining 77
studies reported baseline and outcome data in 174 tables, and 96% (69/72) of these tables broke down reporting by patient arms.
Fifteen structures were found for the reporting of measurement context, which were broadly grouped into: 1×1 contexts, where
two pieces of context are reported in total (eg, arms in columns, data elements in rows); 2×1 contexts, where two pieces of context
are given on row headers (eg, time points in columns, arms nested in data elements on rows); and 1×2 contexts, where two pieces
of context are given on column headers. The 1×1 contexts were present in 57% of tables (99/174), compared to 20% (34/174)
for 2×1 contexts and 15% (26/174) for 1×2 contexts; the remaining 8% (15/174) used unique/other stratification methods. Statistic
formats were reported in the headers or descriptions of 84% (65/74) of studies.

Conclusions: In this cross-sectional pilot review, we found a high density of information in tables, but with major heterogeneity
in presentation of measurement context. The highest-density studies reported both baseline and outcome measures in tables, with
arm-level breakout, intervention labels, and arm sizes present, and reported both the statistic formats and units. The measurement
context formats presented here, broadly classified into three classes that cover 92% (71/78) of studies, form a basis for understanding
the frequency of different reporting styles, supporting automated detection of the data format for extraction of metrics.
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Introduction

Extracting Data for a Systematic Review
Systematic reviews and meta-analyses of high-quality studies
are essential for clinical decision-making [1], guidelines [2],
and evidence-based adoption and approval of therapies [3].
Quantitative data extraction is an essential task in the systematic
review/meta-analysis process, during which researchers gather
patient characteristics, interventions, and outcomes of interest
in a common format to support summarization and statistical
analysis. The current practice for data extraction is manual
review of published manuscripts of studies, with subsequent
manual entry of data into a spreadsheet or review software [4].
The manual, work-intensive nature of this task contributes to
the high cost in time and money of reviewing the clinical
literature.

The time investment and costs of systematic
reviews/meta-analyses—which can reach 16 months and US
$141,000 [5] in labor to complete a single review—are the major
limiting factors in the synthesis of scientific evidence. The task
of data extraction from published comparative studies typically
demands 20% of the total review and analysis time, and is
subject to high accuracy standards [6,7]. This has led to calls
for both improved software systems for systematic
reviews/meta-analyses and automation of the data extraction
process. However, according to a systematic review of
systematic review/meta-analysis extraction automation projects,
“no unified information extraction framework [has been] tailored
to the systematic review process…[automation] techniques have
not been fully utilized to fully or even partially automate the
data extraction step of systematic review” [8].

Systematic Review Workflow Software Platforms
Despite the fact that automated data extraction for systematic
reviews/meta-analyses has yet to be achieved, several web-based
software options currently support part or all of the workflow
of a review [9], establishing a systematic approach on which
automated data extraction can be modeled. We previously
developed a workflow software platform (AutoLit, Nested
Knowledge, MN) [10] for performing and presenting systematic
reviews and meta-analyses. The data extraction functions of
AutoLit are user-driven and focused on extracting descriptive
statistics. After articles are retrieved and screened, users read
the PDFs of study content and feed extracted data directly into
a database, which is used to produce a “living” summary and
obtain interpretive statistical outputs. This platform has provided
a basis for experimentation with the streamlining of data
extraction, the end goal of which is automated identification,
parsing, and abstraction of summary statistics reported in
medical manuscripts.

Automated Data Extraction Efforts
To begin to solve the problem of automated data extraction, it
is first essential to understand the format in which input data is
available. PDF manuscripts are the de facto publication medium.
Within these manuscripts, the key data regarding the patient
population/characteristics, interventions of interest, and
outcomes are presented in both the text and data tables. Notably,

the majority of previous extraction efforts have focused on
textual extraction [8], despite the varied presentation styles and
unstructured nature of both contextual information and the data
themselves.

Targeting Extraction from Tables
We hypothesized that data tables, as opposed to free text,
represent an ideal target for automated extraction based on the
following traits: (1) data in tables are densely concentrated; (2)
tables are delimited and typically include structure and a
standardized set of contexts not found in free text; (3) tables
often report statistics not mentioned in the free text (eg,
secondary outcomes); and tables consistently report data with
higher precision and full information (eg, dispersion measures
and sample sizes).

Existing Standards for Tabular Presentation
Journals and medical research bodies have published standards
related to how statistics and tables should be presented [11-13].
Common themes include presenting units for continuous data
elements, standardization of statistic formatting (eg, mean [SD]),
reporting interventions as full names or standardized
abbreviations, and reporting sample sizes used in an analysis.

Despite these guidelines, table formatting standards, both in
terms of style and content, vary between journals. This
heterogeneity has been noted previously, and a software tool
targeted toward authors [14], “tableone,” was created to enable
harmonized generation of statistical analyses and tables directly
from study results. However, tableone and similar tools are not
yet widely adopted to a sufficient extent to meaningfully
standardize reporting.

Classifying Tabular Reporting Practices
Given this context, automated tabular extraction depends on
understanding the variety of table structures—including the
types and frequencies of variation from common formats—in
medical manuscripts. A recent systematic review showed that
although 14 independent automation projects focused on full-text
extraction have been published [15], only one project focused
on extraction from tables [8]. Furthermore, although the results
of this project were promising, achieving high accuracy in
machine learning–based extraction, neither this nor any other
study to date has surveyed or classified the structure of tables
presented in the clinical literature. Therefore, in this study, we
focused on identifying the characteristics that are essential for
the automation of extraction of descriptive statistics in tables.
This can provide concrete structural characteristics to enable
assessment of the generalizability of tabular presentation formats
and support the future automation of extraction.

Methods

Sampling Published Comparative Clinical Studies
A cross-sectional sample of clinical study publication records
was generated. In brief, published studies tagged as randomized
controlled trials (RCTs), as indexed in PubMed, from 2019 were
searched using the following term: “randomized controlled trial”
[Publication Type] AND 2019/01/01:2020/01/01[dp]. Search
results were exported from PubMed on August 9, 2021, using
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the Entrez application programming interface [16]; imported
to the AutoLit platform; and search results were randomly
sampled by index, without replacement, using the R function
“sample” to select 100 records. Of these, all published articles
were included except those that met the following exclusion
criteria: not clinical, not comparative (ie, the publication does

not compare outcomes between patient groups), not in English,
protocol only, or no full text available.

Abstracting Tables
Within this sample, table attributes were identified, classified,
and summarized. The concepts for data extraction used are
summarized in Table 1.

Table 1. Defining tabular concepts.

ExampleDefinitionConcept

MortalityA characteristic or quality being measuredData element

2/59 (3.4%)A measured instance of a data element, a descriptive statisticMetric

Placebo groupA subset of an experiment’s participants that are assigned a specific interventionArm

6-month follow-upThe point(s) in time in an experiment when measurement of data elements is
performed

Time point

Mortality in the placebo group at 6 monthsThe combination of a data element, arm, and time point in experimental reportingMeasurement context

Data extraction necessarily has to address the attributes of
measurement context to discern the meaning of a given metric.
Thus, for each patient arm, the intervention and population size
must be identified, and for each data element, the unit of
measurement and time points must be extracted. Furthermore,
metrics must be parsed into their constituent statistics, including
(1) continuous metrics as the measure of central tendency and
the dispersion measure; (2) dichotomous metrics, namely the
subset, total population, and percentage (n/N, %); and (3)
categorical metrics, namely the subset and total population.

Tables and their descriptions typically contain at least partial
representations of metrics and their measurement contexts.
Context can be assigned to dimensions (rows and columns) of
the table. For example, Figure 1 displays a “2×1” context,
meaning that the rows of the table correspond to 2 nested pieces
of context (arms nested in data elements) and the columns
correspond to 1 piece of context (time points) [17]. For
comparison, Figure 2 displays a “1×1” context, wherein the
data elements are labeled on the rows (with corresponding
statistical formats) and arms are defined in the columns (time
points not presented) [18].
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Figure 1. Example of a 2x1 context with arms (blue) nested in data elements (red) on rows and time points (green) on the columns. Table from Chellappa
et al [17]. ANOVA: analysis of variance.

Figure 2. A 1x1 baseline table reporting data elements on rows and arms on columns. Arm sizes are embedded in intervention headers (red), category
labels are reported in the data element array indented (blue), and statistic formats are reported in headers (green). Table from Gauto Benitez et al [18].
HFNC: high flow nasal cannula.
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Table Classification

Classification System
Each included record underwent full text review and was tagged
in AutoLit based on the attributes of its (1) table structure, (2)
measurement context, and (3) metric information. All tables
within a published article were considered for classification via
the tagging hierarchy. Tags were assigned on a per-table basis

within each record such that the tags described the attributes of
its tables.

Table Structure Reporting
As defined in Table 2, table attributes covered the reporting of
baseline and outcome data and table orientation/pagination. If
a table did not report any descriptive statistics concerning patient
characteristics or outcomes, it was accordingly not tagged.

Table 2. Tagging hierarchy of table structural attributes.

Applied whenTags

Baseline or demographic characteristics of one or more study arms reported

The article reports baseline characteristics for the study population in a table, broken out by armIn table

The article reports baseline characteristics for the study population in a table, reported for each participantParticipant level

The article reports baseline characteristics for the entire study population in a table, with no breakoutNo arm-level breakout

Experimental outcomes reported

The article reports outcomes in a table, including the primary outcome(s), at one or more follow-up time
points

In table

The article reports outcomes in a table, including the primary outcome(s), at one or more follow-up time
points, reported for each participant

Participant level

The article reports outcomes in a table, but not all the primary outcomes of the study, instead focusing on
data points other than primary outcomes

Secondary only, in table

Other table features

One or more baseline or outcome tables in the article is rotated 90 degrees in either direction on the page
but is otherwise normal

Rotated 90 degrees

One or more baseline or outcome tables in the article overflows beyond its starting page but is otherwise
normal

Multipage

Measurement Context Reporting
Measurement context tags were applied for all tables for which
patient baseline characteristics or outcomes were reported.
Contextual information of interest included the pieces of context

per array (where an array represents either a row or column),
including data element headers, arm names and arm size
reporting, labeling of interventions, and labeling of time points
(Table 3).
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Table 3. Tagging hierarchy of measurement context attributes.

Applied whenTags

Alignment of table dimensions and measurement contexta

Only two pieces of context are shown in the table dimensions: one on rows and one on columns (eg, data
elements on rows and arms columns)

1×1

Three pieces of context are shown in the table dimensions: two on rows and one on columns (eg, arms
nested in data elements on rows, time points on columns)

2×1

Three pieces of context are shown in the table dimensions: one on rows and two on columns1×2

Number of participants in individual arms of the study reported

Arm sizes are reported as part of the arm or intervention label (eg, “Placebo [n=25]”)Embedded in arm

Arm sizes are reported in a distinct column or row in the tableSeparate array

Header labels corresponding to the intervention(s) applied in each arm of the study

The entire name of the intervention(s) for the arm is shown in the arm headerFull name

An acronym or shortened version of the invention name(s) for the arm is shown in the arm headerAcronym or abbreviation

The arm header is labeled with “Control” and “Experimental” or “Treatment” or “Intervention“Control/experimental

Any header labeling scheme not identified above is usedAlternate labels

Header labels corresponding to the time at which the reported data were collected

The time point header contains an amount of time, including unitsContains unit of time

The time point header is labeled “Pre/Post,” “Before/After,” “Baseline/Follow-up”Pre/post

Time point headers are labeled with numbers or letters in order of time (eg, “t1,” “t2”)Incremental numbered

aContext is tagged as “Embedded” when individual header cells include 2 elements of context (eg, “Baseline BMI”).

Metric Reporting
Unlike table structure and measurement context, metric tags
were applied per article rather than per table. All baseline and

outcome tables in the article were considered for metric
classification (Table 4).

JMIR Form Res 2021 | vol. 5 | iss. 11 | e33124 | p. 6https://formative.jmir.org/2021/11/e33124
(page number not for citation purposes)

Holub et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Tagging hierarchy of metric attributes.

Applied whenTags

The format of statistics reported in a metric is displayeda

The statistic format or just constituents are reported in the header of the array of metricsIn header

The statistic format or constituents are reported in the description or footnotes; these may apply to the
entire table or be annotations for arrays

In description or footnotes

Units of continuous data elements reportedb

The units of data elements are reported in each array headerIn header

The units of continuous data elements are reported in the description or footnotes; these may apply to the
entire table or be annotations for arrays

In descriptions or footnotes

The article includes no continuous data elements or the continuous data elements are unitless (eg, scale
data)

Not relevant

Pattern defining how the constituent statistics in array of metrics are formattedc

The format is used for continuous data elementsContinuous

The format is used for dichotomous data elements, specifically when only a single category is implied
(eg, “Mortality” or “Gender Male”)

Dichotomous

The format is used for categorical data elements; this also applies when a dichotomous data element ex-
plicitly lists all categories (eg, “Smoking” has separate arrays for “Yes” and “No”)

Categorical

Method of reporting category labels for categorical data elementsd

Category labels are in an entirely separate (delimited) array from the data element header arraySeparate array

Category labels are in the data element header array, with no distinction from other data element labelsSame array

Category labels are in the data element header array, but are nested under the categorical data element
header via white space or list indentation

Same array indented

Categories are all reported in the same cell (eg, “Gender M/F” with metrics “11/9”)In cell

aIf multiple cases apply, the lowest in the table is the classification.
bIf multiple cases apply, the lowest in the table is the classification. If units are missing on one or more data elements, this classification should be left
empty.
cThe formats under each tag are created as they are encountered in articles.
dThis classification is left empty in the event that no categorical data elements are reported.

Statistical Analysis
As a pilot study, no power analysis was performed to identify
an appropriate sample size. Sample size was estimated to restrict
95% CIs on proportions to ±15% in width. Frequencies were
compiled with Boolean queries on tags in AutoLit’s Study
Inspector. Boolean queries were run on tagged articles using
the open source software “btriev” [19] in NodeJS. The counts
of results were then compiled and proportion CIs were generated
using a normal approximation with the “prop.test” function in
R. Inferential statistics on proportions were built with a normal
approximation and computed in the R programming language.
CIs are reported at the 95% level.

Results

Characteristics of Sampled Articles
Of the sampled 100 records, 12 published articles were excluded
for lack of PDF full text, 7 presented nonclinical findings, and
3 were not available in English, leaving 78 articles that were
included in this pilot study. A single clinical study was reported
in all (78/78, 100%) published articles. Articles were published
in 65 distinct journals, with the most frequent journal, PLoS
One, publishing 9 of the articles. An interactive visualization
of all articles tagged using the hierarchical paradigm described
above is available on the Nested Knowledge Synthesis page
(see Figure 3) [20].
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Figure 3. A screenshot of the interactive tagging hierarchy applied across the 78 studies included in this pilot survey. Two filters were applied: “Outcomes
Reported In Table” was selected first, and then “Mean ± SD,” meaning the sunburst plot is filtered to studies for which both tags are present. The right
menu displays the 38 studies for which this is true as well as statistics about how common the tags in question are across all included studies.

Reporting of Baseline and Outcome Measures in Tables
Baseline and outcome data were reported in 71 of 78 (92%)
articles (95% CI 84%-96%). Both baseline and outcome data
were presented in tables in 66 of 78 articles (85%, 95% CI
75%-91%), and 77 (99%, 95% CI 93%-100%) articles reported

at least one table of baseline or outcome measures. Standard
reporting (with arm-level breakout) was present in 97% (64/66,
95% CI 90%-99%) of tables reporting baseline characteristics
and in 96% (69/72, 95% CI 92%-99%) of tables reporting
outcomes (Table 5).

Table 5. Baseline and outcome reporting per article and per table.

Frequency per table (N=174), n (%)Frequency per article (N=78), n (%)Type

67 (38.5)66 (85)Baseline reported in table

65 (97)64 (97)Arm-level breakout

2 (3)2 (3)No arm-level breakout

107 (61.5)72 (92)Outcomes reported in table

104 (97.2)69 (96)Arm-level breakout

2 (1.9)2 (3)Secondary only

1 (0.9)1 (1)Participant level

Among the 174 tables that were found to report either baseline
or outcome descriptive statistics, 6 (3.4%, 95% CI 1.6%-7.3%)
were rotated 90 degrees and 5 (2.9%, 95% CI 1.2%-6.5%) were
multipage.

Reporting of Measurement Context in Tables
Table 6 shows the frequency of measurement contexts using
the number of articles reporting one or more baseline or

outcomes tables as the respective denominators. Overall, 48
(62%, 95% CI 51%-72%) articles labeled arms by the full
intervention name or an abbreviation of it. Additionally, 22 of
the 52 (42%, 95% CI 30%-56%) articles reporting the time point
context in tables labeled time points according to the amount
of time.
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Table 6. Measurement context reporting per article (N=77).

Frequency per relevanta article, n (%)Type

57 (74)Arm size reported

50 (88)Embedded in arm

6 (11)In separate array

1 (1)In description

77 (100)Intervention labels reported

26 (34)Control/experimental

25 (33)Acronyms or abbreviated

23 (30)Full name

3 (4)Alternate labels

52 (68)Time point labels reported

24 (46)Pre/post

22 (42)Contains unit of time

6 (12)Incremental numbering

aOne article reported no baseline or outcome data in tables and was thus left out from the measurement context analysis.

In terms of dimensions, the 1×1 context of data elements and
arms was most commonly used to report findings, with time
points included in only 4 of 99 (4%, 95% CI 1.6%-9.9%) of
these tables. Across all context types, arms were most frequently

reported on columns (134/174, 77.0%), data elements on rows
(144/174, 82.8%), and time points on columns (38/174, 21.8%)
(see Table 7).
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Table 7. Dimensions of tabular reporting of measurement context (N=174).

Frequency per table, n (%)Context dimensions

99 (56.9)1×1

90 (91)DEsa on rows, arms on columns

5 (5)Arms on rows, DEs on columns

2 (2)Arm on rows, TPb on columns

2 (2)TPs on rows, arms on columns

34 (19.5)2×1

18 (53)TPs nested in DEs on rows, arms on columns

8 (24)Arms nested in DEs on rows, TPs on columns

2 (6)DEs nested in arms on rows, TPs on columns

2 (6)Arms nested in TPs on rows, DEs on columns

2 (6)DEs and TPs embedded in rows, arms on columns

1 (3)TPs nested in arms on rows, DEs on columns

1 (3)DEs nested in TPs on rows, arms on columns

26 (14.9)1×2

16 (62)DEs on rows, TPs nested in arms on columns

5 (19)DEs on rows, arms nested in TPs on columns

3 (12)Arms on rows, TPs nested in DEs on columns

2 (8)DEs on rows, arms and TPs embedded on columns

15 (8.6)Other structure

8 (53)Stratified reporting

7 (47)Only reports comparative statistics

aDE: data element.
bTP: time point.

Reporting of Metrics in Tables
Overall, 75 (97%) articles reported one or more continuous
metrics in tables. Fourteen total formats were observed. Mean
central tendencies were most frequently reported as mean ± SD
(59%) and mean (SD) (36%), whereas medians were most
commonly reported as median (25th percentile-75th percentile)

(52%; see Table 8). Seven formats were used for means and 7
for medians.

Among 75 articles reporting at least one continuous metric, 64
(85%, 95% CI 76%-92%) contained data elements where units
were relevant; of these, 55 (86%, 95% CI 75%-92%) reported
units of measurement in table headers.
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Table 8. Continuous metric reporting format in tables (N=77).

Frequency per relevanta article, n (%)Continuous metrics reported

69 (90)Mean

41 (59)Mean ± SD

25 (36)Mean (SD)

2 (3)Mean and SD in separate arrays

2 (3%)Mean

1 (1%)Mean SD

1 (1%)Mean (CI; lower-higher)

1 (1%)Mean ± SD (range; min-max)

21 (27)Median

11 (52)Median (IQR; 25th percentile-75th percentile)

4 (19)Median (range, min-max)

3 (14)Median [IQR; 25th percentile-75th percentile]

1 (5)Median [IQR; 25th percentile, 75th percentile]

1 (5)Median (IQR; 25th percentile to 75th percentile)

1 (5)Median (IQR)

1 (5)Min-Max (median)

aOne article reported no baseline or outcome data in tables and was thus left out from continuous data characterization.

Regarding dichotomous and categorical metrics, 8 different
formats were encountered across 62 articles (Table 9); the format
n (%) was most commonly observed for both metric types.

Statistical formats (such as those shown in Table 9) were also
commonly represented in tables. In 65 of 77 studies (84%), the
generalizable format was given. In 35 articles, the format was
presented in the header, whereas in 30 articles, it was presented
in the footnote or tabular description.

Table 9. Dichotomous and categorical formats and labels in tables (N=77).

Frequency per relevanta articles, n (%)Statistics reported

40 (52)Dichotomous

30 (75)n (%)

3 (8)n

3 (8)n/(N–n)

3 (8)%

2 (5)n, %

1 (3)n and % in separate arrays

47 (61)Categorical

40 (85)n (%)

8 (17)n

47 (61)Categorical labels

35 (74)Same array, indented

7 (15)Separate array

7 (15)In cell

1 (2)Same array, unindented

aOne article reported no baseline or outcome data in tables and was thus left out from dichotomous/categorical data characterization.
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Among the 47 articles reporting categorical metrics, category
label indentation under the data element header was observed
in 35 (74%, 95% CI 60%-85%) articles. Two articles used two
distinct methods of category labeling.

Across all data types, statistic formats were reported in tables
or their descriptions in 84% (95% CI 75%-91%) of articles.

Characteristics of Articles With High Information
Density
Notwithstanding the variety of measurement contexts (with 15
independent formats detected) and statistic formats presented,
high information density was common in our dataset. Articles
that were found to present maximal information in tables have
the following classifications: baseline or outcomes reported in
table; arm size reported; intervention labels should be full name
or acronyms or abbreviations; when reporting relevant metrics,
units of measurement are reported; and statistic format reported.

Thirty-one of the 78 sampled articles (40%, 95% CI 30%-51%)
matched these classifications. The most impactful constraint
among these classifications was “intervention labels”; if this
classification is dropped, 48 (62%, 95% CI 50%-75%) articles
matched the maximal-density, most-common formats listed
above.

Discussion

Principal Results
In this pilot survey, we found that 85% (66/78) of articles
reported both baseline and outcome data in tables, and 99%
(77/78) of articles have at least one table of baseline or outcome
data. Arm-level (intervention-specific) data were presented in
96% (69/72) of these tables, but there was major heterogeneity
in the methods of reporting population size and intervention
group names. Tabular dimensions ranged widely, with 15
independent dimensional structures used to report measurement
context across 174 tables. Although 1×1 contexts represented
the majority of tables, our results suggest that automated context
detection will need to contend with a diversity of arrangements.

Similarly, although continuous data were very commonly
reported (90% of articles, n=69/77) and dichotomous and
categorical data were consistently reported (52% and 61% of
articles, n=40/77 and n=47/77 respectively), statistic formats
were heterogeneous, with seven formats for means, seven for
medians, and six for dichotomous data. Despite the
heterogeneity of format, tables provided a consistent,
high-density source for baseline and outcome data, and the
contexts and formats defined here can be used to refine the
expected data presentation for tabular data extraction. We plan
to expand upon this pilot study in tabular structure with a
review-and-tabular-extraction study, wherein the framework
outlined here will be used to classify and extract from underlying
articles and the accuracy of extracted metrics will be determined
by comparison to manual extraction.

Automated Recognition of Context and Format
The context presented in tables showed the most disappointing
rate of reporting information of interest. Although arm sizes
were reported in tables in 74% (57/77) of publications, arm

interventions and measurement time points were reported in a
self-contained manner 60% (46/77) and 40% (31/77) of the
time, respectively. If tables are extracted in a completely
self-contained manner, with no access to the publication’s full
text, we expect only 40% of publications will contain sufficient
information in tables alone to complete extraction. Extraction
automations will therefore have to receive human input or
consult the free text to supplement arm and time point contexts
from the tables.

Statistic reporting was heterogenous in format but extremely
commonly reported: statistic format was explicitly reported in
tables in up to 90% (69/77) of publications. Even where absent,
the format may also be inferred from the metric arrays
themselves. Inferred formats may be useful when formats are
not reported or as a validation on the detected format.
Categorical metrics may produce the most complexity for
automations, as category labels are often not distinguished from
data element labels by more than whitespace indentation.

Given the commonality of n (%) reporting for dichotomous and
categorical data elements, it may be possible to arithmetically
derive missing arm sizes from metrics. If not essential, mining
the full text may still provide value in validations or completing
data. For example, interventions were reported as abbreviations
or acronyms in around 30% (23/77) of publications; pattern
matching on the abstract or introduction could generate full
strings for these shortened versions.

A nontrivial number of publications, around 5% (4/77),
contained rotated or multipage tables. Automations should
consider tools to identify and apply corrective measures in these
cases. Eight percent of tables reported only stratified data or
only comparative statistics; although these cases are typically
mathematically correctable to arm-level data that meta-analysts
desire, automation of these procedures would add complexity.
Lastly, although no publication included in our pilot study had
missing data, potential missing data must be addressed in any
automated workflow: we suggest that for any table where data
are missing, the table should be visually presented to users for
confirmation.

Previous Research on Tabular Extraction
To date, the scientific literature does not seem to contain any
studies giving an overview of the table structure, context
presentation, and statistic formats, making this pilot study the
first of its kind. The Cochrane Collaboration has created a test
data set for automated extraction that may be used to test the
accuracy of novel extraction algorithms; however, their data set
did not classify tabular structure, instead focusing on providing
the test/training data sets and preliminary testing of their own
semiautomated extraction system [21].

However, previous authors have proceeded beyond classification
and provided approaches for automating tabular extraction.
Unlike the approaches reviewed by Jonnalagadda et al [8] and
Marshall et al [22], which focus on simplified content-extraction
tasks from free text (such as abstracts), Milosevic et al [23]
actually tested a preliminary algorithm for tabular extraction.
Although this study did not include an overview of the context
or statistic formats, the authors achieved an F-score (accuracy)

JMIR Form Res 2021 | vol. 5 | iss. 11 | e33124 | p. 12https://formative.jmir.org/2021/11/e33124
(page number not for citation purposes)

Holub et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


of 82%-92% in the content extraction from a simplified set of
HTML tables with 1×1 context formats. The seven-step process
for detecting, processing, tagging, and extracting from tables
used by Milosevic et al [23] is the most complete tabular
extraction process published to date. The only competing
approach focusing on tables in medical publications was from
Xu et al [24], who were able to extract drug side effect
relationships with 52% accuracy using a statistical classifier.
Other than Milosevic et al’s [23] pilot study, despite at least 26
approaches attempted in textual extraction [8], automated
extraction remains an unmet need for which tabular extraction
is a promising and underexamined methodology.

Limitations
We believe our findings will generalize to modern clinical
publications owing to the simplicity of our search and
applicability of classifications. However, this survey and the
AutoLit data extraction framework are applicable only to clinical
research publications. Since our search was limited to RCTs,
some study types such as observational studies may show
different characteristics. Similarly, we did not stratify our results
by journal, impact factor, or other factors apart from filtering
to RCTs, although journal-related characteristics may affect
how representative this pilot is of medical publishing generally.

Additionally, specific fields of research may show characteristics
that do not align well with the averaging-across-fields approach
used in our study. As a pilot survey, our study did not involve
a power analysis; however, this pilot study can be used to
determine sample sizes quantitatively in future research. Lastly,
our breakout of contexts and formats is always subject to
expansion not covered in this sample, and automations built on
the expectation of a limited set of contexts or formats may fail
when new presentations of this information are encountered.
The test of this framework will be the accuracy of extraction
algorithms that employ it compared against existing extraction
methods.

Conclusions
In this pilot survey, we found a high density of information in
tables, with over 85% (66/78) of articles reporting both
background and outcome measures in tables, but with major
heterogeneity in presentation of measurement context.
Measurement context was most often presented in a 1×1 format,
but 15 independent formats were found. Similarly, means and
medians were each found in seven independent formats, and
dichotomous variables in six. Despite this, high-quality
contextual information (intervention labels, arm sizes, units,
and statistic formats) were presented in 40% (31/77) of articles.
The range of context and statistic formats surveyed here can
provide a baseline for future tabular extraction efforts.
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